source: mainline/kernel/generic/src/mm/as.c@ df29f24

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since df29f24 was df29f24, checked in by Vojtech Horky <vojtechhorky@…>, 14 years ago

Merge mainline changes

Conflicts - trivial to solve
In kernel/generic/src/mm/page.c - sys_page_find_mapping does
not use locking when accessing page tables (hope that is correct).

  • Property mode set to 100644
File size: 53.1 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <bitops.h>
74#include <arch.h>
75#include <errno.h>
76#include <config.h>
77#include <align.h>
78#include <typedefs.h>
79#include <syscall/copy.h>
80#include <arch/interrupt.h>
81
82/**
83 * Each architecture decides what functions will be used to carry out
84 * address space operations such as creating or locking page tables.
85 */
86as_operations_t *as_operations = NULL;
87
88/** Slab for as_t objects.
89 *
90 */
91static slab_cache_t *as_slab;
92
93/** ASID subsystem lock.
94 *
95 * This lock protects:
96 * - inactive_as_with_asid_head list
97 * - as->asid for each as of the as_t type
98 * - asids_allocated counter
99 *
100 */
101SPINLOCK_INITIALIZE(asidlock);
102
103/**
104 * Inactive address spaces (on all processors)
105 * that have valid ASID.
106 */
107LIST_INITIALIZE(inactive_as_with_asid_head);
108
109/** Kernel address space. */
110as_t *AS_KERNEL = NULL;
111
112NO_TRACE static int as_constructor(void *obj, unsigned int flags)
113{
114 as_t *as = (as_t *) obj;
115
116 link_initialize(&as->inactive_as_with_asid_link);
117 mutex_initialize(&as->lock, MUTEX_PASSIVE);
118
119 return as_constructor_arch(as, flags);
120}
121
122NO_TRACE static size_t as_destructor(void *obj)
123{
124 return as_destructor_arch((as_t *) obj);
125}
126
127/** Initialize address space subsystem. */
128void as_init(void)
129{
130 as_arch_init();
131
132 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
133 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
134
135 AS_KERNEL = as_create(FLAG_AS_KERNEL);
136 if (!AS_KERNEL)
137 panic("Cannot create kernel address space.");
138
139 /*
140 * Make sure the kernel address space
141 * reference count never drops to zero.
142 */
143 as_hold(AS_KERNEL);
144}
145
146/** Create address space.
147 *
148 * @param flags Flags that influence the way in wich the address
149 * space is created.
150 *
151 */
152as_t *as_create(unsigned int flags)
153{
154 as_t *as = (as_t *) slab_alloc(as_slab, 0);
155 (void) as_create_arch(as, 0);
156
157 btree_create(&as->as_area_btree);
158
159 if (flags & FLAG_AS_KERNEL)
160 as->asid = ASID_KERNEL;
161 else
162 as->asid = ASID_INVALID;
163
164 atomic_set(&as->refcount, 0);
165 as->cpu_refcount = 0;
166
167#ifdef AS_PAGE_TABLE
168 as->genarch.page_table = page_table_create(flags);
169#else
170 page_table_create(flags);
171#endif
172
173 return as;
174}
175
176/** Destroy adress space.
177 *
178 * When there are no tasks referencing this address space (i.e. its refcount is
179 * zero), the address space can be destroyed.
180 *
181 * We know that we don't hold any spinlock.
182 *
183 * @param as Address space to be destroyed.
184 *
185 */
186void as_destroy(as_t *as)
187{
188 DEADLOCK_PROBE_INIT(p_asidlock);
189
190 ASSERT(as != AS);
191 ASSERT(atomic_get(&as->refcount) == 0);
192
193 /*
194 * Since there is no reference to this address space, it is safe not to
195 * lock its mutex.
196 */
197
198 /*
199 * We need to avoid deadlock between TLB shootdown and asidlock.
200 * We therefore try to take asid conditionally and if we don't succeed,
201 * we enable interrupts and try again. This is done while preemption is
202 * disabled to prevent nested context switches. We also depend on the
203 * fact that so far no spinlocks are held.
204 */
205 preemption_disable();
206 ipl_t ipl = interrupts_read();
207
208retry:
209 interrupts_disable();
210 if (!spinlock_trylock(&asidlock)) {
211 interrupts_enable();
212 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
213 goto retry;
214 }
215
216 /* Interrupts disabled, enable preemption */
217 preemption_enable();
218
219 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
220 if (as->cpu_refcount == 0)
221 list_remove(&as->inactive_as_with_asid_link);
222
223 asid_put(as->asid);
224 }
225
226 spinlock_unlock(&asidlock);
227 interrupts_restore(ipl);
228
229
230 /*
231 * Destroy address space areas of the address space.
232 * The B+tree must be walked carefully because it is
233 * also being destroyed.
234 */
235 bool cond = true;
236 while (cond) {
237 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
238
239 btree_node_t *node =
240 list_get_instance(as->as_area_btree.leaf_head.next,
241 btree_node_t, leaf_link);
242
243 if ((cond = node->keys))
244 as_area_destroy(as, node->key[0]);
245 }
246
247 btree_destroy(&as->as_area_btree);
248
249#ifdef AS_PAGE_TABLE
250 page_table_destroy(as->genarch.page_table);
251#else
252 page_table_destroy(NULL);
253#endif
254
255 slab_free(as_slab, as);
256}
257
258/** Hold a reference to an address space.
259 *
260 * Holding a reference to an address space prevents destruction
261 * of that address space.
262 *
263 * @param as Address space to be held.
264 *
265 */
266NO_TRACE void as_hold(as_t *as)
267{
268 atomic_inc(&as->refcount);
269}
270
271/** Release a reference to an address space.
272 *
273 * The last one to release a reference to an address space
274 * destroys the address space.
275 *
276 * @param asAddress space to be released.
277 *
278 */
279NO_TRACE void as_release(as_t *as)
280{
281 if (atomic_predec(&as->refcount) == 0)
282 as_destroy(as);
283}
284
285/** Check area conflicts with other areas.
286 *
287 * @param as Address space.
288 * @param addr Starting virtual address of the area being tested.
289 * @param count Number of pages in the area being tested.
290 * @param avoid Do not touch this area.
291 *
292 * @return True if there is no conflict, false otherwise.
293 *
294 */
295NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
296 size_t count, as_area_t *avoid)
297{
298 ASSERT((addr % PAGE_SIZE) == 0);
299 ASSERT(mutex_locked(&as->lock));
300
301 /*
302 * We don't want any area to have conflicts with NULL page.
303 */
304 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
305 return false;
306
307 /*
308 * The leaf node is found in O(log n), where n is proportional to
309 * the number of address space areas belonging to as.
310 * The check for conflicts is then attempted on the rightmost
311 * record in the left neighbour, the leftmost record in the right
312 * neighbour and all records in the leaf node itself.
