source: mainline/kernel/generic/src/mm/as.c@ ed88c8e

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since ed88c8e was 7c3fb9b, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Fix block comment formatting (ccheck).

  • Property mode set to 100644
File size: 57.0 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <assert.h>
70#include <print.h>
71#include <mem.h>
72#include <macros.h>
73#include <bitops.h>
74#include <arch.h>
75#include <errno.h>
76#include <config.h>
77#include <align.h>
78#include <typedefs.h>
79#include <syscall/copy.h>
80#include <arch/interrupt.h>
81#include <interrupt.h>
82
83/**
84 * Each architecture decides what functions will be used to carry out
85 * address space operations such as creating or locking page tables.
86 */
87as_operations_t *as_operations = NULL;
88
89/** Slab for as_t objects.
90 *
91 */
92static slab_cache_t *as_cache;
93
94/** ASID subsystem lock.
95 *
96 * This lock protects:
97 * - inactive_as_with_asid_list
98 * - as->asid for each as of the as_t type
99 * - asids_allocated counter
100 *
101 */
102SPINLOCK_INITIALIZE(asidlock);
103
104/**
105 * Inactive address spaces (on all processors)
106 * that have valid ASID.
107 */
108LIST_INITIALIZE(inactive_as_with_asid_list);
109
110/** Kernel address space. */
111as_t *AS_KERNEL = NULL;
112
113NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
114{
115 as_t *as = (as_t *) obj;
116
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock, MUTEX_PASSIVE);
119
120 return as_constructor_arch(as, flags);
121}
122
123NO_TRACE static size_t as_destructor(void *obj)
124{
125 return as_destructor_arch((as_t *) obj);
126}
127
128/** Initialize address space subsystem. */
129void as_init(void)
130{
131 as_arch_init();
132
133 as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
134 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
135
136 AS_KERNEL = as_create(FLAG_AS_KERNEL);
137 if (!AS_KERNEL)
138 panic("Cannot create kernel address space.");
139
140 /*
141 * Make sure the kernel address space
142 * reference count never drops to zero.
143 */
144 as_hold(AS_KERNEL);
145}
146
147/** Create address space.
148 *
149 * @param flags Flags that influence the way in wich the address
150 * space is created.
151 *
152 */
153as_t *as_create(unsigned int flags)
154{
155 as_t *as = (as_t *) slab_alloc(as_cache, 0);
156 (void) as_create_arch(as, 0);
157
158 btree_create(&as->as_area_btree);
159
160 if (flags & FLAG_AS_KERNEL)
161 as->asid = ASID_KERNEL;
162 else
163 as->asid = ASID_INVALID;
164
165 atomic_set(&as->refcount, 0);
166 as->cpu_refcount = 0;
167
168#ifdef AS_PAGE_TABLE
169 as->genarch.page_table = page_table_create(flags);
170#else
171 page_table_create(flags);
172#endif
173
174 return as;
175}
176
177/** Destroy adress space.
178 *
179 * When there are no tasks referencing this address space (i.e. its refcount is
180 * zero), the address space can be destroyed.
181 *
182 * We know that we don't hold any spinlock.
183 *
184 * @param as Address space to be destroyed.
185 *
186 */
187void as_destroy(as_t *as)
188{
189 DEADLOCK_PROBE_INIT(p_asidlock);
190
191 assert(as != AS);
192 assert(atomic_get(&as->refcount) == 0);
193
194 /*
195 * Since there is no reference to this address space, it is safe not to
196 * lock its mutex.
197 */
198
199 /*
200 * We need to avoid deadlock between TLB shootdown and asidlock.
201 * We therefore try to take asid conditionally and if we don't succeed,
202 * we enable interrupts and try again. This is done while preemption is
203 * disabled to prevent nested context switches. We also depend on the
204 * fact that so far no spinlocks are held.
205 */
206 preemption_disable();
207 ipl_t ipl = interrupts_read();
208
209retry:
210 interrupts_disable();
211 if (!spinlock_trylock(&asidlock)) {
212 interrupts_enable();
213 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
214 goto retry;
215 }
216
217 /* Interrupts disabled, enable preemption */
218 preemption_enable();
219
220 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
221 if (as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
223
224 asid_put(as->asid);
225 }
226
227 spinlock_unlock(&asidlock);
228 interrupts_restore(ipl);
229
230
231 /*
232 * Destroy address space areas of the address space.
233 * The B+tree must be walked carefully because it is
234 * also being destroyed.
235 */
236 bool cond = true;
237 while (cond) {
238 assert(!list_empty(&as->as_area_btree.leaf_list));
239
240 btree_node_t *node =
241 list_get_instance(list_first(&as->as_area_btree.leaf_list),
242 btree_node_t, leaf_link);
243
244 if ((cond = node->keys))
245 as_area_destroy(as, node->key[0]);
246 }
247
248 btree_destroy(&as->as_area_btree);
249
250#ifdef AS_PAGE_TABLE
251 page_table_destroy(as->genarch.page_table);
252#else
253 page_table_destroy(NULL);
254#endif
255
256 slab_free(as_cache, as);
257}
258
259/** Hold a reference to an address space.
260 *
261 * Holding a reference to an address space prevents destruction
262 * of that address space.
263 *
264 * @param as Address space to be held.
265 *
266 */
267NO_TRACE void as_hold(as_t *as)
268{
269 atomic_inc(&as->refcount);
270}
271
272/** Release a reference to an address space.
273 *
274 * The last one to release a reference to an address space
275 * destroys the address space.
276 *
277 * @param asAddress space to be released.
278 *
279 */
280NO_TRACE void as_release(as_t *as)
281{
282 if (atomic_predec(&as->refcount) == 0)
283 as_destroy(as);
284}
285
286/** Check area conflicts with other areas.
287 *
288 * @param as Address space.
289 * @param addr Starting virtual address of the area being tested.
290 * @param count Number of pages in the area being tested.
291 * @param guarded True if the area being tested is protected by guard pages.
292 * @param avoid Do not touch this area.
293 *
294 * @return True if there is no conflict, false otherwise.
295 *
296 */
297NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
298 size_t count, bool guarded, as_area_t *avoid)
299{
300 assert((addr % PAGE_SIZE) == 0);
301 assert(mutex_locked(&as->lock));
302
303 /*
304 * If the addition of the supposed area address and size overflows,
305 * report conflict.
306 */
307 if (overflows_into_positive(addr, P2SZ(count)))
308 return false;
309
310 /*
311 * We don't want any area to have conflicts with NULL page.
312 */
313 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
314 return false;
315
316 /*
317 * The leaf node is found in O(log n), where n is proportional to
318 * the number of address space areas belonging to as.
319 * The check for conflicts is then attempted on the rightmost
320 * record in the left neighbour, the leftmost record in the right
321 * neighbour and all records in the leaf node itself.
322 */
323 btree_node_t *leaf;
324 as_area_t *area =
325 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf);
326 if (area) {
327 if (area != avoid)
328 return false;
329 }
330
331 /* First, check the two border cases. */
332 btree_node_t *node =
333 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
334 if (node) {
335 area = (as_area_t *) node->value[node->keys - 1];
336
337 if (area != avoid) {
338 mutex_lock(&area->lock);
339
340 /*
341 * If at least one of the two areas are protected
342 * by the AS_AREA_GUARD flag then we must be sure
343 * that they are separated by at least one unmapped
344 * page.
345 */
346 int const gp = (guarded ||
347 (area->flags & AS_AREA_GUARD)) ? 1 : 0;
348
349 /*
350 * The area comes from the left neighbour node, which
351 * means that there already are some areas in the leaf
352 * node, which in turn means that adding gp is safe and
353 * will not cause an integer overflow.
