source: mainline/kernel/generic/src/mm/as.c@ df4ed85

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since df4ed85 was df4ed85, checked in by Jakub Jermar <jakub@…>, 18 years ago

© versus ©

  • Property mode set to 100644
File size: 43.4 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
97SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
98
99/**
100 * This list contains address spaces that are not active on any
101 * processor and that have valid ASID.
102 */
103LIST_INITIALIZE(inactive_as_with_asid_head);
104
105/** Kernel address space. */
106as_t *AS_KERNEL = NULL;
107
108static int area_flags_to_page_flags(int aflags);
109static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
110static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
111static void sh_info_remove_reference(share_info_t *sh_info);
112
113static int as_constructor(void *obj, int flags)
114{
115 as_t *as = (as_t *) obj;
116 int rc;
117
118 link_initialize(&as->inactive_as_with_asid_link);
119 mutex_initialize(&as->lock);
120
121 rc = as_constructor_arch(as, flags);
122
123 return rc;
124}
125
126static int as_destructor(void *obj)
127{
128 as_t *as = (as_t *) obj;
129
130 return as_destructor_arch(as);
131}
132
133/** Initialize address space subsystem. */
134void as_init(void)
135{
136 as_arch_init();
137
138 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
139 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
140
141 AS_KERNEL = as_create(FLAG_AS_KERNEL);
142 if (!AS_KERNEL)
143 panic("can't create kernel address space\n");
144
145}
146
147/** Create address space.
148 *
149 * @param flags Flags that influence way in wich the address space is created.
150 */
151as_t *as_create(int flags)
152{
153 as_t *as;
154
155 as = (as_t *) slab_alloc(as_slab, 0);
156 (void) as_create_arch(as, 0);
157
158 btree_create(&as->as_area_btree);
159
160 if (flags & FLAG_AS_KERNEL)
161 as->asid = ASID_KERNEL;
162 else
163 as->asid = ASID_INVALID;
164
165 as->refcount = 0;
166 as->cpu_refcount = 0;
167 as->page_table = page_table_create(flags);
168
169 return as;
170}
171
172/** Destroy adress space.
173 *
174 * When there are no tasks referencing this address space (i.e. its refcount is zero),
175 * the address space can be destroyed.
176 */
177void as_destroy(as_t *as)
178{
179 ipl_t ipl;
180 bool cond;
181
182 ASSERT(as->refcount == 0);
183
184 /*
185 * Since there is no reference to this area,
186 * it is safe not to lock its mutex.
187 */
188 ipl = interrupts_disable();
189 spinlock_lock(&inactive_as_with_asid_lock);
190 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
191 if (as != AS && as->cpu_refcount == 0)
192 list_remove(&as->inactive_as_with_asid_link);
193 asid_put(as->asid);
194 }
195 spinlock_unlock(&inactive_as_with_asid_lock);
196
197 /*
198 * Destroy address space areas of the address space.
199 * The B+tree must be walked carefully because it is
200 * also being destroyed.
201 */
202 for (cond = true; cond; ) {
203 btree_node_t *node;
204
205 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
206 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
207
208 if ((cond = node->keys)) {
209 as_area_destroy(as, node->key[0]);
210 }
211 }
212
213 btree_destroy(&as->as_area_btree);
214 page_table_destroy(as->page_table);
215
216 interrupts_restore(ipl);
217
218 slab_free(as_slab, as);
219}
220
221/** Create address space area of common attributes.
222 *
223 * The created address space area is added to the target address space.
224 *
225 * @param as Target address space.
226 * @param flags Flags of the area memory.
227 * @param size Size of area.
228 * @param base Base address of area.
229 * @param attrs Attributes of the area.
230 * @param backend Address space area backend. NULL if no backend is used.
231 * @param backend_data NULL or a pointer to an array holding two void *.
232 *
233 * @return Address space area on success or NULL on failure.
234 */
235as_area_t *
236as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
237 mem_backend_t *backend, mem_backend_data_t *backend_data)
238{
239 ipl_t ipl;
240 as_area_t *a;
241
242 if (base % PAGE_SIZE)
243 return NULL;
244
245 if (!size)
246 return NULL;
247
248 /* Writeable executable areas are not supported. */
249 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
250 return NULL;
251
252 ipl = interrupts_disable();
253 mutex_lock(&as->lock);
254
255 if (!check_area_conflicts(as, base, size, NULL)) {
256 mutex_unlock(&as->lock);
257 interrupts_restore(ipl);
258 return NULL;
259 }
260
261 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
262
263 mutex_initialize(&a->lock);
264
265 a->as = as;
266 a->flags = flags;
267 a->attributes = attrs;
268 a->pages = SIZE2FRAMES(size);
269 a->base = base;
270 a->sh_info = NULL;
271 a->backend = backend;
272 if (backend_data)
273 a->backend_data = *backend_data;
274 else
275 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
276
277 btree_create(&a->used_space);
278
279 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
280
281 mutex_unlock(&as->lock);
282 interrupts_restore(ipl);
283
284 return a;
285}
286
287/** Find address space area and change it.
288 *
289 * @param as Address space.
290 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
291 * @param size New size of the virtual memory block starting at address.
292 * @param flags Flags influencing the remap operation. Currently unused.
293 *
294 * @return Zero on success or a value from @ref errno.h otherwise.