313 */
314 btree_node_t *leaf;
315 as_area_t *area =
316 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf);
317 if (area) {
318 if (area != avoid)
319 return false;
320 }
321
322 /* First, check the two border cases. */
323 btree_node_t *node =
324 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
325 if (node) {
326 area = (as_area_t *) node->value[node->keys - 1];
327
328 if (area != avoid) {
329 mutex_lock(&area->lock);
330
331 if (overlaps(addr, P2SZ(count), area->base,
332 P2SZ(area->pages))) {
333 mutex_unlock(&area->lock);
334 return false;
335 }
336
337 mutex_unlock(&area->lock);
338 }
339 }
340
341 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
342 if (node) {
343 area = (as_area_t *) node->value[0];
344
345 if (area != avoid) {
346 mutex_lock(&area->lock);
347
348 if (overlaps(addr, P2SZ(count), area->base,
349 P2SZ(area->pages))) {
350 mutex_unlock(&area->lock);
351 return false;
352 }
353
354 mutex_unlock(&area->lock);
355 }
356 }
357
358 /* Second, check the leaf node. */
359 btree_key_t i;
360 for (i = 0; i < leaf->keys; i++) {
361 area = (as_area_t *) leaf->value[i];
362
363 if (area == avoid)
364 continue;
365
366 mutex_lock(&area->lock);
367
368 if (overlaps(addr, P2SZ(count), area->base,
369 P2SZ(area->pages))) {
370 mutex_unlock(&area->lock);
371 return false;
372 }
373
374 mutex_unlock(&area->lock);
375 }
376
377 /*
378 * So far, the area does not conflict with other areas.
379 * Check if it doesn't conflict with kernel address space.
380 */
381 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
382 return !overlaps(addr, P2SZ(count), KERNEL_ADDRESS_SPACE_START,
383 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
384 }
385
386 return true;
387}
388
389/** Create address space area of common attributes.
390 *
391 * The created address space area is added to the target address space.
392 *
393 * @param as Target address space.
394 * @param flags Flags of the area memory.
395 * @param size Size of area.
396 * @param base Base address of area.
397 * @param attrs Attributes of the area.
398 * @param backend Address space area backend. NULL if no backend is used.
399 * @param backend_data NULL or a pointer to an array holding two void *.
400 *
401 * @return Address space area on success or NULL on failure.
402 *
403 */
404as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
405 uintptr_t base, unsigned int attrs, mem_backend_t *backend,
406 mem_backend_data_t *backend_data)
407{
408 if ((base % PAGE_SIZE) != 0)
409 return NULL;
410
411 if (size == 0)
412 return NULL;
413
414 size_t pages = SIZE2FRAMES(size);
415
416 /* Writeable executable areas are not supported. */
417 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
418 return NULL;
419
420 mutex_lock(&as->lock);
421
422 if (!check_area_conflicts(as, base, pages, NULL)) {
423 mutex_unlock(&as->lock);
424 return NULL;
425 }
426
427 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t), 0);
428
429 mutex_initialize(&area->lock, MUTEX_PASSIVE);
430
431 area->as = as;
432 area->flags = flags;
433 area->attributes = attrs;
434 area->pages = pages;
435 area->resident = 0;
436 area->base = base;
437 area->sh_info = NULL;
438 area->backend = backend;
439
440 if (backend_data)
441 area->backend_data = *backend_data;
442 else
443 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
444
445 if (area->backend && area->backend->create) {
446 if (!area->backend->create(area)) {
447 free(area);
448 mutex_unlock(&as->lock);
449 return NULL;
450 }
451 }
452
453 btree_create(&area->used_space);
454 btree_insert(&as->as_area_btree, base, (void *) area, NULL);
455
456 mutex_unlock(&as->lock);
457
458 return area;
459}
460
461/** Find address space area and lock it.
462 *
463 * @param as Address space.
464 * @param va Virtual address.
465 *
466 * @return Locked address space area containing va on success or
467 * NULL on failure.
468 *
469 */
470NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
471{
472 ASSERT(mutex_locked(&as->lock));
473
474 btree_node_t *leaf;
475 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va,
476 &leaf);
477 if (area) {
478 /* va is the base address of an address space area */
479 mutex_lock(&area->lock);
480 return area;
481 }
482
483 /*
484 * Search the leaf node and the rightmost record of its left neighbour
485 * to find out whether this is a miss or va belongs to an address
486 * space area found there.
487 */
488
489 /* First, search the leaf node itself. */
490 btree_key_t i;
491
492 for (i = 0; i < leaf->keys; i++) {
493 area = (as_area_t *) leaf->value[i];
494
495 mutex_lock(&area->lock);
496
497 if ((area->base <= va) &&
498 (va <= area->base + (P2SZ(area->pages) - 1)))
499 return area;
500
501 mutex_unlock(&area->lock);
502 }
503
504 /*
505 * Second, locate the left neighbour and test its last record.
506 * Because of its position in the B+tree, it must have base < va.
507 */
508 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree,
509 leaf);
510 if (lnode) {
511 area = (as_area_t *) lnode->value[lnode->keys - 1];
512
513 mutex_lock(&area->lock);
514
515 if (va <= area->base + (P2SZ(area->pages) - 1))
516 return area;
517
518 mutex_unlock(&area->lock);
519 }
520
521 return NULL;
522}
523
524/** Find address space area and change it.
525 *
526 * @param as Address space.
527 * @param address Virtual address belonging to the area to be changed.
528 * Must be page-aligned.
529 * @param size New size of the virtual memory block starting at
530 * address.
531 * @param flags Flags influencing the remap operation. Currently unused.
532 *
533 * @return Zero on success or a value from @ref errno.h otherwise.
534 *
535 */
536int as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
537{
538 mutex_lock(&as->lock);
539
540 /*
541 * Locate the area.
542 */
543 as_area_t *area = find_area_and_lock(as, address);
544 if (!area) {
545 mutex_unlock(&as->lock);
546 return ENOENT;
547 }
548
549 if (area->backend == &phys_backend) {
550 /*
551 * Remapping of address space areas associated
552 * with memory mapped devices is not supported.
553 */
554 mutex_unlock(&area->lock);
555 mutex_unlock(&as->lock);
556 return ENOTSUP;
557 }
558
559 if (area->sh_info) {
560 /*
561 * Remapping of shared address space areas
562 * is not supported.
563 */
564 mutex_unlock(&area->lock);
565 mutex_unlock(&as->lock);
566 return ENOTSUP;
567 }
568
569 size_t pages = SIZE2FRAMES((address - area->base) + size);
570 if (!pages) {
571 /*
572 * Zero size address space areas are not allowed.
573 */
574 mutex_unlock(&area->lock);
575 mutex_unlock(&as->lock);
576 return EPERM;
577 }
578
579 if (pages < area->pages) {
580 uintptr_t start_free = area->base + P2SZ(pages);
581
582 /*
583 * Shrinking the area.
584 * No need to check for overlaps.
585 */
586
587 page_table_lock(as, false);
588
589 /*
590 * Start TLB shootdown sequence.
591 */
592 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid,
593 area->base + P2SZ(pages), area->pages - pages);
594
595 /*
596 * Remove frames belonging to used space starting from
597 * the highest addresses downwards until an overlap with
598 * the resized address space area is found. Note that this
599 * is also the right way to remove part of the used_space
600 * B+tree leaf list.
601 */
602 bool cond = true;
603 while (cond) {
604 ASSERT(!list_empty(&area->used_space.leaf_head));
605
606 btree_node_t *node =
607 list_get_instance(area->used_space.leaf_head.prev,
608 btree_node_t, leaf_link);
609
610 if ((cond = (bool) node->keys)) {
611 uintptr_t ptr = node->key[node->keys - 1];
612 size_t size =
613 (size_t) node->value[node->keys - 1];
614 size_t i = 0;
615
616 if (overlaps(ptr, P2SZ(size), area->base,
617 P2SZ(pages))) {
618
619 if (ptr + P2SZ(size) <= start_free) {
620 /*
621 * The whole interval fits
622 * completely in the resized
623 * address space area.
624 */
625 break;
626 }
627
628 /*
629 * Part of the interval corresponding
630 * to b and c overlaps with the resized
631 * address space area.