354 */
355 if (overlaps(addr, P2SZ(count), area->base,
356 P2SZ(area->pages + gp))) {
357 mutex_unlock(&area->lock);
358 return false;
359 }
360
361 mutex_unlock(&area->lock);
362 }
363 }
364
365 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
366 if (node) {
367 area = (as_area_t *) node->value[0];
368
369 if (area != avoid) {
370 int gp;
371
372 mutex_lock(&area->lock);
373
374 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
375 if (gp && overflows(addr, P2SZ(count))) {
376 /*
377 * Guard page not needed if the supposed area
378 * is adjacent to the end of the address space.
379 * We already know that the following test is
380 * going to fail...
381 */
382 gp--;
383 }
384
385 if (overlaps(addr, P2SZ(count + gp), area->base,
386 P2SZ(area->pages))) {
387 mutex_unlock(&area->lock);
388 return false;
389 }
390
391 mutex_unlock(&area->lock);
392 }
393 }
394
395 /* Second, check the leaf node. */
396 btree_key_t i;
397 for (i = 0; i < leaf->keys; i++) {
398 area = (as_area_t *) leaf->value[i];
399 int agp;
400 int gp;
401
402 if (area == avoid)
403 continue;
404
405 mutex_lock(&area->lock);
406
407 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
408 agp = gp;
409
410 /*
411 * Sanitize the two possible unsigned integer overflows.
412 */
413 if (gp && overflows(addr, P2SZ(count)))
414 gp--;
415 if (agp && overflows(area->base, P2SZ(area->pages)))
416 agp--;
417
418 if (overlaps(addr, P2SZ(count + gp), area->base,
419 P2SZ(area->pages + agp))) {
420 mutex_unlock(&area->lock);
421 return false;
422 }
423
424 mutex_unlock(&area->lock);
425 }
426
427 /*
428 * So far, the area does not conflict with other areas.
429 * Check if it is contained in the user address space.
430 */
431 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
432 return iswithin(USER_ADDRESS_SPACE_START,
433 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
434 addr, P2SZ(count));
435 }
436
437 return true;
438}
439
440/** Return pointer to unmapped address space area
441 *
442 * The address space must be already locked when calling
443 * this function.
444 *
445 * @param as Address space.
446 * @param bound Lowest address bound.
447 * @param size Requested size of the allocation.
448 * @param guarded True if the allocation must be protected by guard pages.
449 *
450 * @return Address of the beginning of unmapped address space area.
451 * @return -1 if no suitable address space area was found.
452 *
453 */
454NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
455 size_t size, bool guarded)
456{
457 assert(mutex_locked(&as->lock));
458
459 if (size == 0)
460 return (uintptr_t) -1;
461
462 /*
463 * Make sure we allocate from page-aligned
464 * address. Check for possible overflow in
465 * each step.
466 */
467
468 size_t pages = SIZE2FRAMES(size);
469
470 /*
471 * Find the lowest unmapped address aligned on the size
472 * boundary, not smaller than bound and of the required size.
473 */
474
475 /* First check the bound address itself */
476 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
477 if (addr >= bound) {
478 if (guarded) {
479 /*
480 * Leave an unmapped page between the lower
481 * bound and the area's start address.
482 */
483 addr += P2SZ(1);
484 }
485
486 if (check_area_conflicts(as, addr, pages, guarded, NULL))
487 return addr;
488 }
489
490 /* Eventually check the addresses behind each area */
491 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t, node) {
492
493 for (btree_key_t i = 0; i < node->keys; i++) {
494 as_area_t *area = (as_area_t *) node->value[i];
495
496 mutex_lock(&area->lock);
497
498 addr =
499 ALIGN_UP(area->base + P2SZ(area->pages), PAGE_SIZE);
500
501 if (guarded || area->flags & AS_AREA_GUARD) {
502 /*
503 * We must leave an unmapped page
504 * between the two areas.
505 */
506 addr += P2SZ(1);
507 }
508
509 bool avail =
510 ((addr >= bound) && (addr >= area->base) &&
511 (check_area_conflicts(as, addr, pages, guarded, area)));
512
513 mutex_unlock(&area->lock);
514
515 if (avail)
516 return addr;
517 }
518 }
519
520 /* No suitable address space area found */
521 return (uintptr_t) -1;
522}
523
524/** Remove reference to address space area share info.
525 *
526 * If the reference count drops to 0, the sh_info is deallocated.
527 *
528 * @param sh_info Pointer to address space area share info.
529 *
530 */
531NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
532{
533 bool dealloc = false;
534
535 mutex_lock(&sh_info->lock);
536 assert(sh_info->refcount);
537
538 if (--sh_info->refcount == 0) {
539 dealloc = true;
540
541 /*
542 * Now walk carefully the pagemap B+tree and free/remove
543 * reference from all frames found there.
544 */
545 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
546 btree_node_t, node) {
547 btree_key_t i;
548
549 for (i = 0; i < node->keys; i++)
550 frame_free((uintptr_t) node->value[i], 1);
551 }
552
553 }
554 mutex_unlock(&sh_info->lock);
555
556 if (dealloc) {
557 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
558 sh_info->backend->destroy_shared_data(
559 sh_info->backend_shared_data);
560 }
561 btree_destroy(&sh_info->pagemap);
562 free(sh_info);
563 }
564}
565
566
567/** Create address space area of common attributes.
568 *
569 * The created address space area is added to the target address space.
570 *
571 * @param as Target address space.
572 * @param flags Flags of the area memory.
573 * @param size Size of area.
574 * @param attrs Attributes of the area.
575 * @param backend Address space area backend. NULL if no backend is used.
576 * @param backend_data NULL or a pointer to custom backend data.
577 * @param base Starting virtual address of the area.
578 * If set to AS_AREA_ANY, a suitable mappable area is
579 * found.
580 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
581 * Otherwise ignored.
582 *
583 * @return Address space area on success or NULL on failure.
584 *
585 */
586as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
587 unsigned int attrs, mem_backend_t *backend,
588 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
589{
590 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
591 return NULL;
592
593 if (size == 0)
594 return NULL;
595
596 size_t pages = SIZE2FRAMES(size);
597
598 /* Writeable executable areas are not supported. */
599 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
600 return NULL;
601
602 bool const guarded = flags & AS_AREA_GUARD;
603
604 mutex_lock(&as->lock);
605
606 if (*base == (uintptr_t) AS_AREA_ANY) {
607 *base = as_get_unmapped_area(as, bound, size, guarded);
608 if (*base == (uintptr_t) -1) {
609 mutex_unlock(&as->lock);
610 return NULL;
611 }
612 }
613
614 if (overflows_into_positive(*base, size)) {
615 mutex_unlock(&as->lock);
616 return NULL;
617 }
618
619 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
620 mutex_unlock(&as->lock);
621 return NULL;
622 }
623
624 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
625 if (!area) {
626 mutex_unlock(&as->lock);
627 return NULL;
628 }
629
630 mutex_initialize(&area->lock, MUTEX_PASSIVE);
631
632 area->as = as;
633 area->flags = flags;
634 area->attributes = attrs;
635 area->pages = pages;
636 area->resident = 0;
637 area->base = *base;
638 area->backend = backend;
639 area->sh_info = NULL;
640
641 if (backend_data)
642 area->backend_data = *backend_data;
643 else
644 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
645
646 share_info_t *si = NULL;
647
648 /*
649 * Create the sharing info structure.
650 * We do this in advance for every new area, even if it is not going
651 * to be shared.
652 */
653 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
654 si = (share_info_t *) malloc(sizeof(share_info_t));
655 if (!si) {
656 free(area);
657 mutex_unlock(&as->lock);
658 return NULL;
659 }
660 mutex_initialize(&si->lock, MUTEX_PASSIVE);
661 si->refcount = 1;
662 si->shared = false;
663 si->backend_shared_data = NULL;
664 si->backend = backend;
665 btree_create(&si->pagemap);
666
667 area->sh_info = si;
668
669 if (area->backend && area->backend->create_shared_data) {
670 if (!area->backend->create_shared_data(area)) {
671 free(area);
672 mutex_unlock(&as->lock);
673 sh_info_remove_reference(si);
674 return NULL;
675 }
676 }
677 }
678
679 if (area->backend && area->backend->create) {
680 if (!area->backend->create(area)) {
681 free(area);
682 mutex_unlock(&as->lock);
683 if (!(attrs & AS_AREA_ATTR_PARTIAL))
684 sh_info_remove_reference(si);
685 return NULL;
686 }
687 }
688
689 btree_create(&area->used_space);
690 btree_insert(&as->as_area_btree, *base, (void *) area,
691 NULL);
692
693 mutex_unlock(&as->lock);
694
695 return area;
696}
697
698/** Find address space area and lock it.