295 */
296int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
297{
298 as_area_t *area;
299 ipl_t ipl;
300 size_t pages;
301
302 ipl = interrupts_disable();
303 mutex_lock(&as->lock);
304
305 /*
306 * Locate the area.
307 */
308 area = find_area_and_lock(as, address);
309 if (!area) {
310 mutex_unlock(&as->lock);
311 interrupts_restore(ipl);
312 return ENOENT;
313 }
314
315 if (area->backend == &phys_backend) {
316 /*
317 * Remapping of address space areas associated
318 * with memory mapped devices is not supported.
319 */
320 mutex_unlock(&area->lock);
321 mutex_unlock(&as->lock);
322 interrupts_restore(ipl);
323 return ENOTSUP;
324 }
325 if (area->sh_info) {
326 /*
327 * Remapping of shared address space areas
328 * is not supported.
329 */
330 mutex_unlock(&area->lock);
331 mutex_unlock(&as->lock);
332 interrupts_restore(ipl);
333 return ENOTSUP;
334 }
335
336 pages = SIZE2FRAMES((address - area->base) + size);
337 if (!pages) {
338 /*
339 * Zero size address space areas are not allowed.
340 */
341 mutex_unlock(&area->lock);
342 mutex_unlock(&as->lock);
343 interrupts_restore(ipl);
344 return EPERM;
345 }
346
347 if (pages < area->pages) {
348 bool cond;
349 uintptr_t start_free = area->base + pages*PAGE_SIZE;
350
351 /*
352 * Shrinking the area.
353 * No need to check for overlaps.
354 */
355
356 /*
357 * Start TLB shootdown sequence.
358 */
359 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
360
361 /*
362 * Remove frames belonging to used space starting from
363 * the highest addresses downwards until an overlap with
364 * the resized address space area is found. Note that this
365 * is also the right way to remove part of the used_space
366 * B+tree leaf list.
367 */
368 for (cond = true; cond;) {
369 btree_node_t *node;
370
371 ASSERT(!list_empty(&area->used_space.leaf_head));
372 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
373 if ((cond = (bool) node->keys)) {
374 uintptr_t b = node->key[node->keys - 1];
375 count_t c = (count_t) node->value[node->keys - 1];
376 int i = 0;
377
378 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
379
380 if (b + c*PAGE_SIZE <= start_free) {
381 /*
382 * The whole interval fits completely
383 * in the resized address space area.
384 */
385 break;
386 }
387
388 /*
389 * Part of the interval corresponding to b and c
390 * overlaps with the resized address space area.
391 */
392
393 cond = false; /* we are almost done */
394 i = (start_free - b) >> PAGE_WIDTH;
395 if (!used_space_remove(area, start_free, c - i))
396 panic("Could not remove used space.\n");
397 } else {
398 /*
399 * The interval of used space can be completely removed.
400 */
401 if (!used_space_remove(area, b, c))
402 panic("Could not remove used space.\n");
403 }
404
405 for (; i < c; i++) {
406 pte_t *pte;
407
408 page_table_lock(as, false);
409 pte = page_mapping_find(as, b + i*PAGE_SIZE);
410 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
411 if (area->backend && area->backend->frame_free) {
412 area->backend->frame_free(area,
413 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
414 }
415 page_mapping_remove(as, b + i*PAGE_SIZE);
416 page_table_unlock(as, false);
417 }
418 }
419 }
420
421 /*
422 * Finish TLB shootdown sequence.
423 */
424 tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
425 tlb_shootdown_finalize();
426
427 /*
428 * Invalidate software translation caches (e.g. TSB on sparc64).
429 */
430 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
431 } else {
432 /*
433 * Growing the area.
434 * Check for overlaps with other address space areas.
435 */
436 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
437 mutex_unlock(&area->lock);
438 mutex_unlock(&as->lock);
439 interrupts_restore(ipl);
440 return EADDRNOTAVAIL;
441 }
442 }
443
444 area->pages = pages;
445
446 mutex_unlock(&area->lock);
447 mutex_unlock(&as->lock);
448 interrupts_restore(ipl);
449
450 return 0;
451}
452
453/** Destroy address space area.
454 *
455 * @param as Address space.
456 * @param address Address withing the area to be deleted.
457 *
458 * @return Zero on success or a value from @ref errno.h on failure.
459 */
460int as_area_destroy(as_t *as, uintptr_t address)
461{
462 as_area_t *area;
463 uintptr_t base;
464 link_t *cur;
465 ipl_t ipl;
466
467 ipl = interrupts_disable();
468 mutex_lock(&as->lock);
469
470 area = find_area_and_lock(as, address);
471 if (!area) {
472 mutex_unlock(&as->lock);
473 interrupts_restore(ipl);
474 return ENOENT;
475 }
476
477 base = area->base;
478
479 /*
480 * Start TLB shootdown sequence.
481 */
482 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
483
484 /*
485 * Visit only the pages mapped by used_space B+tree.
486 */
487 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
488 btree_node_t *node;
489 int i;
490
491 node = list_get_instance(cur, btree_node_t, leaf_link);
492 for (i = 0; i < node->keys; i++) {
493 uintptr_t b = node->key[i];
494 count_t j;
495 pte_t *pte;
496
497 for (j = 0; j < (count_t) node->value[i]; j++) {
498 page_table_lock(as, false);
499 pte = page_mapping_find(as, b + j*PAGE_SIZE);
500 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
501 if (area->backend && area->backend->frame_free) {
502 area->backend->frame_free(area,
503 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
504 }
505 page_mapping_remove(as, b + j*PAGE_SIZE);
506 page_table_unlock(as, false);
507 }
508 }
509 }
510
511 /*
512 * Finish TLB shootdown sequence.