632 */
633
634 /* We are almost done */
635 cond = false;
636 i = (start_free - ptr) >> PAGE_WIDTH;
637 if (!used_space_remove(area, start_free,
638 size - i))
639 panic("Cannot remove used space.");
640 } else {
641 /*
642 * The interval of used space can be
643 * completely removed.
644 */
645 if (!used_space_remove(area, ptr, size))
646 panic("Cannot remove used space.");
647 }
648
649 for (; i < size; i++) {
650 pte_t *pte = page_mapping_find(as,
651 ptr + P2SZ(i), false);
652
653 ASSERT(pte);
654 ASSERT(PTE_VALID(pte));
655 ASSERT(PTE_PRESENT(pte));
656
657 if ((area->backend) &&
658 (area->backend->frame_free)) {
659 area->backend->frame_free(area,
660 ptr + P2SZ(i),
661 PTE_GET_FRAME(pte));
662 }
663
664 page_mapping_remove(as, ptr + P2SZ(i));
665 }
666 }
667 }
668
669 /*
670 * Finish TLB shootdown sequence.
671 */
672
673 tlb_invalidate_pages(as->asid, area->base + P2SZ(pages),
674 area->pages - pages);
675
676 /*
677 * Invalidate software translation caches
678 * (e.g. TSB on sparc64, PHT on ppc32).
679 */
680 as_invalidate_translation_cache(as, area->base + P2SZ(pages),
681 area->pages - pages);
682 tlb_shootdown_finalize(ipl);
683
684 page_table_unlock(as, false);
685 } else {
686 /*
687 * Growing the area.
688 * Check for overlaps with other address space areas.
689 */
690 if (!check_area_conflicts(as, address, pages, area)) {
691 mutex_unlock(&area->lock);
692 mutex_unlock(&as->lock);
693 return EADDRNOTAVAIL;
694 }
695 }
696
697 if (area->backend && area->backend->resize) {
698 if (!area->backend->resize(area, pages)) {
699 mutex_unlock(&area->lock);
700 mutex_unlock(&as->lock);
701 return ENOMEM;
702 }
703 }
704
705 area->pages = pages;
706
707 mutex_unlock(&area->lock);
708 mutex_unlock(&as->lock);
709
710 return 0;
711}
712
713/** Remove reference to address space area share info.
714 *
715 * If the reference count drops to 0, the sh_info is deallocated.
716 *
717 * @param sh_info Pointer to address space area share info.
718 *
719 */
720NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
721{
722 bool dealloc = false;
723
724 mutex_lock(&sh_info->lock);
725 ASSERT(sh_info->refcount);
726
727 if (--sh_info->refcount == 0) {
728 dealloc = true;
729 link_t *cur;
730
731 /*
732 * Now walk carefully the pagemap B+tree and free/remove
733 * reference from all frames found there.
734 */
735 for (cur = sh_info->pagemap.leaf_head.next;
736 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
737 btree_node_t *node
738 = list_get_instance(cur, btree_node_t, leaf_link);
739 btree_key_t i;
740
741 for (i = 0; i < node->keys; i++)
742 frame_free((uintptr_t) node->value[i]);
743 }
744
745 }
746 mutex_unlock(&sh_info->lock);
747
748 if (dealloc) {
749 btree_destroy(&sh_info->pagemap);
750 free(sh_info);
751 }
752}
753
754/** Destroy address space area.
755 *
756 * @param as Address space.
757 * @param address Address within the area to be deleted.
758 *
759 * @return Zero on success or a value from @ref errno.h on failure.
760 *
761 */
762int as_area_destroy(as_t *as, uintptr_t address)
763{
764 mutex_lock(&as->lock);
765
766 as_area_t *area = find_area_and_lock(as, address);
767 if (!area) {
768 mutex_unlock(&as->lock);
769 return ENOENT;
770 }
771
772 if (area->backend && area->backend->destroy)
773 area->backend->destroy(area);
774
775 uintptr_t base = area->base;
776
777 page_table_lock(as, false);
778
779 /*
780 * Start TLB shootdown sequence.
781 */
782 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
783 area->pages);
784
785 /*
786 * Visit only the pages mapped by used_space B+tree.
787 */
788 link_t *cur;
789 for (cur = area->used_space.leaf_head.next;
790 cur != &area->used_space.leaf_head; cur = cur->next) {
791 btree_node_t *node;
792 btree_key_t i;
793
794 node = list_get_instance(cur, btree_node_t, leaf_link);
795 for (i = 0; i < node->keys; i++) {
796 uintptr_t ptr = node->key[i];
797 size_t size;
798
799 for (size = 0; size < (size_t) node->value[i]; size++) {
800 pte_t *pte = page_mapping_find(as,
801 ptr + P2SZ(size), false);
802
803 ASSERT(pte);
804 ASSERT(PTE_VALID(pte));
805 ASSERT(PTE_PRESENT(pte));
806
807 if ((area->backend) &&
808 (area->backend->frame_free)) {
809 area->backend->frame_free(area,
810 ptr + P2SZ(size),
811 PTE_GET_FRAME(pte));
812 }
813
814 page_mapping_remove(as, ptr + P2SZ(size));
815 }
816 }
817 }
818
819 /*
820 * Finish TLB shootdown sequence.
821 */
822
823 tlb_invalidate_pages(as->asid, area->base, area->pages);
824
825 /*
826 * Invalidate potential software translation caches
827 * (e.g. TSB on sparc64, PHT on ppc32).
828 */
829 as_invalidate_translation_cache(as, area->base, area->pages);
830 tlb_shootdown_finalize(ipl);
831
832 page_table_unlock(as, false);
833
834 btree_destroy(&area->used_space);
835
836 area->attributes |= AS_AREA_ATTR_PARTIAL;
837
838 if (area->sh_info)
839 sh_info_remove_reference(area->sh_info);
840
841 mutex_unlock(&area->lock);
842
843 /*
844 * Remove the empty area from address space.
845 */
846 btree_remove(&as->as_area_btree, base, NULL);
847
848 free(area);
849
850 mutex_unlock(&as->lock);
851 return 0;
852}
853
854/** Share address space area with another or the same address space.
855 *
856 * Address space area mapping is shared with a new address space area.
857 * If the source address space area has not been shared so far,
858 * a new sh_info is created. The new address space area simply gets the
859 * sh_info of the source area. The process of duplicating the
860 * mapping is done through the backend share function.
861 *
862 * @param src_as Pointer to source address space.
863 * @param src_base Base address of the source address space area.
864 * @param acc_size Expected size of the source area.
865 * @param dst_as Pointer to destination address space.
866 * @param dst_base Target base address.
867 * @param dst_flags_mask Destination address space area flags mask.
868 *
869 * @return Zero on success.
870 * @return ENOENT if there is no such task or such address space.
871 * @return EPERM if there was a problem in accepting the area.
872 * @return ENOMEM if there was a problem in allocating destination
873 * address space area.
874 * @return ENOTSUP if the address space area backend does not support
875 * sharing.
876 *
877 */
878int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
879 as_t *dst_as, uintptr_t dst_base, unsigned int dst_flags_mask)
880{
881 mutex_lock(&src_as->lock);
882 as_area_t *src_area = find_area_and_lock(src_as, src_base);
883 if (!src_area) {
884 /*
885 * Could not find the source address space area.
886 */
887 mutex_unlock(&src_as->lock);
888 return ENOENT;
889 }
890
891 if ((!src_area->backend) || (!src_area->backend->share)) {
892 /*
893 * There is no backend or the backend does not
894 * know how to share the area.