699 *
700 * @param as Address space.
701 * @param va Virtual address.
702 *
703 * @return Locked address space area containing va on success or
704 * NULL on failure.
705 *
706 */
707NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
708{
709 assert(mutex_locked(&as->lock));
710
711 btree_node_t *leaf;
712 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va,
713 &leaf);
714 if (area) {
715 /* va is the base address of an address space area */
716 mutex_lock(&area->lock);
717 return area;
718 }
719
720 /*
721 * Search the leaf node and the rightmost record of its left neighbour
722 * to find out whether this is a miss or va belongs to an address
723 * space area found there.
724 */
725
726 /* First, search the leaf node itself. */
727 btree_key_t i;
728
729 for (i = 0; i < leaf->keys; i++) {
730 area = (as_area_t *) leaf->value[i];
731
732 mutex_lock(&area->lock);
733
734 if ((area->base <= va) &&
735 (va <= area->base + (P2SZ(area->pages) - 1)))
736 return area;
737
738 mutex_unlock(&area->lock);
739 }
740
741 /*
742 * Second, locate the left neighbour and test its last record.
743 * Because of its position in the B+tree, it must have base < va.
744 */
745 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree,
746 leaf);
747 if (lnode) {
748 area = (as_area_t *) lnode->value[lnode->keys - 1];
749
750 mutex_lock(&area->lock);
751
752 if (va <= area->base + (P2SZ(area->pages) - 1))
753 return area;
754
755 mutex_unlock(&area->lock);
756 }
757
758 return NULL;
759}
760
761/** Find address space area and change it.
762 *
763 * @param as Address space.
764 * @param address Virtual address belonging to the area to be changed.
765 * Must be page-aligned.
766 * @param size New size of the virtual memory block starting at
767 * address.
768 * @param flags Flags influencing the remap operation. Currently unused.
769 *
770 * @return Zero on success or a value from @ref errno.h otherwise.
771 *
772 */
773errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
774{
775 if (!IS_ALIGNED(address, PAGE_SIZE))
776 return EINVAL;
777
778 mutex_lock(&as->lock);
779
780 /*
781 * Locate the area.
782 */
783 as_area_t *area = find_area_and_lock(as, address);
784 if (!area) {
785 mutex_unlock(&as->lock);
786 return ENOENT;
787 }
788
789 if (!area->backend->is_resizable(area)) {
790 /*
791 * The backend does not support resizing for this area.
792 */
793 mutex_unlock(&area->lock);
794 mutex_unlock(&as->lock);
795 return ENOTSUP;
796 }
797
798 mutex_lock(&area->sh_info->lock);
799 if (area->sh_info->shared) {
800 /*
801 * Remapping of shared address space areas
802 * is not supported.
803 */
804 mutex_unlock(&area->sh_info->lock);
805 mutex_unlock(&area->lock);
806 mutex_unlock(&as->lock);
807 return ENOTSUP;
808 }
809 mutex_unlock(&area->sh_info->lock);
810
811 size_t pages = SIZE2FRAMES((address - area->base) + size);
812 if (!pages) {
813 /*
814 * Zero size address space areas are not allowed.
815 */
816 mutex_unlock(&area->lock);
817 mutex_unlock(&as->lock);
818 return EPERM;
819 }
820
821 if (pages < area->pages) {
822 uintptr_t start_free = area->base + P2SZ(pages);
823
824 /*
825 * Shrinking the area.
826 * No need to check for overlaps.
827 */
828
829 page_table_lock(as, false);
830
831 /*
832 * Remove frames belonging to used space starting from
833 * the highest addresses downwards until an overlap with
834 * the resized address space area is found. Note that this
835 * is also the right way to remove part of the used_space
836 * B+tree leaf list.
837 */
838 bool cond = true;
839 while (cond) {
840 assert(!list_empty(&area->used_space.leaf_list));
841
842 btree_node_t *node =
843 list_get_instance(list_last(&area->used_space.leaf_list),
844 btree_node_t, leaf_link);
845
846 if ((cond = (node->keys != 0))) {
847 uintptr_t ptr = node->key[node->keys - 1];
848 size_t node_size =
849 (size_t) node->value[node->keys - 1];
850 size_t i = 0;
851
852 if (overlaps(ptr, P2SZ(node_size), area->base,
853 P2SZ(pages))) {
854
855 if (ptr + P2SZ(node_size) <= start_free) {
856 /*
857 * The whole interval fits
858 * completely in the resized
859 * address space area.
860 */
861 break;
862 }
863
864 /*
865 * Part of the interval corresponding
866 * to b and c overlaps with the resized
867 * address space area.
868 */
869
870 /* We are almost done */
871 cond = false;
872 i = (start_free - ptr) >> PAGE_WIDTH;
873 if (!used_space_remove(area, start_free,
874 node_size - i))
875 panic("Cannot remove used space.");
876 } else {
877 /*
878 * The interval of used space can be
879 * completely removed.
880 */
881 if (!used_space_remove(area, ptr, node_size))
882 panic("Cannot remove used space.");
883 }
884
885 /*
886 * Start TLB shootdown sequence.
887 *
888 * The sequence is rather short and can be
889 * repeated multiple times. The reason is that
890 * we don't want to have used_space_remove()
891 * inside the sequence as it may use a blocking
892 * memory allocation for its B+tree. Blocking
893 * while holding the tlblock spinlock is
894 * forbidden and would hit a kernel assertion.
895 */
896
897 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
898 as->asid, area->base + P2SZ(pages),
899 area->pages - pages);
900
901 for (; i < node_size; i++) {
902 pte_t pte;
903 bool found = page_mapping_find(as,
904 ptr + P2SZ(i), false, &pte);
905
906 assert(found);
907 assert(PTE_VALID(&pte));
908 assert(PTE_PRESENT(&pte));
909
910 if ((area->backend) &&
911 (area->backend->frame_free)) {
912 area->backend->frame_free(area,
913 ptr + P2SZ(i),
914 PTE_GET_FRAME(&pte));
915 }
916
917 page_mapping_remove(as, ptr + P2SZ(i));
918 }
919
920 /*
921 * Finish TLB shootdown sequence.
922 */
923
924 tlb_invalidate_pages(as->asid,
925 area->base + P2SZ(pages),
926 area->pages - pages);
927
928 /*
929 * Invalidate software translation caches
930 * (e.g. TSB on sparc64, PHT on ppc32).
931 */
932 as_invalidate_translation_cache(as,
933 area->base + P2SZ(pages),
934 area->pages - pages);
935 tlb_shootdown_finalize(ipl);
936 }
937 }
938 page_table_unlock(as, false);
939 } else {
940 /*
941 * Growing the area.
942 */
943
944 if (overflows_into_positive(address, P2SZ(pages)))
945 return EINVAL;
946
947 /*
948 * Check for overlaps with other address space areas.
949 */
950 bool const guarded = area->flags & AS_AREA_GUARD;
951 if (!check_area_conflicts(as, address, pages, guarded, area)) {
952 mutex_unlock(&area->lock);
953 mutex_unlock(&as->lock);
954 return EADDRNOTAVAIL;
955 }
956 }
957
958 if (area->backend && area->backend->resize) {
959 if (!area->backend->resize(area, pages)) {
960 mutex_unlock(&area->lock);
961 mutex_unlock(&as->lock);
962 return ENOMEM;
963 }
964 }
965
966 area->pages = pages;
967
968 mutex_unlock(&area->lock);
969 mutex_unlock(&as->lock);
970
971 return 0;
972}
973
974/** Destroy address space area.