513 */
514 tlb_invalidate_pages(as->asid, area->base, area->pages);
515 tlb_shootdown_finalize();
516
517 /*
518 * Invalidate potential software translation caches (e.g. TSB on sparc64).
519 */
520 as_invalidate_translation_cache(as, area->base, area->pages);
521
522 btree_destroy(&area->used_space);
523
524 area->attributes |= AS_AREA_ATTR_PARTIAL;
525
526 if (area->sh_info)
527 sh_info_remove_reference(area->sh_info);
528
529 mutex_unlock(&area->lock);
530
531 /*
532 * Remove the empty area from address space.
533 */
534 btree_remove(&as->as_area_btree, base, NULL);
535
536 free(area);
537
538 mutex_unlock(&as->lock);
539 interrupts_restore(ipl);
540 return 0;
541}
542
543/** Share address space area with another or the same address space.
544 *
545 * Address space area mapping is shared with a new address space area.
546 * If the source address space area has not been shared so far,
547 * a new sh_info is created. The new address space area simply gets the
548 * sh_info of the source area. The process of duplicating the
549 * mapping is done through the backend share function.
550 *
551 * @param src_as Pointer to source address space.
552 * @param src_base Base address of the source address space area.
553 * @param acc_size Expected size of the source area.
554 * @param dst_as Pointer to destination address space.
555 * @param dst_base Target base address.
556 * @param dst_flags_mask Destination address space area flags mask.
557 *
558 * @return Zero on success or ENOENT if there is no such task or if there is no
559 * such address space area, EPERM if there was a problem in accepting the area
560 * or ENOMEM if there was a problem in allocating destination address space
561 * area. ENOTSUP is returned if the address space area backend does not support
562 * sharing or if the kernel detects an attempt to create an illegal address
563 * alias.
564 */
565int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
566 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
567{
568 ipl_t ipl;
569 int src_flags;
570 size_t src_size;
571 as_area_t *src_area, *dst_area;
572 share_info_t *sh_info;
573 mem_backend_t *src_backend;
574 mem_backend_data_t src_backend_data;
575
576 ipl = interrupts_disable();
577 mutex_lock(&src_as->lock);
578 src_area = find_area_and_lock(src_as, src_base);
579 if (!src_area) {
580 /*
581 * Could not find the source address space area.
582 */
583 mutex_unlock(&src_as->lock);
584 interrupts_restore(ipl);
585 return ENOENT;
586 }
587
588 if (!src_area->backend || !src_area->backend->share) {
589 /*
590 * There is no backend or the backend does not
591 * know how to share the area.
592 */
593 mutex_unlock(&src_area->lock);
594 mutex_unlock(&src_as->lock);
595 interrupts_restore(ipl);
596 return ENOTSUP;
597 }
598
599 src_size = src_area->pages * PAGE_SIZE;
600 src_flags = src_area->flags;
601 src_backend = src_area->backend;
602 src_backend_data = src_area->backend_data;
603
604 /* Share the cacheable flag from the original mapping */
605 if (src_flags & AS_AREA_CACHEABLE)
606 dst_flags_mask |= AS_AREA_CACHEABLE;
607
608 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
609 mutex_unlock(&src_area->lock);
610 mutex_unlock(&src_as->lock);
611 interrupts_restore(ipl);
612 return EPERM;
613 }
614
615#ifdef CONFIG_VIRT_IDX_DCACHE
616 if (!(dst_flags_mask & AS_AREA_EXEC)) {
617 if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
618 /*
619 * Refuse to create an illegal address alias.
620 */
621 mutex_unlock(&src_area->lock);
622 mutex_unlock(&src_as->lock);
623 interrupts_restore(ipl);
624 return ENOTSUP;
625 }
626 }
627#endif /* CONFIG_VIRT_IDX_DCACHE */
628
629 /*
630 * Now we are committed to sharing the area.
631 * First, prepare the area for sharing.
632 * Then it will be safe to unlock it.
633 */
634 sh_info = src_area->sh_info;
635 if (!sh_info) {
636 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
637 mutex_initialize(&sh_info->lock);
638 sh_info->refcount = 2;
639 btree_create(&sh_info->pagemap);
640 src_area->sh_info = sh_info;
641 } else {
642 mutex_lock(&sh_info->lock);
643 sh_info->refcount++;
644 mutex_unlock(&sh_info->lock);
645 }
646
647 src_area->backend->share(src_area);
648
649 mutex_unlock(&src_area->lock);
650 mutex_unlock(&src_as->lock);
651
652 /*
653 * Create copy of the source address space area.
654 * The destination area is created with AS_AREA_ATTR_PARTIAL
655 * attribute set which prevents race condition with
656 * preliminary as_page_fault() calls.
657 * The flags of the source area are masked against dst_flags_mask
658 * to support sharing in less privileged mode.
659 */
660 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
661 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
662 if (!dst_area) {
663 /*
664 * Destination address space area could not be created.
