/* * Copyright (c) 2001-2005 Jakub Jermar * Copyright (c) 2005 Sergey Bondari * Copyright (c) 2009 Martin Decky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** @addtogroup genericmm * @{ */ /** * @file * @brief Physical frame allocator. * * This file contains the physical frame allocator and memory zone management. * The frame allocator is built on top of the two-level bitmap structure. * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #define BITMAP_BLOCK_SIZE 1024 zones_t zones; /* * Synchronization primitives used to sleep when there is no memory * available. */ static mutex_t mem_avail_mtx; static condvar_t mem_avail_cv; static size_t mem_avail_req = 0; /**< Number of frames requested. */ static size_t mem_avail_gen = 0; /**< Generation counter. */ /********************/ /* Helper functions */ /********************/ NO_TRACE static inline size_t frame_index(zone_t *zone, frame_t *frame) { return (size_t) (frame - zone->frames); } NO_TRACE static inline size_t frame_index_abs(zone_t *zone, frame_t *frame) { return (size_t) (frame - zone->frames) + zone->base; } NO_TRACE static inline bool frame_index_valid(zone_t *zone, size_t index) { return (index < zone->count); } /** Initialize frame structure. * * @param frame Frame structure to be initialized. * */ NO_TRACE static void frame_initialize(frame_t *frame) { frame->refcount = 0; frame->parent = NULL; } /*******************/ /* Zones functions */ /*******************/ /** Insert-sort zone into zones list. * * Assume interrupts are disabled and zones lock is * locked. * * @param base Base frame of the newly inserted zone. * @param count Number of frames of the newly inserted zone. * * @return Zone number on success, -1 on error. * */ NO_TRACE static size_t zones_insert_zone(pfn_t base, size_t count, zone_flags_t flags) { if (zones.count + 1 == ZONES_MAX) { printf("Maximum zone count %u exceeded!\n", ZONES_MAX); return (size_t) -1; } size_t i; for (i = 0; i < zones.count; i++) { /* Check for overlap */ if (overlaps(zones.info[i].base, zones.info[i].count, base, count)) { /* * If the overlaping zones are of the same type * and the new zone is completely within the previous * one, then quietly ignore the new zone. * */ if ((zones.info[i].flags != flags) || (!iswithin(zones.info[i].base, zones.info[i].count, base, count))) { printf("Zone (%p, %p) overlaps " "with previous zone (%p %p)!\n", (void *) PFN2ADDR(base), (void *) PFN2ADDR(count), (void *) PFN2ADDR(zones.info[i].base), (void *) PFN2ADDR(zones.info[i].count)); } return (size_t) -1; } if (base < zones.info[i].base) break; } /* Move other zones up */ for (size_t j = zones.count; j > i; j--) zones.info[j] = zones.info[j - 1]; zones.count++; return i; } /** Get total available frames. * * Assume interrupts are disabled and zones lock is * locked. * * @return Total number of available frames. * */ NO_TRACE static size_t frame_total_free_get_internal(void) { size_t total = 0; size_t i; for (i = 0; i < zones.count; i++) total += zones.info[i].free_count; return total; } NO_TRACE size_t frame_total_free_get(void) { size_t total; irq_spinlock_lock(&zones.lock, true); total = frame_total_free_get_internal(); irq_spinlock_unlock(&zones.lock, true); return total; } /** Find a zone with a given frames. * * Assume interrupts are disabled and zones lock is * locked. * * @param frame Frame number contained in zone. * @param count Number of frames to look for. * @param hint Used as zone hint. * * @return Zone index or -1 if not found. * */ NO_TRACE size_t find_zone(pfn_t frame, size_t count, size_t hint) { if (hint >= zones.count) hint = 0; size_t i = hint; do { if ((zones.info[i].base <= frame) && (zones.info[i].base + zones.info[i].count >= frame + count)) return i; i++; if (i >= zones.count) i = 0; } while (i != hint); return (size_t) -1; } /** @return True if zone can allocate specified number of frames */ NO_TRACE static bool zone_can_alloc(zone_t *zone, size_t count, pfn_t constraint) { /* * The