975 *
976 * @param as Address space.
977 * @param address Address within the area to be deleted.
978 *
979 * @return Zero on success or a value from @ref errno.h on failure.
980 *
981 */
982errno_t as_area_destroy(as_t *as, uintptr_t address)
983{
984 mutex_lock(&as->lock);
985
986 as_area_t *area = find_area_and_lock(as, address);
987 if (!area) {
988 mutex_unlock(&as->lock);
989 return ENOENT;
990 }
991
992 if (area->backend && area->backend->destroy)
993 area->backend->destroy(area);
994
995 uintptr_t base = area->base;
996
997 page_table_lock(as, false);
998
999 /*
1000 * Start TLB shootdown sequence.
1001 */
1002 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1003 area->pages);
1004
1005 /*
1006 * Visit only the pages mapped by used_space B+tree.
1007 */
1008 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1009 node) {
1010 btree_key_t i;
1011
1012 for (i = 0; i < node->keys; i++) {
1013 uintptr_t ptr = node->key[i];
1014 size_t size;
1015
1016 for (size = 0; size < (size_t) node->value[i]; size++) {
1017 pte_t pte;
1018 bool found = page_mapping_find(as,
1019 ptr + P2SZ(size), false, &pte);
1020
1021 assert(found);
1022 assert(PTE_VALID(&pte));
1023 assert(PTE_PRESENT(&pte));
1024
1025 if ((area->backend) &&
1026 (area->backend->frame_free)) {
1027 area->backend->frame_free(area,
1028 ptr + P2SZ(size),
1029 PTE_GET_FRAME(&pte));
1030 }
1031
1032 page_mapping_remove(as, ptr + P2SZ(size));
1033 }
1034 }
1035 }
1036
1037 /*
1038 * Finish TLB shootdown sequence.
1039 */
1040
1041 tlb_invalidate_pages(as->asid, area->base, area->pages);
1042
1043 /*
1044 * Invalidate potential software translation caches
1045 * (e.g. TSB on sparc64, PHT on ppc32).
1046 */
1047 as_invalidate_translation_cache(as, area->base, area->pages);
1048 tlb_shootdown_finalize(ipl);
1049
1050 page_table_unlock(as, false);
1051
1052 btree_destroy(&area->used_space);
1053
1054 area->attributes |= AS_AREA_ATTR_PARTIAL;
1055
1056 sh_info_remove_reference(area->sh_info);
1057
1058 mutex_unlock(&area->lock);
1059
1060 /*
1061 * Remove the empty area from address space.
1062 */
1063 btree_remove(&as->as_area_btree, base, NULL);
1064
1065 free(area);
1066
1067 mutex_unlock(&as->lock);
1068 return 0;
1069}
1070
1071/** Share address space area with another or the same address space.
1072 *
1073 * Address space area mapping is shared with a new address space area.
1074 * If the source address space area has not been shared so far,
1075 * a new sh_info is created. The new address space area simply gets the
1076 * sh_info of the source area. The process of duplicating the
1077 * mapping is done through the backend share function.
1078 *
1079 * @param src_as Pointer to source address space.
1080 * @param src_base Base address of the source address space area.
1081 * @param acc_size Expected size of the source area.
1082 * @param dst_as Pointer to destination address space.
1083 * @param dst_flags_mask Destination address space area flags mask.
1084 * @param dst_base Target base address. If set to -1,
1085 * a suitable mappable area is found.
1086 * @param bound Lowest address bound if dst_base is set to -1.
1087 * Otherwise ignored.
1088 *
1089 * @return Zero on success.
1090 * @return ENOENT if there is no such task or such address space.
1091 * @return EPERM if there was a problem in accepting the area.
1092 * @return ENOMEM if there was a problem in allocating destination
1093 * address space area.
1094 * @return ENOTSUP if the address space area backend does not support
1095 * sharing.
1096 *
1097 */
1098errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1099 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1100 uintptr_t bound)
1101{
1102 mutex_lock(&src_as->lock);
1103 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1104 if (!src_area) {
1105 /*
1106 * Could not find the source address space area.
1107 */
1108 mutex_unlock(&src_as->lock);
1109 return ENOENT;
1110 }
1111
1112 if (!src_area->backend->is_shareable(src_area)) {
1113 /*
1114 * The backend does not permit sharing of this area.
1115 */
1116 mutex_unlock(&src_area->lock);
1117 mutex_unlock(&src_as->lock);
1118 return ENOTSUP;
1119 }
1120
1121 size_t src_size = P2SZ(src_area->pages);
1122 unsigned int src_flags = src_area->flags;
1123 mem_backend_t *src_backend = src_area->backend;
1124 mem_backend_data_t src_backend_data = src_area->backend_data;
1125
1126 /* Share the cacheable flag from the original mapping */
1127 if (src_flags & AS_AREA_CACHEABLE)
1128 dst_flags_mask |= AS_AREA_CACHEABLE;
1129
1130 if ((src_size != acc_size) ||
1131 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1132 mutex_unlock(&src_area->lock);
1133 mutex_unlock(&src_as->lock);
1134 return EPERM;
1135 }
1136
1137 /*
1138 * Now we are committed to sharing the area.
1139 * First, prepare the area for sharing.
1140 * Then it will be safe to unlock it.
1141 */
1142 share_info_t *sh_info = src_area->sh_info;
1143
1144 mutex_lock(&sh_info->lock);
1145 sh_info->refcount++;
1146 bool shared = sh_info->shared;
1147 sh_info->shared = true;
1148 mutex_unlock(&sh_info->lock);
1149
1150 if (!shared) {
1151 /*
1152 * Call the backend to setup sharing.
1153 * This only happens once for each sh_info.
1154 */
1155 src_area->backend->share(src_area);
1156 }
1157
1158 mutex_unlock(&src_area->lock);
1159 mutex_unlock(&src_as->lock);
1160
1161 /*
1162 * Create copy of the source address space area.
1163 * The destination area is created with AS_AREA_ATTR_PARTIAL
1164 * attribute set which prevents race condition with
1165 * preliminary as_page_fault() calls.
1166 * The flags of the source area are masked against dst_flags_mask
1167 * to support sharing in less privileged mode.
1168 */
1169 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1170 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1171 &src_backend_data, dst_base, bound);
1172 if (!dst_area) {
1173 /*
1174 * Destination address space area could not be created.
1175 */
1176 sh_info_remove_reference(sh_info);
1177
1178 return ENOMEM;
1179 }
1180
1181 /*
1182 * Now the destination address space area has been
1183 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1184 * attribute and set the sh_info.
1185 */
1186 mutex_lock(&dst_as->lock);
1187 mutex_lock(&dst_area->lock);
1188 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1189 dst_area->sh_info = sh_info;
1190 mutex_unlock(&dst_area->lock);
1191 mutex_unlock(&dst_as->lock);
1192
1193 return 0;
1194}
1195
1196/** Check access mode for address space area.
1197 *
1198 * @param area Address space area.
1199 * @param access Access mode.
1200 *
1201 * @return False if access violates area's permissions, true
1202 * otherwise.
1203 *
1204 */
1205NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1206{
1207 assert(mutex_locked(&area->lock));
1208
1209 int flagmap[] = {
1210 [PF_ACCESS_READ] = AS_AREA_READ,
1211 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1212 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1213 };
1214
1215 if (!(area->flags & flagmap[access]))
1216 return false;
1217
1218 return true;
1219}
1220
1221/** Convert address space area flags to page flags.
1222 *
1223 * @param aflags Flags of some address space area.
1224 *
1225 * @return Flags to be passed to page_mapping_insert().
1226 *
1227 */
1228NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1229{
1230 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1231
1232 if (aflags & AS_AREA_READ)
1233 flags |= PAGE_READ;
1234
1235 if (aflags & AS_AREA_WRITE)
1236 flags |= PAGE_WRITE;
1237
1238 if (aflags & AS_AREA_EXEC)
1239 flags |= PAGE_EXEC;
1240
1241 if (aflags & AS_AREA_CACHEABLE)
1242 flags |= PAGE_CACHEABLE;
1243
1244 return flags;
1245}
1246
1247/** Change adress space area flags.