665 */
666 sh_info_remove_reference(sh_info);
667
668 interrupts_restore(ipl);
669 return ENOMEM;
670 }
671
672 /*
673 * Now the destination address space area has been
674 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
675 * attribute and set the sh_info.
676 */
677 mutex_lock(&dst_as->lock);
678 mutex_lock(&dst_area->lock);
679 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
680 dst_area->sh_info = sh_info;
681 mutex_unlock(&dst_area->lock);
682 mutex_unlock(&dst_as->lock);
683
684 interrupts_restore(ipl);
685
686 return 0;
687}
688
689/** Check access mode for address space area.
690 *
691 * The address space area must be locked prior to this call.
692 *
693 * @param area Address space area.
694 * @param access Access mode.
695 *
696 * @return False if access violates area's permissions, true otherwise.
697 */
698bool as_area_check_access(as_area_t *area, pf_access_t access)
699{
700 int flagmap[] = {
701 [PF_ACCESS_READ] = AS_AREA_READ,
702 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
703 [PF_ACCESS_EXEC] = AS_AREA_EXEC
704 };
705
706 if (!(area->flags & flagmap[access]))
707 return false;
708
709 return true;
710}
711
712/** Handle page fault within the current address space.
713 *
714 * This is the high-level page fault handler. It decides
715 * whether the page fault can be resolved by any backend
716 * and if so, it invokes the backend to resolve the page
717 * fault.
718 *
719 * Interrupts are assumed disabled.
720 *
721 * @param page Faulting page.
722 * @param access Access mode that caused the fault (i.e. read/write/exec).
723 * @param istate Pointer to interrupted state.
724 *
725 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
726 * fault was caused by copy_to_uspace() or copy_from_uspace().
727 */
728int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
729{
730 pte_t *pte;
731 as_area_t *area;
732
733 if (!THREAD)
734 return AS_PF_FAULT;
735
736 ASSERT(AS);
737
738 mutex_lock(&AS->lock);
739 area = find_area_and_lock(AS, page);
740 if (!area) {
741 /*
742 * No area contained mapping for 'page'.
743 * Signal page fault to low-level handler.
744 */
745 mutex_unlock(&AS->lock);
746 goto page_fault;
747 }
748
749 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
750 /*
751 * The address space area is not fully initialized.
752 * Avoid possible race by returning error.
753 */
754 mutex_unlock(&area->lock);
755 mutex_unlock(&AS->lock);
756 goto page_fault;
757 }
758
759 if (!area->backend || !area->backend->page_fault) {
760 /*
761 * The address space area is not backed by any backend
762 * or the backend cannot handle page faults.
763 */
764 mutex_unlock(&area->lock);
765 mutex_unlock(&AS->lock);
766 goto page_fault;
767 }
768
769 page_table_lock(AS, false);
770
771 /*
772 * To avoid race condition between two page faults
773 * on the same address, we need to make sure
774 * the mapping has not been already inserted.
775 */
776 if ((pte = page_mapping_find(AS, page))) {
777 if (PTE_PRESENT(pte)) {
778 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
779 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
780 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
781 page_table_unlock(AS, false);
782 mutex_unlock(&area->lock);
783 mutex_unlock(&AS->lock);
784 return AS_PF_OK;
785 }
786 }
787 }
788
789 /*
790 * Resort to the backend page fault handler.
791 */
792 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
793 page_table_unlock(AS, false);
794 mutex_unlock(&area->lock);
795 mutex_unlock(&AS->lock);
796 goto page_fault;
797 }
798
799 page_table_unlock(AS, false);
800 mutex_unlock(&area->lock);
801 mutex_unlock(&AS->lock);
802 return AS_PF_OK;
803
804page_fault:
805 if (THREAD->in_copy_from_uspace) {
806 THREAD->in_copy_from_uspace = false;
807 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
808 } else if (THREAD->in_copy_to_uspace) {
809 THREAD->in_copy_to_uspace = false;
810 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
811 } else {
812 return AS_PF_FAULT;
813 }
814
815 return AS_PF_DEFER;
816}
817
818/** Switch address spaces.
819 *
820 * Note that this function cannot sleep as it is essentially a part of
821 * scheduling. Sleeping here would lead to deadlock on wakeup.
822 *
823 * @param old Old address space or NULL.
824 * @param new New address space.
825 */
826void as_switch(as_t *old, as_t *new)
827{
828 ipl_t ipl;
829 bool needs_asid = false;
830
831 ipl = interrupts_disable();
832 spinlock_lock(&inactive_as_with_asid_lock);
833
834 /*
835 * First, take care of the old address space.
836 */
837 if (old) {
838 mutex_lock_active(&old->lock);
839 ASSERT(old->cpu_refcount);
840 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
841 /*
842 * The old address space is no longer active on
843 * any processor. It can be appended to the
844 * list of inactive address spaces with assigned
845 * ASID.
846 */
847 ASSERT(old->asid != ASID_INVALID);
848 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
849 }
850 mutex_unlock(&old->lock);
851
852 /*
853 * Perform architecture-specific tasks when the address space
854 * is being removed from the CPU.
855 */
856 as_deinstall_arch(old);
857 }
858
859 /*
860 * Second, prepare the new address space.