function bitmap_allocate_range() does not modify * the bitmap if the last argument is NULL. */ return ((zone->flags & ZONE_AVAILABLE) && bitmap_allocate_range(&zone->bitmap, count, zone->base, constraint, NULL)); } /** Find a zone that can allocate specified number of frames * * Assume interrupts are disabled and zones lock is * locked. * * @param count Number of free frames we are trying to find. * @param flags Required flags of the target zone. * @param constraint Indication of bits that cannot be set in the * physical frame number of the first allocated frame. * @param hind Preferred zone. * */ NO_TRACE static size_t find_free_zone(size_t count, zone_flags_t flags, pfn_t constraint, size_t hint) { if (hint >= zones.count) hint = 0; size_t i = hint; do { /* * Check whether the zone meets the search criteria. */ if (ZONE_FLAGS_MATCH(zones.info[i].flags, flags)) { /* * Check if the zone can satisfy the allocation request. */ if (zone_can_alloc(&zones.info[i], count, constraint)) return i; } i++; if (i >= zones.count) i = 0; } while (i != hint); return (size_t) -1; } /******************/ /* Zone functions */ /******************/ /** Return frame from zone. */ NO_TRACE static frame_t *zone_get_frame(zone_t *zone, size_t index) { ASSERT(index < zone->count); return &zone->frames[index]; } /** Allocate frame in particular zone. * * Assume zone is locked and is available for allocation. * Panics if allocation is impossible. * * @param zone Zone to allocate from. * @param count Number of frames to allocate * @param constraint Indication of bits that cannot be set in the * physical frame number of the first allocated frame. * * @return Frame index in zone. * */ NO_TRACE static size_t zone_frame_alloc(zone_t *zone, size_t count, pfn_t constraint) { ASSERT(zone->flags & ZONE_AVAILABLE); /* Allocate frames from zone */ size_t index; int avail = bitmap_allocate_range(&zone->bitmap, count, zone->base, constraint, &index); ASSERT(avail); /* Update frame reference count */ for (size_t i = 0; i < count; i++) { frame_t *frame = zone_get_frame(zone, index + i); ASSERT(frame->refcount == 0); frame->refcount = 1; } /* Update zone information. */ zone->free_count -= count; zone->busy_count += count; return index; } /** Free frame from zone. * * Assume zone is locked and is available for deallocation. * * @param zone Pointer to zone from which the frame is to be freed. * @param index Frame index relative to zone. * * @return Number of freed frames. * */ NO_TRACE static size_t zone_frame_free(zone_t *zone, size_t index) { ASSERT(zone->flags & ZONE_AVAILABLE); frame_t *frame = zone_get_frame(zone, index); ASSERT(frame->refcount > 0); if (!--frame->refcount) { bitmap_free_range(&zone->bitmap, index, 1); /* Update zone information. */ zone->free_count++; zone->busy_count--; return 1; } return 0; } /** Mark frame in zone unavailable to allocation. */ NO_TRACE static void zone_mark_unavailable(zone_t *zone, size_t index) { if (!(zone->flags & ZONE_AVAILABLE)) return; frame_t *frame = zone_get_frame(zone, index); if (frame->refcount > 0) return; frame->refcount = 1; bitmap_set_range(&zone->bitmap, index, 1); zone->free_count--; reserve_force_alloc(1); } /** Merge two zones. * * Assume z1 & z2 are locked and compatible and zones lock is * locked. * * @param z1 First zone to merge. * @param z2 Second zone to merge. * @param old_z1 Original data of the first zone. * @param confdata Merged zone configuration data. * */ NO_TRACE static void zone_merge_internal(size_t z1, size_t z2, zone_t *old_z1, void *confdata) { ASSERT(zones.info[z1].flags & ZONE_AVAILABLE); ASSERT(zones.info[z2].flags & ZONE_AVAILABLE); ASSERT(zones.info[z1].flags == zones.info[z2].flags); ASSERT(zones.info[z1].base < zones.info[z2].base); ASSERT(!overlaps(zones.info[z1].base, zones.info[z1].count, zones.info[z2].base, zones.info[z2].count)); /* Difference between zone bases */ pfn_t base_diff = zones.info[z2].base - zones.info[z1].base; zones.info[z1].count = base_diff + zones.info[z2].count; zones.info[z1].free_count += zones.info[z2].free_count; zones.info[z1].busy_count += zones.info[z2].busy_count; bitmap_initialize(&zones.info[z1].bitmap, zones.info[z1].count, BITMAP_BLOCK_SIZE, confdata + (sizeof(frame_t) * zones.info[z1].count)); zones.info[z1].frames = (frame_t *) confdata; /* * Copy frames and bits from both zones to preserve parents, etc. */ for (size_t i = 0; i < old_z1->count; i++) { bitmap_set(&zones.info[z1].bitmap, i, bitmap_get(&old_z1->bitmap, i)); zones.info[z1].frames[i] = old_z1->frames[i]; } for (size_t i = 0; i < zones.info[z2].count; i++) { bitmap_set(&zones.info[z1].bitmap, base_diff + i, bitmap_get(&zones.info[z2].bitmap, i)); zones.info[z1].frames[base_diff + i] = zones.info[z2].frames[i]; } } /** Return old configuration frames into the zone. * * We have two cases: * - The configuration data is outside the zone * -> do nothing (perhaps call frame_free?) * - The configuration data was created by zone_create * or updated by reduce_region -> free every frame * * @param znum The actual zone where freeing should occur. * @param pfn Old zone configuration frame. * @param count Old zone frame count. * */ NO_TRACE static void return_config_frames(size_t znum, pfn_t pfn, size_t count) { ASSERT(zones.info[znum].flags & ZONE_AVAILABLE); size_t cframes = SIZE2FRAMES(zone_conf_size(count)); if ((pfn < zones.info[znum].base) || (pfn >= zones.info[znum].base + zones.info[znum].count)) return; for (size_t i = 0; i < cframes; i++) (void) zone_frame_free(&zones.info[znum], pfn - zones.info[znum].base + i); } /** Merge zones z1 and z2. * * The merged zones must be 2 zones with no zone existing in between * (which means that z2 = z1 + 1). Both zones must be available zones * with the same flags. * * When you create a new zone, the frame allocator configuration does * not to be 2^order size. Once the allocator is running it is no longer * possible, merged configuration data occupies more space :-/ * */ bool zone_merge(size_t z1, size_t z2) { irq_spinlock_lock(&zones.lock, true); bool ret = true; /* * We can join only 2 zones with none existing inbetween, * the zones have to be available and with the same * set of flags */ if ((z1 >= zones.count) || (z2 >= zones.count) || (z2 - z1 != 1) || (zones.info[z1].flags != zones.info[z2].flags)) { ret = false; goto errout; } pfn_t cframes = SIZE2FRAMES(zone_conf_size( zones.info[z2].base - zones.info[z1].base + zones.info[z2].count)); /* Allocate merged zone data inside one of the zones */ pfn_t pfn; if (zone_can_alloc(&zones.info[z1], cframes, 0)) { pfn = zones.info[z1].base + zone_frame_alloc(&zones.info[z1], cframes, 0); } else if (zone_can_alloc(&zones.info[z2], cframes, 0)) { pfn = zones.info[z2].base + zone_frame_alloc(&zones.info[z2], cframes, 0); } else { ret = false; goto errout; } /* Preserve original data from z1 */ zone_t old_z1 = zones.info[z1]; /* Do zone merging */ zone_merge_internal(z1, z2, &old_z1, (void *) PA2KA(PFN2ADDR(pfn))); /* Subtract zone information from busy frames */ zones.info[z1].busy_count -= cframes; /* Free old zone information */ return_config_frames(z1, ADDR2PFN(KA2PA((uintptr_t) old_z1.frames)), old_z1.count); return_config_frames(z1, ADDR2PFN(KA2PA((uintptr_t) zones.info[z2].frames)), zones.info[z2].count); /* Move zones down */ for (size_t i = z2 + 1; i < zones.count; i++) zones.info[i - 1] = zones.info[i]; zones.count--; errout: irq_spinlock_unlock(&zones.lock, true); return ret; } /** Merge all mergeable zones into one big zone. * * It is reasonable to do this on systems where * BIOS reports parts in chunks, so that we could * have 1 zone (it's faster). * */ void zone_merge_all(void) { size_t i = 1; while (i < zones.count) { if (!zone_merge(i - 1, i)) i++; } } /** Create new frame zone. * * @param zone Zone to construct. * @param start Physical address of the first frame within the zone. * @param count Count of frames in zone. * @param flags Zone flags. * @param