895 */
896 mutex_unlock(&src_area->lock);
897 mutex_unlock(&src_as->lock);
898 return ENOTSUP;
899 }
900
901 size_t src_size = P2SZ(src_area->pages);
902 unsigned int src_flags = src_area->flags;
903 mem_backend_t *src_backend = src_area->backend;
904 mem_backend_data_t src_backend_data = src_area->backend_data;
905
906 /* Share the cacheable flag from the original mapping */
907 if (src_flags & AS_AREA_CACHEABLE)
908 dst_flags_mask |= AS_AREA_CACHEABLE;
909
910 if ((src_size != acc_size) ||
911 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
912 mutex_unlock(&src_area->lock);
913 mutex_unlock(&src_as->lock);
914 return EPERM;
915 }
916
917 /*
918 * Now we are committed to sharing the area.
919 * First, prepare the area for sharing.
920 * Then it will be safe to unlock it.
921 */
922 share_info_t *sh_info = src_area->sh_info;
923 if (!sh_info) {
924 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
925 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
926 sh_info->refcount = 2;
927 btree_create(&sh_info->pagemap);
928 src_area->sh_info = sh_info;
929
930 /*
931 * Call the backend to setup sharing.
932 */
933 src_area->backend->share(src_area);
934 } else {
935 mutex_lock(&sh_info->lock);
936 sh_info->refcount++;
937 mutex_unlock(&sh_info->lock);
938 }
939
940 mutex_unlock(&src_area->lock);
941 mutex_unlock(&src_as->lock);
942
943 /*
944 * Create copy of the source address space area.
945 * The destination area is created with AS_AREA_ATTR_PARTIAL
946 * attribute set which prevents race condition with
947 * preliminary as_page_fault() calls.
948 * The flags of the source area are masked against dst_flags_mask
949 * to support sharing in less privileged mode.
950 */
951 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask, src_size,
952 dst_base, AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
953 if (!dst_area) {
954 /*
955 * Destination address space area could not be created.
956 */
957 sh_info_remove_reference(sh_info);
958
959 return ENOMEM;
960 }
961
962 /*
963 * Now the destination address space area has been
964 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
965 * attribute and set the sh_info.
966 */
967 mutex_lock(&dst_as->lock);
968 mutex_lock(&dst_area->lock);
969 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
970 dst_area->sh_info = sh_info;
971 mutex_unlock(&dst_area->lock);
972 mutex_unlock(&dst_as->lock);
973
974 return 0;
975}
976
977/** Check access mode for address space area.
978 *
979 * @param area Address space area.
980 * @param access Access mode.
981 *
982 * @return False if access violates area's permissions, true
983 * otherwise.
984 *
985 */
986NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
987{
988 ASSERT(mutex_locked(&area->lock));
989
990 int flagmap[] = {
991 [PF_ACCESS_READ] = AS_AREA_READ,
992 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
993 [PF_ACCESS_EXEC] = AS_AREA_EXEC
994 };
995
996 if (!(area->flags & flagmap[access]))
997 return false;
998
999 return true;
1000}
1001
1002/** Convert address space area flags to page flags.
1003 *
1004 * @param aflags Flags of some address space area.
1005 *
1006 * @return Flags to be passed to page_mapping_insert().
1007 *
1008 */
1009NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1010{
1011 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1012
1013 if (aflags & AS_AREA_READ)
1014 flags |= PAGE_READ;
1015
1016 if (aflags & AS_AREA_WRITE)
1017 flags |= PAGE_WRITE;
1018
1019 if (aflags & AS_AREA_EXEC)
1020 flags |= PAGE_EXEC;
1021
1022 if (aflags & AS_AREA_CACHEABLE)
1023 flags |= PAGE_CACHEABLE;
1024
1025 return flags;
1026}
1027
1028/** Change adress space area flags.
1029 *
1030 * The idea is to have the same data, but with a different access mode.
1031 * This is needed e.g. for writing code into memory and then executing it.
1032 * In order for this to work properly, this may copy the data
1033 * into private anonymous memory (unless it's already there).
1034 *
1035 * @param as Address space.
1036 * @param flags Flags of the area memory.
1037 * @param address Address within the area to be changed.
1038 *
1039 * @return Zero on success or a value from @ref errno.h on failure.
1040 *
1041 */
1042int as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1043{
1044 /* Flags for the new memory mapping */
1045 unsigned int page_flags = area_flags_to_page_flags(flags);
1046
1047 mutex_lock(&as->lock);
1048
1049 as_area_t *area = find_area_and_lock(as, address);
1050 if (!area) {
1051 mutex_unlock(&as->lock);
1052 return ENOENT;
1053 }
1054
1055 if ((area->sh_info) || (area->backend != &anon_backend)) {
1056 /* Copying shared areas not supported yet */
1057 /* Copying non-anonymous memory not supported yet */
1058 mutex_unlock(&area->lock);
1059 mutex_unlock(&as->lock);
1060 return ENOTSUP;
1061 }
1062
1063 /*
1064 * Compute total number of used pages in the used_space B+tree
1065 */
1066 size_t used_pages = 0;
1067 link_t *cur;
1068
1069 for (cur = area->used_space.leaf_head.next;
1070 cur != &area->used_space.leaf_head; cur = cur->next) {
1071 btree_node_t *node
1072 = list_get_instance(cur, btree_node_t, leaf_link);
1073 btree_key_t i;
1074
1075 for (i = 0; i < node->keys; i++)
1076 used_pages += (size_t) node->value[i];
1077 }
1078
1079 /* An array for storing frame numbers */
1080 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
1081
1082 page_table_lock(as, false);
1083
1084 /*
1085 * Start TLB shootdown sequence.
1086 */
1087 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1088 area->pages);
1089
1090 /*
1091 * Remove used pages from page tables and remember their frame
1092 * numbers.
1093 */
1094 size_t frame_idx = 0;
1095
1096 for (cur = area->used_space.leaf_head.next;
1097 cur != &area->used_space.leaf_head; cur = cur->next) {
1098 btree_node_t *node = list_get_instance(cur, btree_node_t,
1099 leaf_link);
1100 btree_key_t i;
1101
1102 for (i = 0; i < node->keys; i++) {
1103 uintptr_t ptr = node->key[i];
1104 size_t size;
1105
1106 for (size = 0; size < (size_t) node->value[i]; size++) {
1107 pte_t *pte = page_mapping_find(as,
1108 ptr + P2SZ(size), false);
1109
1110 ASSERT(pte);
1111 ASSERT(PTE_VALID(pte));
1112 ASSERT(PTE_PRESENT(pte));
1113
1114 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
1115
1116 /* Remove old mapping */
1117 page_mapping_remove(as, ptr + P2SZ(size));
1118 }
1119 }
1120 }
1121
1122 /*
1123 * Finish TLB shootdown sequence.
1124 */
1125
1126 tlb_invalidate_pages(as->asid, area->base, area->pages);
1127
1128 /*
1129 * Invalidate potential software translation caches
1130 * (e.g. TSB on sparc64, PHT on ppc32).
1131 */
1132 as_invalidate_translation_cache(as, area->base, area->pages);
1133 tlb_shootdown_finalize(ipl);
1134
1135 page_table_unlock(as, false);
1136
1137 /*
1138 * Set the new flags.
1139 */
1140 area->flags = flags;
1141
1142 /*
1143 * Map pages back in with new flags. This step is kept separate
1144 * so that the memory area could not be accesed with both the old and
1145 * the new flags at once.