861 */
862 mutex_lock_active(&new->lock);
863 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
864 if (new->asid != ASID_INVALID)
865 list_remove(&new->inactive_as_with_asid_link);
866 else
867 needs_asid = true; /* defer call to asid_get() until new->lock is released */
868 }
869 SET_PTL0_ADDRESS(new->page_table);
870 mutex_unlock(&new->lock);
871
872 if (needs_asid) {
873 /*
874 * Allocation of new ASID was deferred
875 * until now in order to avoid deadlock.
876 */
877 asid_t asid;
878
879 asid = asid_get();
880 mutex_lock_active(&new->lock);
881 new->asid = asid;
882 mutex_unlock(&new->lock);
883 }
884 spinlock_unlock(&inactive_as_with_asid_lock);
885 interrupts_restore(ipl);
886
887 /*
888 * Perform architecture-specific steps.
889 * (e.g. write ASID to hardware register etc.)
890 */
891 as_install_arch(new);
892
893 AS = new;
894}
895
896/** Convert address space area flags to page flags.
897 *
898 * @param aflags Flags of some address space area.
899 *
900 * @return Flags to be passed to page_mapping_insert().
901 */
902int area_flags_to_page_flags(int aflags)
903{
904 int flags;
905
906 flags = PAGE_USER | PAGE_PRESENT;
907
908 if (aflags & AS_AREA_READ)
909 flags |= PAGE_READ;
910
911 if (aflags & AS_AREA_WRITE)
912 flags |= PAGE_WRITE;
913
914 if (aflags & AS_AREA_EXEC)
915 flags |= PAGE_EXEC;
916
917 if (aflags & AS_AREA_CACHEABLE)
918 flags |= PAGE_CACHEABLE;
919
920 return flags;
921}
922
923/** Compute flags for virtual address translation subsytem.
924 *
925 * The address space area must be locked.
926 * Interrupts must be disabled.
927 *
928 * @param a Address space area.
929 *
930 * @return Flags to be used in page_mapping_insert().
931 */
932int as_area_get_flags(as_area_t *a)
933{
934 return area_flags_to_page_flags(a->flags);
935}
936
937/** Create page table.
938 *
939 * Depending on architecture, create either address space
940 * private or global page table.
941 *
942 * @param flags Flags saying whether the page table is for kernel address space.
943 *
944 * @return First entry of the page table.
945 */
946pte_t *page_table_create(int flags)
947{
948 ASSERT(as_operations);
949 ASSERT(as_operations->page_table_create);
950
951 return as_operations->page_table_create(flags);
952}
953
954/** Destroy page table.
955 *
956 * Destroy page table in architecture specific way.
957 *
958 * @param page_table Physical address of PTL0.
959 */
960void page_table_destroy(pte_t *page_table)
961{
962 ASSERT(as_operations);
963 ASSERT(as_operations->page_table_destroy);
964
965 as_operations->page_table_destroy(page_table);
966}
967
968/** Lock page table.
969 *
970 * This function should be called before any page_mapping_insert(),
971 * page_mapping_remove() and page_mapping_find().
972 *
973 * Locking order is such that address space areas must be locked
974 * prior to this call. Address space can be locked prior to this
975 * call in which case the lock argument is false.
976 *
977 * @param as Address space.
978 * @param lock If false, do not attempt to lock as->lock.
979 */
980void page_table_lock(as_t *as, bool lock)
981{
982 ASSERT(as_operations);
983 ASSERT(as_operations->page_table_lock);
984
985 as_operations->page_table_lock(as, lock);
986}
987
988/** Unlock page table.
989 *
990 * @param as Address space.
991 * @param unlock If false, do not attempt to unlock as->lock.
992 */
993void page_table_unlock(as_t *as, bool unlock)
994{
995 ASSERT(as_operations);
996 ASSERT(as_operations->page_table_unlock);
997
998 as_operations->page_table_unlock(as, unlock);
999}
1000
1001
1002/** Find address space area and lock it.
1003 *
1004 * The address space must be locked and interrupts must be disabled.
1005 *
1006 * @param as Address space.
1007 * @param va Virtual address.
1008 *
1009 * @return Locked address space area containing va on success or NULL on failure.
1010 */
1011as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1012{
1013 as_area_t *a;
1014 btree_node_t *leaf, *lnode;
1015 int i;
1016
1017 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1018 if (a) {
1019 /* va is the base address of an address space area */
1020 mutex_lock(&a->lock);
1021 return a;
1022 }
1023
1024 /*
1025 * Search the leaf node and the righmost record of its left neighbour
1026 * to find out whether this is a miss or va belongs to an address
1027 * space area found there.
1028 */
1029
1030 /* First, search the leaf node itself. */
1031 for (i = 0; i < leaf->keys; i++) {
1032 a = (as_area_t *) leaf->value[i];
1033 mutex_lock(&a->lock);
1034 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1035 return a;
1036 }
1037 mutex_unlock(&a->lock);
1038 }
1039
1040 /*
1041 * Second, locate the left neighbour and test its last record.
1042 * Because of its position in the B+tree, it must have base < va.
1043 */
1044 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1045 a = (as_area_t *) lnode->value[lnode->keys - 1];
1046 mutex_lock(&a->lock);
1047 if (va < a->base + a->pages * PAGE_SIZE) {
1048 return a;
1049 }
1050 mutex_unlock(&a->lock);
1051 }
1052
1053 return NULL;
1054}
1055
1056/** Check area conflicts with other areas.
1057 *
1058 * The address space must be locked and interrupts must be disabled.