confdata Configuration data of the zone. * * @return Initialized zone. * */ NO_TRACE static void zone_construct(zone_t *zone, pfn_t start, size_t count, zone_flags_t flags, void *confdata) { zone->base = start; zone->count = count; zone->flags = flags; zone->free_count = count; zone->busy_count = 0; if (flags & ZONE_AVAILABLE) { /* * Initialize frame bitmap (located after the array of * frame_t structures in the configuration space). */ bitmap_initialize(&zone->bitmap, count, BITMAP_BLOCK_SIZE, confdata + (sizeof(frame_t) * count)); /* * Initialize the array of frame_t structures. */ zone->frames = (frame_t *) confdata; for (size_t i = 0; i < count; i++) frame_initialize(&zone->frames[i]); } else { bitmap_initialize(&zone->bitmap, 0, 0, NULL); zone->frames = NULL; } } /** Compute configuration data size for zone. * * @param count Size of zone in frames. * * @return Size of zone configuration info (in bytes). * */ size_t zone_conf_size(size_t count) { return (count * sizeof(frame_t) + bitmap_size(count, BITMAP_BLOCK_SIZE)); } /** Allocate external configuration frames from low memory. */ pfn_t zone_external_conf_alloc(size_t count) { size_t frames = SIZE2FRAMES(zone_conf_size(count)); return ADDR2PFN((uintptr_t) frame_alloc(frames, FRAME_LOWMEM | FRAME_ATOMIC, 0)); } /** Create and add zone to system. * * @param start First frame number (absolute). * @param count Size of zone in frames. * @param confframe Where configuration frames are supposed to be. * Automatically checks that we will not disturb the * kernel and possibly init. If confframe is given * _outside_ this zone, it is expected, that the area is * already marked BUSY and big enough to contain * zone_conf_size() amount of data. If the confframe is * inside the area, the zone free frame information is * modified not to include it. * * @return Zone number or -1 on error. * */ size_t zone_create(pfn_t start, size_t count, pfn_t confframe, zone_flags_t flags) { irq_spinlock_lock(&zones.lock, true); if (flags & ZONE_AVAILABLE) { /* Create available zone */ /* * Theoretically we could have NULL here, practically make sure * nobody tries to do that. If some platform requires, remove * the assert */ ASSERT(confframe != ADDR2PFN((uintptr_t ) NULL)); /* Update the known end of physical memory. */ config.physmem_end = max(config.physmem_end, PFN2ADDR(start + count)); /* * If confframe is supposed to be inside our zone, then make sure * it does not span kernel & init */ size_t confcount = SIZE2FRAMES(zone_conf_size(count)); if ((confframe >= start) && (confframe < start + count)) { for (; confframe < start + count; confframe++) { uintptr_t addr = PFN2ADDR(confframe); if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.base), config.kernel_size)) continue; if (overlaps(addr, PFN2ADDR(confcount), KA2PA(config.stack_base), config.stack_size)) continue; bool overlap = false; for (size_t i = 0; i < init.cnt; i++) { if (overlaps(addr, PFN2ADDR(confcount), init.tasks[i].paddr, init.tasks[i].size)) { overlap = true; break; } } if (overlap) continue; break; } if (confframe >= start + count) panic("Cannot find configuration data for zone."); } size_t znum = zones_insert_zone(start, count, flags); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); return (size_t) -1; } void *confdata = (void *) PA2KA(PFN2ADDR(confframe)); zone_construct(&zones.info[znum], start, count, flags, confdata); /* If confdata in zone, mark as unavailable */ if ((confframe >= start) && (confframe < start + count)) { for (size_t i = confframe; i < confframe + confcount; i++) zone_mark_unavailable(&zones.info[znum], i - zones.info[znum].base); } irq_spinlock_unlock(&zones.lock, true); return znum; } /* Non-available zone */ size_t znum = zones_insert_zone(start, count, flags); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); return (size_t) -1; } zone_construct(&zones.info[znum], start, count, flags, NULL); irq_spinlock_unlock(&zones.lock, true); return znum; } /*******************/ /* Frame functions */ /*******************/ /** Set parent of frame. */ void frame_set_parent(pfn_t pfn, void *data, size_t hint) { irq_spinlock_lock(&zones.lock, true); size_t znum = find_zone(pfn, 1, hint); ASSERT(znum != (size_t) -1); zone_get_frame(&zones.info[znum], pfn - zones.info[znum].base)->parent = data; irq_spinlock_unlock(&zones.lock, true); } void *frame_get_parent(pfn_t pfn, size_t hint) { irq_spinlock_lock(&zones.lock, true); size_t znum = find_zone(pfn, 1, hint); ASSERT(znum != (size_t) -1); void *res = zone_get_frame(&zones.info[znum], pfn - zones.info[znum].base)->parent; irq_spinlock_unlock(&zones.lock, true); return res; } /** Allocate frames of physical memory. * * @param count Number of continuous frames to allocate. * @param flags Flags for host zone selection and address processing. * @param constraint Indication of physical address bits that cannot be * set in the address of the first allocated frame. * @param pzone Preferred zone. * * @return Physical address of the allocated frame. * */ uintptr_t frame_alloc_generic(size_t count, frame_flags_t flags, uintptr_t constraint, size_t *pzone) { ASSERT(count > 0); size_t hint = pzone ? (*pzone) : 0; pfn_t frame_constraint = ADDR2PFN(constraint); /* * If not told otherwise, we must first reserve the memory. */ if (!(flags & FRAME_NO_RESERVE)) reserve_force_alloc(count); loop: irq_spinlock_lock(&zones.lock, true); /* * First, find suitable frame zone. */ size_t znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); /* * If no memory, reclaim some slab memory, * if it does not help, reclaim all. */ if ((znum == (size_t) -1) && (!(flags & FRAME_NO_RECLAIM))) { irq_spinlock_unlock(&zones.lock, true); size_t freed = slab_reclaim(0); irq_spinlock_lock(&zones.lock, true); if (freed > 0) znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); freed = slab_reclaim(SLAB_RECLAIM_ALL); irq_spinlock_lock(&zones.lock, true); if (freed > 0) znum = find_free_zone(count, FRAME_TO_ZONE_FLAGS(flags), frame_constraint, hint); } } if (znum == (size_t) -1) { if (flags & FRAME_ATOMIC) { irq_spinlock_unlock(&zones.lock, true); if (!(flags & FRAME_NO_RESERVE)) reserve_free(count); return 0; } #ifdef CONFIG_DEBUG size_t avail = frame_total_free_get_internal(); #endif irq_spinlock_unlock(&zones.lock, true); if (!THREAD) panic("Cannot wait for memory to become available."); /* * Sleep until some frames are available again. */ #ifdef CONFIG_DEBUG printf("Thread %" PRIu64 " waiting for %zu frames, " "%zu available.\n", THREAD->tid, count, avail); #endif /* * Since the mem_avail_mtx is an active mutex, we need to * disable interrupts to prevent deadlock with TLB shootdown. */ ipl_t ipl = interrupts_disable(); mutex_lock(&mem_avail_mtx); if (mem_avail_req > 0) mem_avail_req = min(mem_avail_req, count); else mem_avail_req = count; size_t gen = mem_avail_gen; while (gen == mem_avail_gen) condvar_wait(&mem_avail_cv, &mem_avail_mtx); mutex_unlock(&mem_avail_mtx); interrupts_restore(ipl); #ifdef CONFIG_DEBUG printf("Thread %" PRIu64 " woken up.\n", THREAD->tid); #endif goto loop; } pfn_t pfn = zone_frame_alloc(&zones.info[znum], count, frame_constraint) + zones.info[znum].base; irq_spinlock_unlock(&zones.lock, true); if (pzone) *pzone = znum; return PFN2ADDR(pfn); } uintptr_t frame_alloc(size_t count, frame_flags_t flags, uintptr_t constraint) { return frame_alloc_generic(count, flags, constraint, NULL); } uintptr_t frame_alloc_noreserve(size_t count, frame_flags_t flags, uintptr_t constraint) { return frame_alloc_generic(count, flags | FRAME_NO_RESERVE, constraint, NULL); } /** Free frames of physical memory. * * Find respective frame structures for supplied physical frames. * Decrement each frame reference count. If it drops to zero, mark * the frames as available. * * @param start Physical Address of the first frame to be freed. * @param count Number of frames to free. * @param flags Flags to control memory reservation. * */ void frame_free_generic(uintptr_t