1248 *
1249 * The idea is to have the same data, but with a different access mode.
1250 * This is needed e.g. for writing code into memory and then executing it.
1251 * In order for this to work properly, this may copy the data
1252 * into private anonymous memory (unless it's already there).
1253 *
1254 * @param as Address space.
1255 * @param flags Flags of the area memory.
1256 * @param address Address within the area to be changed.
1257 *
1258 * @return Zero on success or a value from @ref errno.h on failure.
1259 *
1260 */
1261errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1262{
1263 /* Flags for the new memory mapping */
1264 unsigned int page_flags = area_flags_to_page_flags(flags);
1265
1266 mutex_lock(&as->lock);
1267
1268 as_area_t *area = find_area_and_lock(as, address);
1269 if (!area) {
1270 mutex_unlock(&as->lock);
1271 return ENOENT;
1272 }
1273
1274 if (area->backend != &anon_backend) {
1275 /* Copying non-anonymous memory not supported yet */
1276 mutex_unlock(&area->lock);
1277 mutex_unlock(&as->lock);
1278 return ENOTSUP;
1279 }
1280
1281 mutex_lock(&area->sh_info->lock);
1282 if (area->sh_info->shared) {
1283 /* Copying shared areas not supported yet */
1284 mutex_unlock(&area->sh_info->lock);
1285 mutex_unlock(&area->lock);
1286 mutex_unlock(&as->lock);
1287 return ENOTSUP;
1288 }
1289 mutex_unlock(&area->sh_info->lock);
1290
1291 /*
1292 * Compute total number of used pages in the used_space B+tree
1293 */
1294 size_t used_pages = 0;
1295
1296 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1297 node) {
1298 btree_key_t i;
1299
1300 for (i = 0; i < node->keys; i++)
1301 used_pages += (size_t) node->value[i];
1302 }
1303
1304 /* An array for storing frame numbers */
1305 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t));
1306 if (!old_frame) {
1307 mutex_unlock(&area->lock);
1308 mutex_unlock(&as->lock);
1309 return ENOMEM;
1310 }
1311
1312 page_table_lock(as, false);
1313
1314 /*
1315 * Start TLB shootdown sequence.
1316 */
1317 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1318 area->pages);
1319
1320 /*
1321 * Remove used pages from page tables and remember their frame
1322 * numbers.
1323 */
1324 size_t frame_idx = 0;
1325
1326 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1327 node) {
1328 btree_key_t i;
1329
1330 for (i = 0; i < node->keys; i++) {
1331 uintptr_t ptr = node->key[i];
1332 size_t size;
1333
1334 for (size = 0; size < (size_t) node->value[i]; size++) {
1335 pte_t pte;
1336 bool found = page_mapping_find(as,
1337 ptr + P2SZ(size), false, &pte);
1338
1339 assert(found);
1340 assert(PTE_VALID(&pte));
1341 assert(PTE_PRESENT(&pte));
1342
1343 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1344
1345 /* Remove old mapping */
1346 page_mapping_remove(as, ptr + P2SZ(size));
1347 }
1348 }
1349 }
1350
1351 /*
1352 * Finish TLB shootdown sequence.
1353 */
1354
1355 tlb_invalidate_pages(as->asid, area->base, area->pages);
1356
1357 /*
1358 * Invalidate potential software translation caches
1359 * (e.g. TSB on sparc64, PHT on ppc32).
1360 */
1361 as_invalidate_translation_cache(as, area->base, area->pages);
1362 tlb_shootdown_finalize(ipl);
1363
1364 page_table_unlock(as, false);
1365
1366 /*
1367 * Set the new flags.
1368 */
1369 area->flags = flags;
1370
1371 /*
1372 * Map pages back in with new flags. This step is kept separate
1373 * so that the memory area could not be accesed with both the old and
1374 * the new flags at once.
1375 */
1376 frame_idx = 0;
1377
1378 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1379 node) {
1380 btree_key_t i;
1381
1382 for (i = 0; i < node->keys; i++) {
1383 uintptr_t ptr = node->key[i];
1384 size_t size;
1385
1386 for (size = 0; size < (size_t) node->value[i]; size++) {
1387 page_table_lock(as, false);
1388
1389 /* Insert the new mapping */
1390 page_mapping_insert(as, ptr + P2SZ(size),
1391 old_frame[frame_idx++], page_flags);
1392
1393 page_table_unlock(as, false);
1394 }
1395 }
1396 }
1397
1398 free(old_frame);
1399
1400 mutex_unlock(&area->lock);
1401 mutex_unlock(&as->lock);
1402
1403 return 0;
1404}
1405
1406/** Handle page fault within the current address space.
1407 *
1408 * This is the high-level page fault handler. It decides whether the page fault
1409 * can be resolved by any backend and if so, it invokes the backend to resolve
1410 * the page fault.
1411 *
1412 * Interrupts are assumed disabled.
1413 *
1414 * @param address Faulting address.
1415 * @param access Access mode that caused the page fault (i.e.
1416 * read/write/exec).
1417 * @param istate Pointer to the interrupted state.
1418 *
1419 * @return AS_PF_FAULT on page fault.
1420 * @return AS_PF_OK on success.
1421 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1422 * or copy_from_uspace().
1423 *
1424 */
1425int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1426{
1427 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1428 int rc = AS_PF_FAULT;
1429
1430 if (!THREAD)
1431 goto page_fault;
1432
1433 if (!AS)
1434 goto page_fault;
1435
1436 mutex_lock(&AS->lock);
1437 as_area_t *area = find_area_and_lock(AS, page);
1438 if (!area) {
1439 /*
1440 * No area contained mapping for 'page'.
1441 * Signal page fault to low-level handler.
1442 */
1443 mutex_unlock(&AS->lock);
1444 goto page_fault;
1445 }
1446
1447 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1448 /*
1449 * The address space area is not fully initialized.
1450 * Avoid possible race by returning error.
1451 */
1452 mutex_unlock(&area->lock);
1453 mutex_unlock(&AS->lock);
1454 goto page_fault;
1455 }
1456
1457 if ((!area->backend) || (!area->backend->page_fault)) {
1458 /*
1459 * The address space area is not backed by any backend
1460 * or the backend cannot handle page faults.
1461 */
1462 mutex_unlock(&area->lock);
1463 mutex_unlock(&AS->lock);
1464 goto page_fault;
1465 }
1466
1467 page_table_lock(AS, false);
1468
1469 /*
1470 * To avoid race condition between two page faults on the same address,
1471 * we need to make sure the mapping has not been already inserted.
1472 */
1473 pte_t pte;
1474 bool found = page_mapping_find(AS, page, false, &pte);
1475 if (found && PTE_PRESENT(&pte)) {
1476 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1477 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1478 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1479 page_table_unlock(AS, false);
1480 mutex_unlock(&area->lock);
1481 mutex_unlock(&AS->lock);
1482 return AS_PF_OK;
1483 }
1484 }
1485
1486 /*
1487 * Resort to the backend page fault handler.
1488 */
1489 rc = area->backend->page_fault(area, page, access);
1490 if (rc != AS_PF_OK) {
1491 page_table_unlock(AS, false);
1492 mutex_unlock(&area->lock);
1493 mutex_unlock(&AS->lock);
1494 goto page_fault;
1495 }
1496
1497 page_table_unlock(AS, false);
1498 mutex_unlock(&area->lock);
1499 mutex_unlock(&AS->lock);
1500 return AS_PF_OK;
1501
1502page_fault:
1503 if (THREAD->in_copy_from_uspace) {
1504 THREAD->in_copy_from_uspace = false;
1505 istate_set_retaddr(istate,
1506 (uintptr_t) &memcpy_from_uspace_failover_address);
1507 } else if (THREAD->in_copy_to_uspace) {
1508 THREAD->in_copy_to_uspace = false;
1509 istate_set_retaddr(istate,
1510 (uintptr_t) &memcpy_to_uspace_failover_address);
1511 } else if (rc == AS_PF_SILENT) {
1512 printf("Killing task %" PRIu64 " due to a "
1513 "failed late reservation request.\n", TASK->taskid);
1514 task_kill_self(true);
1515 } else {
1516 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1517 panic_memtrap(istate, access, address, NULL);
1518 }
1519
1520 return AS_PF_DEFER;
1521}
1522
1523/** Switch address spaces.