1059 *
1060 * @param as Address space.
1061 * @param va Starting virtual address of the area being tested.
1062 * @param size Size of the area being tested.
1063 * @param avoid_area Do not touch this area.
1064 *
1065 * @return True if there is no conflict, false otherwise.
1066 */
1067bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1068{
1069 as_area_t *a;
1070 btree_node_t *leaf, *node;
1071 int i;
1072
1073 /*
1074 * We don't want any area to have conflicts with NULL page.
1075 */
1076 if (overlaps(va, size, NULL, PAGE_SIZE))
1077 return false;
1078
1079 /*
1080 * The leaf node is found in O(log n), where n is proportional to
1081 * the number of address space areas belonging to as.
1082 * The check for conflicts is then attempted on the rightmost
1083 * record in the left neighbour, the leftmost record in the right
1084 * neighbour and all records in the leaf node itself.
1085 */
1086
1087 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1088 if (a != avoid_area)
1089 return false;
1090 }
1091
1092 /* First, check the two border cases. */
1093 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1094 a = (as_area_t *) node->value[node->keys - 1];
1095 mutex_lock(&a->lock);
1096 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1097 mutex_unlock(&a->lock);
1098 return false;
1099 }
1100 mutex_unlock(&a->lock);
1101 }
1102 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1103 a = (as_area_t *) node->value[0];
1104 mutex_lock(&a->lock);
1105 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1106 mutex_unlock(&a->lock);
1107 return false;
1108 }
1109 mutex_unlock(&a->lock);
1110 }
1111
1112 /* Second, check the leaf node. */
1113 for (i = 0; i < leaf->keys; i++) {
1114 a = (as_area_t *) leaf->value[i];
1115
1116 if (a == avoid_area)
1117 continue;
1118
1119 mutex_lock(&a->lock);
1120 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1121 mutex_unlock(&a->lock);
1122 return false;
1123 }
1124 mutex_unlock(&a->lock);
1125 }
1126
1127 /*
1128 * So far, the area does not conflict with other areas.
1129 * Check if it doesn't conflict with kernel address space.
1130 */
1131 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1132 return !overlaps(va, size,
1133 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1134 }
1135
1136 return true;
1137}
1138
1139/** Return size of the address space area with given base. */
1140size_t as_get_size(uintptr_t base)
1141{
1142 ipl_t ipl;
1143 as_area_t *src_area;
1144 size_t size;
1145
1146 ipl = interrupts_disable();
1147 src_area = find_area_and_lock(AS, base);
1148 if (src_area){
1149 size = src_area->pages * PAGE_SIZE;
1150 mutex_unlock(&src_area->lock);
1151 } else {
1152 size = 0;
1153 }
1154 interrupts_restore(ipl);
1155 return size;
1156}
1157
1158/** Mark portion of address space area as used.
1159 *
1160 * The address space area must be already locked.
1161 *
1162 * @param a Address space area.
1163 * @param page First page to be marked.
1164 * @param count Number of page to be marked.
1165 *
1166 * @return 0 on failure and 1 on success.
1167 */
1168int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1169{
1170 btree_node_t *leaf, *node;
1171 count_t pages;
1172 int i;
1173
1174 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1175 ASSERT(count);
1176
1177 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1178 if (pages) {
1179 /*
1180 * We hit the beginning of some used space.
1181 */
1182 return 0;
1183 }
1184
1185 if (!leaf->keys) {
1186 btree_insert(&a->used_space, page, (void *) count, leaf);
1187 return 1;
1188 }
1189
1190 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1191 if (node) {
1192 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1193 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1194
1195 /*
1196 * Examine the possibility that the interval fits
1197 * somewhere between the rightmost interval of
1198 * the left neigbour and the first interval of the leaf.
1199 */
1200
1201 if (page >= right_pg) {
1202 /* Do nothing. */
1203 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1204 /* The interval intersects with the left interval. */
1205 return 0;
1206 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1207 /* The interval intersects with the right interval. */
1208 return 0;
1209 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1210 /* The interval can be added by merging the two already present intervals. */
1211 node->value[node->keys - 1] += count + right_cnt;
1212 btree_remove(&a->used_space, right_pg, leaf);
1213 return 1;
1214 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1215 /* The interval can be added by simply growing the left interval. */
1216 node->value[node->keys - 1] += count;
1217 return 1;
1218 } else if (page + count*PAGE_SIZE == right_pg) {
1219 /*
1220 * The interval can be addded by simply moving base of the right
1221 * interval down and increasing its size accordingly.
1222 */
1223 leaf->value[0] += count;
1224 leaf->key[0] = page;
1225 return 1;
1226 } else {
1227 /*
1228 * The interval is between both neigbouring intervals,
1229 * but cannot be merged with any of them.
1230 */
1231 btree_insert(&a->used_space, page, (void *) count, leaf);
1232 return 1;
1233 }
1234 } else if (page < leaf->key[0]) {
1235 uintptr_t right_pg = leaf->key[0];
1236 count_t right_cnt = (count_t) leaf->value[0];
1237
1238 /*
1239 * Investigate the border case in which the left neighbour does not
1240 * exist but the interval fits from the left.
1241 */
1242
1243 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1244 /* The interval intersects with the right interval. */
1245 return 0;
1246 } else if (page + count*PAGE_SIZE == right_pg) {
1247 /*
1248 * The interval can be added by moving the base of the right interval down
1249 * and increasing its size accordingly.