1146 */
1147 frame_idx = 0;
1148
1149 for (cur = area->used_space.leaf_head.next;
1150 cur != &area->used_space.leaf_head; cur = cur->next) {
1151 btree_node_t *node
1152 = list_get_instance(cur, btree_node_t, leaf_link);
1153 btree_key_t i;
1154
1155 for (i = 0; i < node->keys; i++) {
1156 uintptr_t ptr = node->key[i];
1157 size_t size;
1158
1159 for (size = 0; size < (size_t) node->value[i]; size++) {
1160 page_table_lock(as, false);
1161
1162 /* Insert the new mapping */
1163 page_mapping_insert(as, ptr + P2SZ(size),
1164 old_frame[frame_idx++], page_flags);
1165
1166 page_table_unlock(as, false);
1167 }
1168 }
1169 }
1170
1171 free(old_frame);
1172
1173 mutex_unlock(&area->lock);
1174 mutex_unlock(&as->lock);
1175
1176 return 0;
1177}
1178
1179/** Handle page fault within the current address space.
1180 *
1181 * This is the high-level page fault handler. It decides whether the page fault
1182 * can be resolved by any backend and if so, it invokes the backend to resolve
1183 * the page fault.
1184 *
1185 * Interrupts are assumed disabled.
1186 *
1187 * @param page Faulting page.
1188 * @param access Access mode that caused the page fault (i.e.
1189 * read/write/exec).
1190 * @param istate Pointer to the interrupted state.
1191 *
1192 * @return AS_PF_FAULT on page fault.
1193 * @return AS_PF_OK on success.
1194 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1195 * or copy_from_uspace().
1196 *
1197 */
1198int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
1199{
1200 if (!THREAD)
1201 return AS_PF_FAULT;
1202
1203 if (!AS)
1204 return AS_PF_FAULT;
1205
1206 mutex_lock(&AS->lock);
1207 as_area_t *area = find_area_and_lock(AS, page);
1208 if (!area) {
1209 /*
1210 * No area contained mapping for 'page'.
1211 * Signal page fault to low-level handler.
1212 */
1213 mutex_unlock(&AS->lock);
1214 goto page_fault;
1215 }
1216
1217 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1218 /*
1219 * The address space area is not fully initialized.
1220 * Avoid possible race by returning error.
1221 */
1222 mutex_unlock(&area->lock);
1223 mutex_unlock(&AS->lock);
1224 goto page_fault;
1225 }
1226
1227 if ((!area->backend) || (!area->backend->page_fault)) {
1228 /*
1229 * The address space area is not backed by any backend
1230 * or the backend cannot handle page faults.
1231 */
1232 mutex_unlock(&area->lock);
1233 mutex_unlock(&AS->lock);
1234 goto page_fault;
1235 }
1236
1237 page_table_lock(AS, false);
1238
1239 /*
1240 * To avoid race condition between two page faults on the same address,
1241 * we need to make sure the mapping has not been already inserted.
1242 */
1243 pte_t *pte;
1244 if ((pte = page_mapping_find(AS, page, false))) {
1245 if (PTE_PRESENT(pte)) {
1246 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
1247 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
1248 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1249 page_table_unlock(AS, false);
1250 mutex_unlock(&area->lock);
1251 mutex_unlock(&AS->lock);
1252 return AS_PF_OK;
1253 }
1254 }
1255 }
1256
1257 /*
1258 * Resort to the backend page fault handler.
1259 */
1260 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1261 page_table_unlock(AS, false);
1262 mutex_unlock(&area->lock);
1263 mutex_unlock(&AS->lock);
1264 goto page_fault;
1265 }
1266
1267 page_table_unlock(AS, false);
1268 mutex_unlock(&area->lock);
1269 mutex_unlock(&AS->lock);
1270 return AS_PF_OK;
1271
1272page_fault:
1273 if (THREAD->in_copy_from_uspace) {
1274 THREAD->in_copy_from_uspace = false;
1275 istate_set_retaddr(istate,
1276 (uintptr_t) &memcpy_from_uspace_failover_address);
1277 } else if (THREAD->in_copy_to_uspace) {
1278 THREAD->in_copy_to_uspace = false;
1279 istate_set_retaddr(istate,
1280 (uintptr_t) &memcpy_to_uspace_failover_address);
1281 } else {
1282 return AS_PF_FAULT;
1283 }
1284
1285 return AS_PF_DEFER;
1286}
1287
1288/** Switch address spaces.
1289 *
1290 * Note that this function cannot sleep as it is essentially a part of
1291 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1292 * thing which is forbidden in this context is locking the address space.
1293 *
1294 * When this function is enetered, no spinlocks may be held.
1295 *
1296 * @param old Old address space or NULL.
1297 * @param new New address space.
1298 *
1299 */
1300void as_switch(as_t *old_as, as_t *new_as)
1301{
1302 DEADLOCK_PROBE_INIT(p_asidlock);
1303 preemption_disable();
1304
1305retry:
1306 (void) interrupts_disable();
1307 if (!spinlock_trylock(&asidlock)) {
1308 /*
1309 * Avoid deadlock with TLB shootdown.
1310 * We can enable interrupts here because
1311 * preemption is disabled. We should not be
1312 * holding any other lock.
1313 */
1314 (void) interrupts_enable();
1315 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1316 goto retry;
1317 }
1318 preemption_enable();
1319
1320 /*
1321 * First, take care of the old address space.
1322 */
1323 if (old_as) {
1324 ASSERT(old_as->cpu_refcount);
1325
1326 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1327 /*
1328 * The old address space is no longer active on
1329 * any processor. It can be appended to the
1330 * list of inactive address spaces with assigned
1331 * ASID.
1332 */
1333 ASSERT(old_as->asid != ASID_INVALID);
1334
1335 list_append(&old_as->inactive_as_with_asid_link,
1336 &inactive_as_with_asid_head);
1337 }
1338
1339 /*
1340 * Perform architecture-specific tasks when the address space
1341 * is being removed from the CPU.
1342 */
1343 as_deinstall_arch(old_as);
1344 }
1345
1346 /*
1347 * Second, prepare the new address space.
1348 */
1349 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1350 if (new_as->asid != ASID_INVALID)
1351 list_remove(&new_as->inactive_as_with_asid_link);
1352 else
1353 new_as->asid = asid_get();
1354 }
1355
1356#ifdef AS_PAGE_TABLE
1357 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1358#endif
1359
1360 /*
1361 * Perform architecture-specific steps.
1362 * (e.g. write ASID to hardware register etc.)
1363 */
1364 as_install_arch(new_as);
1365
1366 spinlock_unlock(&asidlock);
1367
1368 AS = new_as;
1369}
1370
1371/** Compute flags for virtual address translation subsytem.
1372 *
1373 * @param area Address space area.
1374 *
1375 * @return Flags to be used in page_mapping_insert().
1376 *
1377 */
1378NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1379{
1380 ASSERT(mutex_locked(&area->lock));
1381
1382 return area_flags_to_page_flags(area->flags);
1383}
1384
1385/** Create page table.
1386 *
1387 * Depending on architecture, create either address space private or global page
1388 * table.
1389 *
1390 * @param flags Flags saying whether the page table is for the kernel
1391 * address space.
1392 *
1393 * @return First entry of the page table.