start, size_t count, frame_flags_t flags) { size_t freed = 0; irq_spinlock_lock(&zones.lock, true); for (size_t i = 0; i < count; i++) { /* * First, find host frame zone for addr. */ pfn_t pfn = ADDR2PFN(start) + i; size_t znum = find_zone(pfn, 1, 0); ASSERT(znum != (size_t) -1); freed += zone_frame_free(&zones.info[znum], pfn - zones.info[znum].base); } irq_spinlock_unlock(&zones.lock, true); /* * Signal that some memory has been freed. * Since the mem_avail_mtx is an active mutex, * we need to disable interruptsto prevent deadlock * with TLB shootdown. */ ipl_t ipl = interrupts_disable(); mutex_lock(&mem_avail_mtx); if (mem_avail_req > 0) mem_avail_req -= min(mem_avail_req, freed); if (mem_avail_req == 0) { mem_avail_gen++; condvar_broadcast(&mem_avail_cv); } mutex_unlock(&mem_avail_mtx); interrupts_restore(ipl); if (!(flags & FRAME_NO_RESERVE)) reserve_free(freed); } void frame_free(uintptr_t frame, size_t count) { frame_free_generic(frame, count, 0); } void frame_free_noreserve(uintptr_t frame, size_t count) { frame_free_generic(frame, count, FRAME_NO_RESERVE); } /** Add reference to frame. * * Find respective frame structure for supplied PFN and * increment frame reference count. * * @param pfn Frame number of the frame to be freed. * */ NO_TRACE void frame_reference_add(pfn_t pfn) { irq_spinlock_lock(&zones.lock, true); /* * First, find host frame zone for addr. */ size_t znum = find_zone(pfn, 1, 0); ASSERT(znum != (size_t) -1); zones.info[znum].frames[pfn - zones.info[znum].base].refcount++; irq_spinlock_unlock(&zones.lock, true); } /** Mark given range unavailable in frame zones. * */ NO_TRACE void frame_mark_unavailable(pfn_t start, size_t count) { irq_spinlock_lock(&zones.lock, true); for (size_t i = 0; i < count; i++) { size_t znum = find_zone(start + i, 1, 0); if (znum == (size_t) -1) /* PFN not found */ continue; zone_mark_unavailable(&zones.info[znum], start + i - zones.info[znum].base); } irq_spinlock_unlock(&zones.lock, true); } /** Initialize physical memory management. * */ void frame_init(void) { if (config.cpu_active == 1) { zones.count = 0; irq_spinlock_initialize(&zones.lock, "frame.zones.lock"); mutex_initialize(&mem_avail_mtx, MUTEX_ACTIVE); condvar_initialize(&mem_avail_cv); } /* Tell the architecture to create some memory */ frame_low_arch_init(); if (config.cpu_active == 1) { frame_mark_unavailable(ADDR2PFN(KA2PA(config.base)), SIZE2FRAMES(config.kernel_size)); frame_mark_unavailable(ADDR2PFN(KA2PA(config.stack_base)), SIZE2FRAMES(config.stack_size)); for (size_t i = 0; i < init.cnt; i++) frame_mark_unavailable(ADDR2PFN(init.tasks[i].paddr), SIZE2FRAMES(init.tasks[i].size)); if (ballocs.size) frame_mark_unavailable(ADDR2PFN(KA2PA(ballocs.base)), SIZE2FRAMES(ballocs.size)); /* * Blacklist first frame, as allocating NULL would * fail in some places */ frame_mark_unavailable(0, 1); } frame_high_arch_init(); } /** Adjust bounds of physical memory region according to low/high memory split. * * @param low[in] If true, the adjustment is performed to make the region * fit in the low memory. Otherwise the adjustment is * performed to make the region fit in the high memory. * @param basep[inout] Pointer to a variable which contains the region's base * address and which may receive the adjusted base address. * @param sizep[inout] Pointer to a variable which contains the region's size * and which may receive the adjusted size. * * @return True if the region still exists even after the adjustment. * @return False otherwise. * */ bool frame_adjust_zone_bounds(bool low, uintptr_t *basep, size_t *sizep) { uintptr_t limit = KA2PA(config.identity_base) + config.identity_size; if (low) { if (*basep > limit) return false; if (*basep + *sizep > limit) *sizep = limit - *basep; } else { if (*basep + *sizep <= limit) return false; if (*basep <= limit) { *sizep -= limit - *basep; *basep = limit; } } return true; } /** Return total size of all zones. * */ uint64_t