1524 *
1525 * Note that this function cannot sleep as it is essentially a part of
1526 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1527 * thing which is forbidden in this context is locking the address space.
1528 *
1529 * When this function is entered, no spinlocks may be held.
1530 *
1531 * @param old Old address space or NULL.
1532 * @param new New address space.
1533 *
1534 */
1535void as_switch(as_t *old_as, as_t *new_as)
1536{
1537 DEADLOCK_PROBE_INIT(p_asidlock);
1538 preemption_disable();
1539
1540retry:
1541 (void) interrupts_disable();
1542 if (!spinlock_trylock(&asidlock)) {
1543 /*
1544 * Avoid deadlock with TLB shootdown.
1545 * We can enable interrupts here because
1546 * preemption is disabled. We should not be
1547 * holding any other lock.
1548 */
1549 (void) interrupts_enable();
1550 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1551 goto retry;
1552 }
1553 preemption_enable();
1554
1555 /*
1556 * First, take care of the old address space.
1557 */
1558 if (old_as) {
1559 assert(old_as->cpu_refcount);
1560
1561 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1562 /*
1563 * The old address space is no longer active on
1564 * any processor. It can be appended to the
1565 * list of inactive address spaces with assigned
1566 * ASID.
1567 */
1568 assert(old_as->asid != ASID_INVALID);
1569
1570 list_append(&old_as->inactive_as_with_asid_link,
1571 &inactive_as_with_asid_list);
1572 }
1573
1574 /*
1575 * Perform architecture-specific tasks when the address space
1576 * is being removed from the CPU.
1577 */
1578 as_deinstall_arch(old_as);
1579 }
1580
1581 /*
1582 * Second, prepare the new address space.
1583 */
1584 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1585 if (new_as->asid != ASID_INVALID)
1586 list_remove(&new_as->inactive_as_with_asid_link);
1587 else
1588 new_as->asid = asid_get();
1589 }
1590
1591#ifdef AS_PAGE_TABLE
1592 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1593#endif
1594
1595 /*
1596 * Perform architecture-specific steps.
1597 * (e.g. write ASID to hardware register etc.)
1598 */
1599 as_install_arch(new_as);
1600
1601 spinlock_unlock(&asidlock);
1602
1603 AS = new_as;
1604}
1605
1606/** Compute flags for virtual address translation subsytem.
1607 *
1608 * @param area Address space area.
1609 *
1610 * @return Flags to be used in page_mapping_insert().
1611 *
1612 */
1613NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1614{
1615 assert(mutex_locked(&area->lock));
1616
1617 return area_flags_to_page_flags(area->flags);
1618}
1619
1620/** Create page table.
1621 *
1622 * Depending on architecture, create either address space private or global page
1623 * table.
1624 *
1625 * @param flags Flags saying whether the page table is for the kernel
1626 * address space.
1627 *
1628 * @return First entry of the page table.
1629 *
1630 */
1631NO_TRACE pte_t *page_table_create(unsigned int flags)
1632{
1633 assert(as_operations);
1634 assert(as_operations->page_table_create);
1635
1636 return as_operations->page_table_create(flags);
1637}
1638
1639/** Destroy page table.
1640 *
1641 * Destroy page table in architecture specific way.
1642 *
1643 * @param page_table Physical address of PTL0.
1644 *
1645 */
1646NO_TRACE void page_table_destroy(pte_t *page_table)
1647{
1648 assert(as_operations);
1649 assert(as_operations->page_table_destroy);
1650
1651 as_operations->page_table_destroy(page_table);
1652}
1653
1654/** Lock page table.
1655 *
1656 * This function should be called before any page_mapping_insert(),
1657 * page_mapping_remove() and page_mapping_find().
1658 *
1659 * Locking order is such that address space areas must be locked
1660 * prior to this call. Address space can be locked prior to this
1661 * call in which case the lock argument is false.
1662 *
1663 * @param as Address space.
1664 * @param lock If false, do not attempt to lock as->lock.
1665 *
1666 */
1667NO_TRACE void page_table_lock(as_t *as, bool lock)
1668{
1669 assert(as_operations);
1670 assert(as_operations->page_table_lock);
1671
1672 as_operations->page_table_lock(as, lock);
1673}
1674
1675/** Unlock page table.
1676 *
1677 * @param as Address space.
1678 * @param unlock If false, do not attempt to unlock as->lock.
1679 *
1680 */
1681NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1682{
1683 assert(as_operations);
1684 assert(as_operations->page_table_unlock);
1685
1686 as_operations->page_table_unlock(as, unlock);
1687}
1688
1689/** Test whether page tables are locked.
1690 *
1691 * @param as Address space where the page tables belong.
1692 *
1693 * @return True if the page tables belonging to the address soace
1694 * are locked, otherwise false.
1695 */
1696NO_TRACE bool page_table_locked(as_t *as)
1697{
1698 assert(as_operations);
1699 assert(as_operations->page_table_locked);
1700
1701 return as_operations->page_table_locked(as);
1702}
1703
1704/** Return size of the address space area with given base.
1705 *
1706 * @param base Arbitrary address inside the address space area.
1707 *
1708 * @return Size of the address space area in bytes or zero if it
1709 * does not exist.
1710 *
1711 */
1712size_t as_area_get_size(uintptr_t base)
1713{
1714 size_t size;
1715
1716 page_table_lock(AS, true);
1717 as_area_t *src_area = find_area_and_lock(AS, base);
1718
1719 if (src_area) {
1720 size = P2SZ(src_area->pages);
1721 mutex_unlock(&src_area->lock);
1722 } else
1723 size = 0;
1724
1725 page_table_unlock(AS, true);
1726 return size;
1727}
1728
1729/** Mark portion of address space area as used.
1730 *
1731 * The address space area must be already locked.
1732 *
1733 * @param area Address space area.
1734 * @param page First page to be marked.
1735 * @param count Number of page to be marked.
1736 *
1737 * @return False on failure or true on success.
1738 *
1739 */
1740bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1741{
1742 assert(mutex_locked(&area->lock));
1743 assert(IS_ALIGNED(page, PAGE_SIZE));
1744 assert(count);
1745
1746 btree_node_t *leaf = NULL;
1747 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1748 if (pages) {
1749 /*
1750 * We hit the beginning of some used space.
1751 */
1752 return false;
1753 }
1754
1755 assert(leaf != NULL);
1756
1757 if (!leaf->keys) {
1758 btree_insert(&area->used_space, page, (void *) count, leaf);
1759 goto success;
1760 }
1761
1762 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1763 if (node) {
1764 uintptr_t left_pg = node->key[node->keys - 1];
1765 uintptr_t right_pg = leaf->key[0];
1766 size_t left_cnt = (size_t) node->value[node->keys - 1];
1767 size_t right_cnt = (size_t) leaf->value[0];
1768
1769 /*
1770 * Examine the possibility that the interval fits
1771 * somewhere between the rightmost interval of
1772 * the left neigbour and the first interval of the leaf.
1773 */
1774
1775 if (page >= right_pg) {
1776 /* Do nothing. */
1777 } else if (overlaps(page, P2SZ(count), left_pg,
1778 P2SZ(left_cnt))) {
1779 /* The interval intersects with the left interval. */
1780 return false;
1781 } else if (overlaps(page, P2SZ(count), right_pg,
1782 P2SZ(right_cnt))) {
1783 /* The interval intersects with the right interval. */
1784 return false;
1785 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1786 (page + P2SZ(count) == right_pg)) {
1787 /*
1788 * The interval can be added by merging the two already
1789 * present intervals.