1394 *
1395 */
1396NO_TRACE pte_t *page_table_create(unsigned int flags)
1397{
1398 ASSERT(as_operations);
1399 ASSERT(as_operations->page_table_create);
1400
1401 return as_operations->page_table_create(flags);
1402}
1403
1404/** Destroy page table.
1405 *
1406 * Destroy page table in architecture specific way.
1407 *
1408 * @param page_table Physical address of PTL0.
1409 *
1410 */
1411NO_TRACE void page_table_destroy(pte_t *page_table)
1412{
1413 ASSERT(as_operations);
1414 ASSERT(as_operations->page_table_destroy);
1415
1416 as_operations->page_table_destroy(page_table);
1417}
1418
1419/** Lock page table.
1420 *
1421 * This function should be called before any page_mapping_insert(),
1422 * page_mapping_remove() and page_mapping_find().
1423 *
1424 * Locking order is such that address space areas must be locked
1425 * prior to this call. Address space can be locked prior to this
1426 * call in which case the lock argument is false.
1427 *
1428 * @param as Address space.
1429 * @param lock If false, do not attempt to lock as->lock.
1430 *
1431 */
1432NO_TRACE void page_table_lock(as_t *as, bool lock)
1433{
1434 ASSERT(as_operations);
1435 ASSERT(as_operations->page_table_lock);
1436
1437 as_operations->page_table_lock(as, lock);
1438}
1439
1440/** Unlock page table.
1441 *
1442 * @param as Address space.
1443 * @param unlock If false, do not attempt to unlock as->lock.
1444 *
1445 */
1446NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1447{
1448 ASSERT(as_operations);
1449 ASSERT(as_operations->page_table_unlock);
1450
1451 as_operations->page_table_unlock(as, unlock);
1452}
1453
1454/** Test whether page tables are locked.
1455 *
1456 * @param as Address space where the page tables belong.
1457 *
1458 * @return True if the page tables belonging to the address soace
1459 * are locked, otherwise false.
1460 */
1461NO_TRACE bool page_table_locked(as_t *as)
1462{
1463 ASSERT(as_operations);
1464 ASSERT(as_operations->page_table_locked);
1465
1466 return as_operations->page_table_locked(as);
1467}
1468
1469/** Return size of the address space area with given base.
1470 *
1471 * @param base Arbitrary address inside the address space area.
1472 *
1473 * @return Size of the address space area in bytes or zero if it
1474 * does not exist.
1475 *
1476 */
1477size_t as_area_get_size(uintptr_t base)
1478{
1479 size_t size;
1480
1481 page_table_lock(AS, true);
1482 as_area_t *src_area = find_area_and_lock(AS, base);
1483
1484 if (src_area) {
1485 size = P2SZ(src_area->pages);
1486 mutex_unlock(&src_area->lock);
1487 } else
1488 size = 0;
1489
1490 page_table_unlock(AS, true);
1491 return size;
1492}
1493
1494/** Mark portion of address space area as used.
1495 *
1496 * The address space area must be already locked.
1497 *
1498 * @param area Address space area.
1499 * @param page First page to be marked.
1500 * @param count Number of page to be marked.
1501 *
1502 * @return False on failure or true on success.
1503 *
1504 */
1505bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1506{
1507 ASSERT(mutex_locked(&area->lock));
1508 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1509 ASSERT(count);
1510
1511 btree_node_t *leaf;
1512 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1513 if (pages) {
1514 /*
1515 * We hit the beginning of some used space.
1516 */
1517 return false;
1518 }
1519
1520 if (!leaf->keys) {
1521 btree_insert(&area->used_space, page, (void *) count, leaf);
1522 goto success;
1523 }
1524
1525 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1526 if (node) {
1527 uintptr_t left_pg = node->key[node->keys - 1];
1528 uintptr_t right_pg = leaf->key[0];
1529 size_t left_cnt = (size_t) node->value[node->keys - 1];
1530 size_t right_cnt = (size_t) leaf->value[0];
1531
1532 /*
1533 * Examine the possibility that the interval fits
1534 * somewhere between the rightmost interval of
1535 * the left neigbour and the first interval of the leaf.
1536 */
1537
1538 if (page >= right_pg) {
1539 /* Do nothing. */
1540 } else if (overlaps(page, P2SZ(count), left_pg,
1541 P2SZ(left_cnt))) {
1542 /* The interval intersects with the left interval. */
1543 return false;
1544 } else if (overlaps(page, P2SZ(count), right_pg,
1545 P2SZ(right_cnt))) {
1546 /* The interval intersects with the right interval. */
1547 return false;
1548 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1549 (page + P2SZ(count) == right_pg)) {
1550 /*
1551 * The interval can be added by merging the two already
1552 * present intervals.
1553 */
1554 node->value[node->keys - 1] += count + right_cnt;
1555 btree_remove(&area->used_space, right_pg, leaf);
1556 goto success;
1557 } else if (page == left_pg + P2SZ(left_cnt)) {
1558 /*
1559 * The interval can be added by simply growing the left
1560 * interval.
1561 */
1562 node->value[node->keys - 1] += count;
1563 goto success;
1564 } else if (page + P2SZ(count) == right_pg) {
1565 /*
1566 * The interval can be addded by simply moving base of
1567 * the right interval down and increasing its size
1568 * accordingly.
1569 */
1570 leaf->value[0] += count;
1571 leaf->key[0] = page;
1572 goto success;
1573 } else {
1574 /*
1575 * The interval is between both neigbouring intervals,
1576 * but cannot be merged with any of them.
1577 */
1578 btree_insert(&area->used_space, page, (void *) count,
1579 leaf);
1580 goto success;
1581 }
1582 } else if (page < leaf->key[0]) {
1583 uintptr_t right_pg = leaf->key[0];
1584 size_t right_cnt = (size_t) leaf->value[0];
1585
1586 /*
1587 * Investigate the border case in which the left neighbour does
1588 * not exist but the interval fits from the left.
1589 */
1590
1591 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1592 /* The interval intersects with the right interval. */
1593 return false;
1594 } else if (page + P2SZ(count) == right_pg) {
1595 /*
1596 * The interval can be added by moving the base of the
1597 * right interval down and increasing its size
1598 * accordingly.
1599 */
1600 leaf->key[0] = page;
1601 leaf->value[0] += count;
1602 goto success;
1603 } else {
1604 /*
1605 * The interval doesn't adjoin with the right interval.
1606 * It must be added individually.
1607 */
1608 btree_insert(&area->used_space, page, (void *) count,
1609 leaf);
1610 goto success;
1611 }
1612 }
1613
1614 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1615 if (node) {
1616 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1617 uintptr_t right_pg = node->key[0];
1618 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1619 size_t right_cnt = (size_t) node->value[0];
1620
1621 /*
1622 * Examine the possibility that the interval fits
1623 * somewhere between the leftmost interval of
1624 * the right neigbour and the last interval of the leaf.
1625 */
1626
1627 if (page < left_pg) {
1628 /* Do nothing. */
1629 } else if (overlaps(page, P2SZ(count), left_pg,
1630 P2SZ(left_cnt))) {
1631 /* The interval intersects with the left interval. */
1632 return false;
1633 } else if (overlaps(page, P2SZ(count), right_pg,
1634 P2SZ(right_cnt))) {
1635 /* The interval intersects with the right interval. */
1636 return false;
1637 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1638 (page + P2SZ(count) == right_pg)) {
1639 /*
1640 * The interval can be added by merging the two already
1641 * present intervals.