zones_total_size(void) { irq_spinlock_lock(&zones.lock, true); uint64_t total = 0; for (size_t i = 0; i < zones.count; i++) total += (uint64_t) FRAMES2SIZE(zones.info[i].count); irq_spinlock_unlock(&zones.lock, true); return total; } void zones_stats(uint64_t *total, uint64_t *unavail, uint64_t *busy, uint64_t *free) { ASSERT(total != NULL); ASSERT(unavail != NULL); ASSERT(busy != NULL); ASSERT(free != NULL); irq_spinlock_lock(&zones.lock, true); *total = 0; *unavail = 0; *busy = 0; *free = 0; for (size_t i = 0; i < zones.count; i++) { *total += (uint64_t) FRAMES2SIZE(zones.info[i].count); if (zones.info[i].flags & ZONE_AVAILABLE) { *busy += (uint64_t) FRAMES2SIZE(zones.info[i].busy_count); *free += (uint64_t) FRAMES2SIZE(zones.info[i].free_count); } else *unavail += (uint64_t) FRAMES2SIZE(zones.info[i].count); } irq_spinlock_unlock(&zones.lock, true); } /** Prints list of zones. * */ void zones_print_list(void) { #ifdef __32_BITS__ printf("[nr] [base addr] [frames ] [flags ] [free frames ] [busy frames ]\n"); #endif #ifdef __64_BITS__ printf("[nr] [base address ] [frames ] [flags ] [free frames ] [busy frames ]\n"); #endif /* * Because printing may require allocation of memory, we may not hold * the frame allocator locks when printing zone statistics. Therefore, * we simply gather the statistics under the protection of the locks and * print the statistics when the locks have been released. * * When someone adds/removes zones while we are printing the statistics, * we may end up with inaccurate output (e.g. a zone being skipped from * the listing). */ for (size_t i = 0;; i++) { irq_spinlock_lock(&zones.lock, true); if (i >= zones.count) { irq_spinlock_unlock(&zones.lock, true); break; } uintptr_t base = PFN2ADDR(zones.info[i].base); size_t count = zones.info[i].count; zone_flags_t flags = zones.info[i].flags; size_t free_count = zones.info[i].free_count; size_t busy_count = zones.info[i].busy_count; irq_spinlock_unlock(&zones.lock, true); bool available = ((flags & ZONE_AVAILABLE) != 0); printf("%-4zu", i); #ifdef __32_BITS__ printf(" %p", (void *) base); #endif #ifdef __64_BITS__ printf(" %p", (void *) base); #endif printf(" %12zu %c%c%c%c%c ", count, available ? 'A' : '-', (flags & ZONE_RESERVED) ? 'R' : '-', (flags & ZONE_FIRMWARE) ? 'F' : '-', (flags & ZONE_LOWMEM) ? 'L' : '-', (flags & ZONE_HIGHMEM) ? 'H' : '-'); if (available) printf("%14zu %14zu", free_count, busy_count); printf("\n"); } } /** Prints zone details. * * @param num Zone base address or zone number. * */ void zone_print_one(size_t num) { irq_spinlock_lock(&zones.lock, true); size_t znum = (size_t) -1; for (size_t i = 0; i < zones.count; i++) { if ((i == num) || (PFN2ADDR(zones.info[i].base) == num)) { znum = i; break; } } if (znum == (size_t) -1) { irq_spinlock_unlock(&zones.lock, true); printf("Zone not found.\n"); return; } uintptr_t base = PFN2ADDR(zones.info[znum].base); zone_flags_t flags = zones.info[znum].flags; size_t count = zones.info[znum].count; size_t free_count = zones.info[znum].free_count; size_t busy_count = zones.info[znum].busy_count; irq_spinlock_unlock(&zones.lock, true); bool available = ((flags & ZONE_AVAILABLE) != 0); uint64_t size; const char *size_suffix; bin_order_suffix(FRAMES2SIZE(count), &size, &size_suffix, false); printf("Zone number: %zu\n", znum); printf("Zone base address: %p\n", (void *) base); printf("Zone size: %zu frames (%" PRIu64 " %s)\n", count, size, size_suffix); printf("Zone flags: %c%c%c%c%c\n", available ? 'A' : '-', (flags & ZONE_RESERVED) ? 'R' : '-', (flags & ZONE_FIRMWARE) ? 'F' : '-', (flags & ZONE_LOWMEM) ? 'L' : '-', (flags & ZONE_HIGHMEM) ? 'H' : '-'); if (available) { bin_order_suffix(FRAMES2SIZE(busy_count), &size, &size_suffix, false); printf("Allocated space: %zu frames (%" PRIu64 " %s)\n", busy_count, size, size_suffix); bin_order_suffix(FRAMES2SIZE(free_count), &size, &size_suffix, false); printf("Available space: %zu frames (%" PRIu64 " %s)\n", free_count, size, size_suffix); } } /** @} */