1790 */
1791 node->value[node->keys - 1] += count + right_cnt;
1792 btree_remove(&area->used_space, right_pg, leaf);
1793 goto success;
1794 } else if (page == left_pg + P2SZ(left_cnt)) {
1795 /*
1796 * The interval can be added by simply growing the left
1797 * interval.
1798 */
1799 node->value[node->keys - 1] += count;
1800 goto success;
1801 } else if (page + P2SZ(count) == right_pg) {
1802 /*
1803 * The interval can be addded by simply moving base of
1804 * the right interval down and increasing its size
1805 * accordingly.
1806 */
1807 leaf->value[0] += count;
1808 leaf->key[0] = page;
1809 goto success;
1810 } else {
1811 /*
1812 * The interval is between both neigbouring intervals,
1813 * but cannot be merged with any of them.
1814 */
1815 btree_insert(&area->used_space, page, (void *) count,
1816 leaf);
1817 goto success;
1818 }
1819 } else if (page < leaf->key[0]) {
1820 uintptr_t right_pg = leaf->key[0];
1821 size_t right_cnt = (size_t) leaf->value[0];
1822
1823 /*
1824 * Investigate the border case in which the left neighbour does
1825 * not exist but the interval fits from the left.
1826 */
1827
1828 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1829 /* The interval intersects with the right interval. */
1830 return false;
1831 } else if (page + P2SZ(count) == right_pg) {
1832 /*
1833 * The interval can be added by moving the base of the
1834 * right interval down and increasing its size
1835 * accordingly.
1836 */
1837 leaf->key[0] = page;
1838 leaf->value[0] += count;
1839 goto success;
1840 } else {
1841 /*
1842 * The interval doesn't adjoin with the right interval.
1843 * It must be added individually.
1844 */
1845 btree_insert(&area->used_space, page, (void *) count,
1846 leaf);
1847 goto success;
1848 }
1849 }
1850
1851 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1852 if (node) {
1853 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1854 uintptr_t right_pg = node->key[0];
1855 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1856 size_t right_cnt = (size_t) node->value[0];
1857
1858 /*
1859 * Examine the possibility that the interval fits
1860 * somewhere between the leftmost interval of
1861 * the right neigbour and the last interval of the leaf.
1862 */
1863
1864 if (page < left_pg) {
1865 /* Do nothing. */
1866 } else if (overlaps(page, P2SZ(count), left_pg,
1867 P2SZ(left_cnt))) {
1868 /* The interval intersects with the left interval. */
1869 return false;
1870 } else if (overlaps(page, P2SZ(count), right_pg,
1871 P2SZ(right_cnt))) {
1872 /* The interval intersects with the right interval. */
1873 return false;
1874 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1875 (page + P2SZ(count) == right_pg)) {
1876 /*
1877 * The interval can be added by merging the two already
1878 * present intervals.
1879 */
1880 leaf->value[leaf->keys - 1] += count + right_cnt;
1881 btree_remove(&area->used_space, right_pg, node);
1882 goto success;
1883 } else if (page == left_pg + P2SZ(left_cnt)) {
1884 /*
1885 * The interval can be added by simply growing the left
1886 * interval.
1887 */
1888 leaf->value[leaf->keys - 1] += count;
1889 goto success;
1890 } else if (page + P2SZ(count) == right_pg) {
1891 /*
1892 * The interval can be addded by simply moving base of
1893 * the right interval down and increasing its size
1894 * accordingly.
1895 */
1896 node->value[0] += count;
1897 node->key[0] = page;
1898 goto success;
1899 } else {
1900 /*
1901 * The interval is between both neigbouring intervals,
1902 * but cannot be merged with any of them.
1903 */
1904 btree_insert(&area->used_space, page, (void *) count,
1905 leaf);
1906 goto success;
1907 }
1908 } else if (page >= leaf->key[leaf->keys - 1]) {
1909 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1910 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1911
1912 /*
1913 * Investigate the border case in which the right neighbour
1914 * does not exist but the interval fits from the right.
1915 */
1916
1917 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1918 /* The interval intersects with the left interval. */
1919 return false;
1920 } else if (left_pg + P2SZ(left_cnt) == page) {
1921 /*
1922 * The interval can be added by growing the left
1923 * interval.
1924 */
1925 leaf->value[leaf->keys - 1] += count;
1926 goto success;
1927 } else {
1928 /*
1929 * The interval doesn't adjoin with the left interval.
1930 * It must be added individually.
1931 */
1932 btree_insert(&area->used_space, page, (void *) count,
1933 leaf);
1934 goto success;
1935 }
1936 }
1937
1938 /*
1939 * Note that if the algorithm made it thus far, the interval can fit
1940 * only between two other intervals of the leaf. The two border cases
1941 * were already resolved.
1942 */
1943 btree_key_t i;
1944 for (i = 1; i < leaf->keys; i++) {
1945 if (page < leaf->key[i]) {
1946 uintptr_t left_pg = leaf->key[i - 1];
1947 uintptr_t right_pg = leaf->key[i];
1948 size_t left_cnt = (size_t) leaf->value[i - 1];
1949 size_t right_cnt = (size_t) leaf->value[i];
1950
1951 /*
1952 * The interval fits between left_pg and right_pg.
1953 */
1954
1955 if (overlaps(page, P2SZ(count), left_pg,
1956 P2SZ(left_cnt))) {
1957 /*
1958 * The interval intersects with the left
1959 * interval.
1960 */
1961 return false;
1962 } else if (overlaps(page, P2SZ(count), right_pg,
1963 P2SZ(right_cnt))) {
1964 /*
1965 * The interval intersects with the right
1966 * interval.
1967 */
1968 return false;
1969 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1970 (page + P2SZ(count) == right_pg)) {
1971 /*
1972 * The interval can be added by merging the two
1973 * already present intervals.
1974 */
1975 leaf->value[i - 1] += count + right_cnt;
1976 btree_remove(&area->used_space, right_pg, leaf);
1977 goto success;
1978 } else if (page == left_pg + P2SZ(left_cnt)) {
1979 /*
1980 * The interval can be added by simply growing
1981 * the left interval.
1982 */
1983 leaf->value[i - 1] += count;
1984 goto success;
1985 } else if (page + P2SZ(count) == right_pg) {
1986 /*
1987 * The interval can be addded by simply moving
1988 * base of the right interval down and
1989 * increasing its size accordingly.
1990 */
1991 leaf->value[i] += count;
1992 leaf->key[i] = page;
1993 goto success;
1994 } else {
1995 /*
1996 * The interval is between both neigbouring
1997 * intervals, but cannot be merged with any of
1998 * them.
1999 */
2000 btree_insert(&area->used_space, page,
2001 (void *) count, leaf);
2002 goto success;
2003 }
2004 }
2005 }
2006
2007 panic("Inconsistency detected while adding %zu pages of used "
2008 "space at %p.", count, (void *) page);
2009
2010success:
2011 area->resident += count;
2012 return true;
2013}
2014
2015/** Mark portion of address space area as unused.
2016 *
2017 * The address space area must be already locked.
2018 *
2019 * @param area Address space area.
2020 * @param page First page to be marked.
2021 * @param count Number of page to be marked.
2022 *
2023 * @return False on failure or true on success.
2024 *
2025 */
2026bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2027{
2028 assert(mutex_locked(&area->lock));
2029 assert(IS_ALIGNED(page, PAGE_SIZE));
2030 assert(count);
2031
2032 btree_node_t *leaf;
2033 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2034 if (pages) {
2035 /*
2036 * We are lucky, page is the beginning of some interval.
2037 */
2038 if (count > pages) {
2039 return false;
2040 } else if (count == pages) {
2041 btree_remove(&area->used_space, page, leaf);
2042 goto success;
2043 } else {
2044 /*
2045 * Find the respective interval.
2046 * Decrease its size and relocate its start address.