1250 */
1251 leaf->key[0] = page;
1252 leaf->value[0] += count;
1253 return 1;
1254 } else {
1255 /*
1256 * The interval doesn't adjoin with the right interval.
1257 * It must be added individually.
1258 */
1259 btree_insert(&a->used_space, page, (void *) count, leaf);
1260 return 1;
1261 }
1262 }
1263
1264 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1265 if (node) {
1266 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1267 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1268
1269 /*
1270 * Examine the possibility that the interval fits
1271 * somewhere between the leftmost interval of
1272 * the right neigbour and the last interval of the leaf.
1273 */
1274
1275 if (page < left_pg) {
1276 /* Do nothing. */
1277 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1278 /* The interval intersects with the left interval. */
1279 return 0;
1280 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1281 /* The interval intersects with the right interval. */
1282 return 0;
1283 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1284 /* The interval can be added by merging the two already present intervals. */
1285 leaf->value[leaf->keys - 1] += count + right_cnt;
1286 btree_remove(&a->used_space, right_pg, node);
1287 return 1;
1288 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1289 /* The interval can be added by simply growing the left interval. */
1290 leaf->value[leaf->keys - 1] += count;
1291 return 1;
1292 } else if (page + count*PAGE_SIZE == right_pg) {
1293 /*
1294 * The interval can be addded by simply moving base of the right
1295 * interval down and increasing its size accordingly.
1296 */
1297 node->value[0] += count;
1298 node->key[0] = page;
1299 return 1;
1300 } else {
1301 /*
1302 * The interval is between both neigbouring intervals,
1303 * but cannot be merged with any of them.
1304 */
1305 btree_insert(&a->used_space, page, (void *) count, leaf);
1306 return 1;
1307 }
1308 } else if (page >= leaf->key[leaf->keys - 1]) {
1309 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1310 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1311
1312 /*
1313 * Investigate the border case in which the right neighbour does not
1314 * exist but the interval fits from the right.
1315 */
1316
1317 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1318 /* The interval intersects with the left interval. */
1319 return 0;
1320 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1321 /* The interval can be added by growing the left interval. */
1322 leaf->value[leaf->keys - 1] += count;
1323 return 1;
1324 } else {
1325 /*
1326 * The interval doesn't adjoin with the left interval.
1327 * It must be added individually.
1328 */
1329 btree_insert(&a->used_space, page, (void *) count, leaf);
1330 return 1;
1331 }
1332 }
1333
1334 /*
1335 * Note that if the algorithm made it thus far, the interval can fit only
1336 * between two other intervals of the leaf. The two border cases were already
1337 * resolved.
1338 */
1339 for (i = 1; i < leaf->keys; i++) {
1340 if (page < leaf->key[i]) {
1341 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1342 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1343
1344 /*
1345 * The interval fits between left_pg and right_pg.
1346 */
1347
1348 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1349 /* The interval intersects with the left interval. */
1350 return 0;
1351 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1352 /* The interval intersects with the right interval. */
1353 return 0;
1354 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1355 /* The interval can be added by merging the two already present intervals. */
1356 leaf->value[i - 1] += count + right_cnt;
1357 btree_remove(&a->used_space, right_pg, leaf);
1358 return 1;
1359 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1360 /* The interval can be added by simply growing the left interval. */
1361 leaf->value[i - 1] += count;
1362 return 1;
1363 } else if (page + count*PAGE_SIZE == right_pg) {
1364 /*
1365 * The interval can be addded by simply moving base of the right
1366 * interval down and increasing its size accordingly.
1367 */
1368 leaf->value[i] += count;
1369 leaf->key[i] = page;
1370 return 1;
1371 } else {
1372 /*
1373 * The interval is between both neigbouring intervals,
1374 * but cannot be merged with any of them.
1375 */
1376 btree_insert(&a->used_space, page, (void *) count, leaf);
1377 return 1;
1378 }
1379 }
1380 }
1381
1382 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1383}
1384
1385/** Mark portion of address space area as unused.
1386 *
1387 * The address space area must be already locked.
1388 *
1389 * @param a Address space area.
1390 * @param page First page to be marked.
1391 * @param count Number of page to be marked.
1392 *
1393 * @return 0 on failure and 1 on success.
1394 */
1395int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1396{
1397 btree_node_t *leaf, *node;
1398 count_t pages;
1399 int i;
1400
1401 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1402 ASSERT(count);
1403
1404 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1405 if (pages) {
1406 /*
1407 * We are lucky, page is the beginning of some interval.
1408 */
1409 if (count > pages) {
1410 return 0;
1411 } else if (count == pages) {
1412 btree_remove(&a->used_space, page, leaf);
1413 return 1;
1414 } else {
1415 /*
1416 * Find the respective interval.
1417 * Decrease its size and relocate its start address.
1418 */
1419 for (i = 0; i < leaf->keys; i++) {
1420 if (leaf->key[i] == page) {
1421 leaf->key[i] += count*PAGE_SIZE;
1422 leaf->value[i] -= count;
1423 return 1;
1424 }
1425 }
1426 goto error;
1427 }
1428 }
1429
1430 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1431 if (node && page < leaf->key[0]) {
1432 uintptr_t left_pg = node->key[node->keys - 1];
1433 count_t left_cnt = (count_t) node->value[node->keys - 1];
1434
1435 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1436 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1437 /*
1438 * The interval is contained in the rightmost interval
1439 * of the left neighbour and can be removed by
1440 * updating the size of the bigger interval.