1642 */
1643 leaf->value[leaf->keys - 1] += count + right_cnt;
1644 btree_remove(&area->used_space, right_pg, node);
1645 goto success;
1646 } else if (page == left_pg + P2SZ(left_cnt)) {
1647 /*
1648 * The interval can be added by simply growing the left
1649 * interval.
1650 */
1651 leaf->value[leaf->keys - 1] += count;
1652 goto success;
1653 } else if (page + P2SZ(count) == right_pg) {
1654 /*
1655 * The interval can be addded by simply moving base of
1656 * the right interval down and increasing its size
1657 * accordingly.
1658 */
1659 node->value[0] += count;
1660 node->key[0] = page;
1661 goto success;
1662 } else {
1663 /*
1664 * The interval is between both neigbouring intervals,
1665 * but cannot be merged with any of them.
1666 */
1667 btree_insert(&area->used_space, page, (void *) count,
1668 leaf);
1669 goto success;
1670 }
1671 } else if (page >= leaf->key[leaf->keys - 1]) {
1672 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1673 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1674
1675 /*
1676 * Investigate the border case in which the right neighbour
1677 * does not exist but the interval fits from the right.
1678 */
1679
1680 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1681 /* The interval intersects with the left interval. */
1682 return false;
1683 } else if (left_pg + P2SZ(left_cnt) == page) {
1684 /*
1685 * The interval can be added by growing the left
1686 * interval.
1687 */
1688 leaf->value[leaf->keys - 1] += count;
1689 goto success;
1690 } else {
1691 /*
1692 * The interval doesn't adjoin with the left interval.
1693 * It must be added individually.
1694 */
1695 btree_insert(&area->used_space, page, (void *) count,
1696 leaf);
1697 goto success;
1698 }
1699 }
1700
1701 /*
1702 * Note that if the algorithm made it thus far, the interval can fit
1703 * only between two other intervals of the leaf. The two border cases
1704 * were already resolved.
1705 */
1706 btree_key_t i;
1707 for (i = 1; i < leaf->keys; i++) {
1708 if (page < leaf->key[i]) {
1709 uintptr_t left_pg = leaf->key[i - 1];
1710 uintptr_t right_pg = leaf->key[i];
1711 size_t left_cnt = (size_t) leaf->value[i - 1];
1712 size_t right_cnt = (size_t) leaf->value[i];
1713
1714 /*
1715 * The interval fits between left_pg and right_pg.
1716 */
1717
1718 if (overlaps(page, P2SZ(count), left_pg,
1719 P2SZ(left_cnt))) {
1720 /*
1721 * The interval intersects with the left
1722 * interval.
1723 */
1724 return false;
1725 } else if (overlaps(page, P2SZ(count), right_pg,
1726 P2SZ(right_cnt))) {
1727 /*
1728 * The interval intersects with the right
1729 * interval.
1730 */
1731 return false;
1732 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1733 (page + P2SZ(count) == right_pg)) {
1734 /*
1735 * The interval can be added by merging the two
1736 * already present intervals.
1737 */
1738 leaf->value[i - 1] += count + right_cnt;
1739 btree_remove(&area->used_space, right_pg, leaf);
1740 goto success;
1741 } else if (page == left_pg + P2SZ(left_cnt)) {
1742 /*
1743 * The interval can be added by simply growing
1744 * the left interval.
1745 */
1746 leaf->value[i - 1] += count;
1747 goto success;
1748 } else if (page + P2SZ(count) == right_pg) {
1749 /*
1750 * The interval can be addded by simply moving
1751 * base of the right interval down and
1752 * increasing its size accordingly.
1753 */
1754 leaf->value[i] += count;
1755 leaf->key[i] = page;
1756 goto success;
1757 } else {
1758 /*
1759 * The interval is between both neigbouring
1760 * intervals, but cannot be merged with any of
1761 * them.
1762 */
1763 btree_insert(&area->used_space, page,
1764 (void *) count, leaf);
1765 goto success;
1766 }
1767 }
1768 }
1769
1770 panic("Inconsistency detected while adding %zu pages of used "
1771 "space at %p.", count, (void *) page);
1772
1773success:
1774 area->resident += count;
1775 return true;
1776}
1777
1778/** Mark portion of address space area as unused.
1779 *
1780 * The address space area must be already locked.
1781 *
1782 * @param area Address space area.
1783 * @param page First page to be marked.
1784 * @param count Number of page to be marked.
1785 *
1786 * @return False on failure or true on success.
1787 *
1788 */
1789bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
1790{
1791 ASSERT(mutex_locked(&area->lock));
1792 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1793 ASSERT(count);
1794
1795 btree_node_t *leaf;
1796 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1797 if (pages) {
1798 /*
1799 * We are lucky, page is the beginning of some interval.
1800 */
1801 if (count > pages) {
1802 return false;
1803 } else if (count == pages) {
1804 btree_remove(&area->used_space, page, leaf);
1805 goto success;
1806 } else {
1807 /*
1808 * Find the respective interval.
1809 * Decrease its size and relocate its start address.
1810 */
1811 btree_key_t i;
1812 for (i = 0; i < leaf->keys; i++) {
1813 if (leaf->key[i] == page) {
1814 leaf->key[i] += P2SZ(count);
1815 leaf->value[i] -= count;
1816 goto success;
1817 }
1818 }
1819
1820 goto error;
1821 }
1822 }
1823
1824 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
1825 leaf);
1826 if ((node) && (page < leaf->key[0])) {
1827 uintptr_t left_pg = node->key[node->keys - 1];
1828 size_t left_cnt = (size_t) node->value[node->keys - 1];
1829
1830 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
1831 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
1832 /*
1833 * The interval is contained in the rightmost
1834 * interval of the left neighbour and can be
1835 * removed by updating the size of the bigger
1836 * interval.
1837 */
1838 node->value[node->keys - 1] -= count;
1839 goto success;
1840 } else if (page + P2SZ(count) <
1841 left_pg + P2SZ(left_cnt)) {
1842 size_t new_cnt;
1843
1844 /*
1845 * The interval is contained in the rightmost
1846 * interval of the left neighbour but its
1847 * removal requires both updating the size of
1848 * the original interval and also inserting a
1849 * new interval.
1850 */
1851 new_cnt = ((left_pg + P2SZ(left_cnt)) -
1852 (page + P2SZ(count))) >> PAGE_WIDTH;
1853 node->value[node->keys - 1] -= count + new_cnt;
1854 btree_insert(&area->used_space, page +
1855 P2SZ(count), (void *) new_cnt, leaf);
1856 goto success;
1857 }
1858 }
1859
1860 return false;
1861 } else if (page < leaf->key[0])
1862 return false;
1863
1864 if (page > leaf->key[leaf->keys - 1]) {
1865 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1866 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1867
1868 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
1869 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
1870 /*
1871 * The interval is contained in the rightmost
1872 * interval of the leaf and can be removed by
1873 * updating the size of the bigger interval.
1874 */
1875 leaf->value[leaf->keys - 1] -= count;
1876 goto success;
1877 } else if (page + P2SZ(count) < left_pg +
1878 P2SZ(left_cnt)) {
1879 size_t new_cnt;
1880
1881 /*
1882 * The interval is contained in the rightmost
1883 * interval of the leaf but its removal
1884 * requires both updating the size of the
1885 * original interval and also inserting a new
1886 * interval.
1887 */
1888 new_cnt = ((left_pg + P2SZ(left_cnt)) -
1889 (page + P2SZ(count))) >> PAGE_WIDTH;
1890 leaf->value[leaf->keys - 1] -= count + new_cnt;
1891 btree_insert(&area->used_space, page +
1892 P2SZ(count), (void *) new_cnt, leaf);
1893 goto success;
1894 }
1895 }
1896
1897 return false;
1898 }
1899
1900 /*
1901 * The border cases have been already resolved.