2047 */
2048 btree_key_t i;
2049 for (i = 0; i < leaf->keys; i++) {
2050 if (leaf->key[i] == page) {
2051 leaf->key[i] += P2SZ(count);
2052 leaf->value[i] -= count;
2053 goto success;
2054 }
2055 }
2056
2057 goto error;
2058 }
2059 }
2060
2061 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2062 leaf);
2063 if ((node) && (page < leaf->key[0])) {
2064 uintptr_t left_pg = node->key[node->keys - 1];
2065 size_t left_cnt = (size_t) node->value[node->keys - 1];
2066
2067 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2068 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2069 /*
2070 * The interval is contained in the rightmost
2071 * interval of the left neighbour and can be
2072 * removed by updating the size of the bigger
2073 * interval.
2074 */
2075 node->value[node->keys - 1] -= count;
2076 goto success;
2077 } else if (page + P2SZ(count) <
2078 left_pg + P2SZ(left_cnt)) {
2079 size_t new_cnt;
2080
2081 /*
2082 * The interval is contained in the rightmost
2083 * interval of the left neighbour but its
2084 * removal requires both updating the size of
2085 * the original interval and also inserting a
2086 * new interval.
2087 */
2088 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2089 (page + P2SZ(count))) >> PAGE_WIDTH;
2090 node->value[node->keys - 1] -= count + new_cnt;
2091 btree_insert(&area->used_space, page +
2092 P2SZ(count), (void *) new_cnt, leaf);
2093 goto success;
2094 }
2095 }
2096
2097 return false;
2098 } else if (page < leaf->key[0])
2099 return false;
2100
2101 if (page > leaf->key[leaf->keys - 1]) {
2102 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2103 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2104
2105 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2106 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2107 /*
2108 * The interval is contained in the rightmost
2109 * interval of the leaf and can be removed by
2110 * updating the size of the bigger interval.
2111 */
2112 leaf->value[leaf->keys - 1] -= count;
2113 goto success;
2114 } else if (page + P2SZ(count) < left_pg +
2115 P2SZ(left_cnt)) {
2116 size_t new_cnt;
2117
2118 /*
2119 * The interval is contained in the rightmost
2120 * interval of the leaf but its removal
2121 * requires both updating the size of the
2122 * original interval and also inserting a new
2123 * interval.
2124 */
2125 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2126 (page + P2SZ(count))) >> PAGE_WIDTH;
2127 leaf->value[leaf->keys - 1] -= count + new_cnt;
2128 btree_insert(&area->used_space, page +
2129 P2SZ(count), (void *) new_cnt, leaf);
2130 goto success;
2131 }
2132 }
2133
2134 return false;
2135 }
2136
2137 /*
2138 * The border cases have been already resolved.
2139 * Now the interval can be only between intervals of the leaf.
2140 */
2141 btree_key_t i;
2142 for (i = 1; i < leaf->keys - 1; i++) {
2143 if (page < leaf->key[i]) {
2144 uintptr_t left_pg = leaf->key[i - 1];
2145 size_t left_cnt = (size_t) leaf->value[i - 1];
2146
2147 /*
2148 * Now the interval is between intervals corresponding
2149 * to (i - 1) and i.
2150 */
2151 if (overlaps(left_pg, P2SZ(left_cnt), page,
2152 P2SZ(count))) {
2153 if (page + P2SZ(count) ==
2154 left_pg + P2SZ(left_cnt)) {
2155 /*
2156 * The interval is contained in the
2157 * interval (i - 1) of the leaf and can
2158 * be removed by updating the size of
2159 * the bigger interval.
2160 */
2161 leaf->value[i - 1] -= count;
2162 goto success;
2163 } else if (page + P2SZ(count) <
2164 left_pg + P2SZ(left_cnt)) {
2165 size_t new_cnt;
2166
2167 /*
2168 * The interval is contained in the
2169 * interval (i - 1) of the leaf but its
2170 * removal requires both updating the
2171 * size of the original interval and
2172 * also inserting a new interval.
2173 */
2174 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2175 (page + P2SZ(count))) >>
2176 PAGE_WIDTH;
2177 leaf->value[i - 1] -= count + new_cnt;
2178 btree_insert(&area->used_space, page +
2179 P2SZ(count), (void *) new_cnt,
2180 leaf);
2181 goto success;
2182 }
2183 }
2184
2185 return false;
2186 }
2187 }
2188
2189error:
2190 panic("Inconsistency detected while removing %zu pages of used "
2191 "space from %p.", count, (void *) page);
2192
2193success:
2194 area->resident -= count;
2195 return true;
2196}
2197
2198/*
2199 * Address space related syscalls.
2200 */
2201
2202sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2203 uintptr_t bound, as_area_pager_info_t *pager_info)
2204{
2205 uintptr_t virt = base;
2206 mem_backend_t *backend;
2207 mem_backend_data_t backend_data;
2208
2209 if (pager_info == AS_AREA_UNPAGED)
2210 backend = &anon_backend;
2211 else {
2212 backend = &user_backend;
2213 if (copy_from_uspace(&backend_data.pager_info, pager_info,
2214 sizeof(as_area_pager_info_t)) != EOK) {
2215 return (sysarg_t) AS_MAP_FAILED;
2216 }
2217 }
2218 as_area_t *area = as_area_create(AS, flags, size,
2219 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2220 if (area == NULL)
2221 return (sysarg_t) AS_MAP_FAILED;
2222
2223 return (sysarg_t) virt;
2224}
2225
2226sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2227{
2228 return (sys_errno_t) as_area_resize(AS, address, size, 0);
2229}
2230
2231sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2232{
2233 return (sys_errno_t) as_area_change_flags(AS, flags, address);
2234}
2235
2236sys_errno_t sys_as_area_destroy(uintptr_t address)
2237{
2238 return (sys_errno_t) as_area_destroy(AS, address);
2239}
2240
2241/** Get list of adress space areas.
2242 *
2243 * @param as Address space.
2244 * @param obuf Place to save pointer to returned buffer.
2245 * @param osize Place to save size of returned buffer.
2246 *
2247 */
2248void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2249{
2250 mutex_lock(&as->lock);
2251
2252 /* First pass, count number of areas. */
2253
2254 size_t area_cnt = 0;
2255
2256 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2257 node) {
2258 area_cnt += node->keys;
2259 }
2260
2261 size_t isize = area_cnt * sizeof(as_area_info_t);
2262 as_area_info_t *info = nfmalloc(isize);
2263
2264 /* Second pass, record data. */
2265
2266 size_t area_idx = 0;
2267
2268 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2269 node) {
2270 btree_key_t i;
2271
2272 for (i = 0; i < node->keys; i++) {
2273 as_area_t *area = node->value[i];
2274
2275 assert(area_idx < area_cnt);
2276 mutex_lock(&area->lock);
2277
2278 info[area_idx].start_addr = area->base;
2279 info[area_idx].size = P2SZ(area->pages);
2280 info[area_idx].flags = area->flags;
2281 ++area_idx;
2282
2283 mutex_unlock(&area->lock);
2284 }
2285 }
2286
2287 mutex_unlock(&as->lock);
2288
2289 *obuf = info;
2290 *osize = isize;
2291}
2292
2293/** Print out information about address space.
2294 *
2295 * @param as Address space.
2296 *
2297 */
2298void as_print(as_t *as)
2299{
2300 mutex_lock(&as->lock);
2301
2302 /* Print out info about address space areas */
2303 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2304 node) {
2305 btree_key_t i;
2306
2307 for (i = 0; i < node->keys; i++) {
2308 as_area_t *area = node->value[i];
2309
2310 mutex_lock(&area->lock);
2311 printf("as_area: %p, base=%p, pages=%zu"
2312 " (%p - %p)\n", area, (void *) area->base,
2313 area->pages, (void *) area->base,
2314 (void *) (area->base + P2SZ(area->pages)));
2315 mutex_unlock(&area->lock);
2316 }
2317 }
2318
2319 mutex_unlock(&as->lock);
2320}
2321
2322/** @}
2323 */
Note: See TracBrowser for help on using the repository browser.