1441 */
1442 node->value[node->keys - 1] -= count;
1443 return 1;
1444 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1445 count_t new_cnt;
1446
1447 /*
1448 * The interval is contained in the rightmost interval
1449 * of the left neighbour but its removal requires
1450 * both updating the size of the original interval and
1451 * also inserting a new interval.
1452 */
1453 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1454 node->value[node->keys - 1] -= count + new_cnt;
1455 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1456 return 1;
1457 }
1458 }
1459 return 0;
1460 } else if (page < leaf->key[0]) {
1461 return 0;
1462 }
1463
1464 if (page > leaf->key[leaf->keys - 1]) {
1465 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1466 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1467
1468 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1469 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1470 /*
1471 * The interval is contained in the rightmost interval
1472 * of the leaf and can be removed by updating the size
1473 * of the bigger interval.
1474 */
1475 leaf->value[leaf->keys - 1] -= count;
1476 return 1;
1477 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1478 count_t new_cnt;
1479
1480 /*
1481 * The interval is contained in the rightmost interval
1482 * of the leaf but its removal requires both updating
1483 * the size of the original interval and
1484 * also inserting a new interval.
1485 */
1486 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1487 leaf->value[leaf->keys - 1] -= count + new_cnt;
1488 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1489 return 1;
1490 }
1491 }
1492 return 0;
1493 }
1494
1495 /*
1496 * The border cases have been already resolved.
1497 * Now the interval can be only between intervals of the leaf.
1498 */
1499 for (i = 1; i < leaf->keys - 1; i++) {
1500 if (page < leaf->key[i]) {
1501 uintptr_t left_pg = leaf->key[i - 1];
1502 count_t left_cnt = (count_t) leaf->value[i - 1];
1503
1504 /*
1505 * Now the interval is between intervals corresponding to (i - 1) and i.
1506 */
1507 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1508 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1509 /*
1510 * The interval is contained in the interval (i - 1)
1511 * of the leaf and can be removed by updating the size
1512 * of the bigger interval.
1513 */
1514 leaf->value[i - 1] -= count;
1515 return 1;
1516 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1517 count_t new_cnt;
1518
1519 /*
1520 * The interval is contained in the interval (i - 1)
1521 * of the leaf but its removal requires both updating
1522 * the size of the original interval and
1523 * also inserting a new interval.
1524 */
1525 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1526 leaf->value[i - 1] -= count + new_cnt;
1527 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1528 return 1;
1529 }
1530 }
1531 return 0;
1532 }
1533 }
1534
1535error:
1536 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1537}
1538
1539/** Remove reference to address space area share info.
1540 *
1541 * If the reference count drops to 0, the sh_info is deallocated.
1542 *
1543 * @param sh_info Pointer to address space area share info.
1544 */
1545void sh_info_remove_reference(share_info_t *sh_info)
1546{
1547 bool dealloc = false;
1548
1549 mutex_lock(&sh_info->lock);
1550 ASSERT(sh_info->refcount);
1551 if (--sh_info->refcount == 0) {
1552 dealloc = true;
1553 link_t *cur;
1554
1555 /*
1556 * Now walk carefully the pagemap B+tree and free/remove
1557 * reference from all frames found there.
1558 */
1559 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1560 btree_node_t *node;
1561 int i;
1562
1563 node = list_get_instance(cur, btree_node_t, leaf_link);
1564 for (i = 0; i < node->keys; i++)
1565 frame_free((uintptr_t) node->value[i]);
1566 }
1567
1568 }
1569 mutex_unlock(&sh_info->lock);
1570
1571 if (dealloc) {
1572 btree_destroy(&sh_info->pagemap);
1573 free(sh_info);
1574 }
1575}
1576
1577/*
1578 * Address space related syscalls.
1579 */
1580
1581/** Wrapper for as_area_create(). */
1582unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1583{
1584 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1585 return (unative_t) address;
1586 else
1587 return (unative_t) -1;
1588}
1589
1590/** Wrapper for as_area_resize(). */
1591unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1592{
1593 return (unative_t) as_area_resize(AS, address, size, 0);
1594}
1595
1596/** Wrapper for as_area_destroy(). */
1597unative_t sys_as_area_destroy(uintptr_t address)
1598{
1599 return (unative_t) as_area_destroy(AS, address);
1600}
1601
1602/** Print out information about address space.
1603 *
1604 * @param as Address space.
1605 */
1606void as_print(as_t *as)
1607{
1608 ipl_t ipl;
1609
1610 ipl = interrupts_disable();
1611 mutex_lock(&as->lock);
1612
1613 /* print out info about address space areas */
1614 link_t *cur;
1615 for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1616 btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1617
1618 int i;
1619 for (i = 0; i < node->keys; i++) {
1620 as_area_t *area = node->value[i];
1621
1622 mutex_lock(&area->lock);
1623 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1624 area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1625 mutex_unlock(&area->lock);
1626 }
1627 }
1628
1629 mutex_unlock(&as->lock);
1630 interrupts_restore(ipl);
1631}
1632
1633/** @}
1634 */
Note: See TracBrowser for help on using the repository browser.