1902 * Now the interval can be only between intervals of the leaf.
1903 */
1904 btree_key_t i;
1905 for (i = 1; i < leaf->keys - 1; i++) {
1906 if (page < leaf->key[i]) {
1907 uintptr_t left_pg = leaf->key[i - 1];
1908 size_t left_cnt = (size_t) leaf->value[i - 1];
1909
1910 /*
1911 * Now the interval is between intervals corresponding
1912 * to (i - 1) and i.
1913 */
1914 if (overlaps(left_pg, P2SZ(left_cnt), page,
1915 P2SZ(count))) {
1916 if (page + P2SZ(count) ==
1917 left_pg + P2SZ(left_cnt)) {
1918 /*
1919 * The interval is contained in the
1920 * interval (i - 1) of the leaf and can
1921 * be removed by updating the size of
1922 * the bigger interval.
1923 */
1924 leaf->value[i - 1] -= count;
1925 goto success;
1926 } else if (page + P2SZ(count) <
1927 left_pg + P2SZ(left_cnt)) {
1928 size_t new_cnt;
1929
1930 /*
1931 * The interval is contained in the
1932 * interval (i - 1) of the leaf but its
1933 * removal requires both updating the
1934 * size of the original interval and
1935 * also inserting a new interval.
1936 */
1937 new_cnt = ((left_pg + P2SZ(left_cnt)) -
1938 (page + P2SZ(count))) >>
1939 PAGE_WIDTH;
1940 leaf->value[i - 1] -= count + new_cnt;
1941 btree_insert(&area->used_space, page +
1942 P2SZ(count), (void *) new_cnt,
1943 leaf);
1944 goto success;
1945 }
1946 }
1947
1948 return false;
1949 }
1950 }
1951
1952error:
1953 panic("Inconsistency detected while removing %zu pages of used "
1954 "space from %p.", count, (void *) page);
1955
1956success:
1957 area->resident -= count;
1958 return true;
1959}
1960
1961/*
1962 * Address space related syscalls.
1963 */
1964
1965/** Wrapper for as_area_create(). */
1966sysarg_t sys_as_area_create(uintptr_t address, size_t size, unsigned int flags)
1967{
1968 if (as_area_create(AS, flags, size, address,
1969 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1970 return (sysarg_t) address;
1971 else
1972 return (sysarg_t) -1;
1973}
1974
1975/** Wrapper for as_area_resize(). */
1976sysarg_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
1977{
1978 return (sysarg_t) as_area_resize(AS, address, size, 0);
1979}
1980
1981/** Wrapper for as_area_change_flags(). */
1982sysarg_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
1983{
1984 return (sysarg_t) as_area_change_flags(AS, flags, address);
1985}
1986
1987/** Wrapper for as_area_destroy(). */
1988sysarg_t sys_as_area_destroy(uintptr_t address)
1989{
1990 return (sysarg_t) as_area_destroy(AS, address);
1991}
1992
1993/** Return pointer to unmapped address space area
1994 *
1995 * @param base Lowest address bound.
1996 * @param size Requested size of the allocation.
1997 *
1998 * @return Pointer to the beginning of unmapped address space area.
1999 *
2000 */
2001sysarg_t sys_as_get_unmapped_area(uintptr_t base, size_t size)
2002{
2003 if (size == 0)
2004 return 0;
2005
2006 /*
2007 * Make sure we allocate from page-aligned
2008 * address. Check for possible overflow in
2009 * each step.
2010 */
2011
2012 size_t pages = SIZE2FRAMES(size);
2013 uintptr_t ret = 0;
2014
2015 /*
2016 * Find the lowest unmapped address aligned on the sz
2017 * boundary, not smaller than base and of the required size.
2018 */
2019
2020 mutex_lock(&AS->lock);
2021
2022 /* First check the base address itself */
2023 uintptr_t addr = ALIGN_UP(base, PAGE_SIZE);
2024 if ((addr >= base) &&
2025 (check_area_conflicts(AS, addr, pages, NULL)))
2026 ret = addr;
2027
2028 /* Eventually check the addresses behind each area */
2029 link_t *cur;
2030 for (cur = AS->as_area_btree.leaf_head.next;
2031 (ret == 0) && (cur != &AS->as_area_btree.leaf_head);
2032 cur = cur->next) {
2033 btree_node_t *node =
2034 list_get_instance(cur, btree_node_t, leaf_link);
2035
2036 btree_key_t i;
2037 for (i = 0; (ret == 0) && (i < node->keys); i++) {
2038 uintptr_t addr;
2039
2040 as_area_t *area = (as_area_t *) node->value[i];
2041
2042 mutex_lock(&area->lock);
2043
2044 addr = ALIGN_UP(area->base + P2SZ(area->pages),
2045 PAGE_SIZE);
2046
2047 if ((addr >= base) && (addr >= area->base) &&
2048 (check_area_conflicts(AS, addr, pages, area)))
2049 ret = addr;
2050
2051 mutex_unlock(&area->lock);
2052 }
2053 }
2054
2055 mutex_unlock(&AS->lock);
2056
2057 return (sysarg_t) ret;
2058}
2059
2060/** Get list of adress space areas.
2061 *
2062 * @param as Address space.
2063 * @param obuf Place to save pointer to returned buffer.
2064 * @param osize Place to save size of returned buffer.
2065 *
2066 */
2067void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2068{
2069 mutex_lock(&as->lock);
2070
2071 /* First pass, count number of areas. */
2072
2073 size_t area_cnt = 0;
2074 link_t *cur;
2075
2076 for (cur = as->as_area_btree.leaf_head.next;
2077 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2078 btree_node_t *node =
2079 list_get_instance(cur, btree_node_t, leaf_link);
2080 area_cnt += node->keys;
2081 }
2082
2083 size_t isize = area_cnt * sizeof(as_area_info_t);
2084 as_area_info_t *info = malloc(isize, 0);
2085
2086 /* Second pass, record data. */
2087
2088 size_t area_idx = 0;
2089
2090 for (cur = as->as_area_btree.leaf_head.next;
2091 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2092 btree_node_t *node =
2093 list_get_instance(cur, btree_node_t, leaf_link);
2094 btree_key_t i;
2095
2096 for (i = 0; i < node->keys; i++) {
2097 as_area_t *area = node->value[i];
2098
2099 ASSERT(area_idx < area_cnt);
2100 mutex_lock(&area->lock);
2101
2102 info[area_idx].start_addr = area->base;
2103 info[area_idx].size = P2SZ(area->pages);
2104 info[area_idx].flags = area->flags;
2105 ++area_idx;
2106
2107 mutex_unlock(&area->lock);
2108 }
2109 }
2110
2111 mutex_unlock(&as->lock);
2112
2113 *obuf = info;
2114 *osize = isize;
2115}
2116
2117/** Print out information about address space.
2118 *
2119 * @param as Address space.
2120 *
2121 */
2122void as_print(as_t *as)
2123{
2124 mutex_lock(&as->lock);
2125
2126 /* Print out info about address space areas */
2127 link_t *cur;
2128 for (cur = as->as_area_btree.leaf_head.next;
2129 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2130 btree_node_t *node
2131 = list_get_instance(cur, btree_node_t, leaf_link);
2132 btree_key_t i;
2133
2134 for (i = 0; i < node->keys; i++) {
2135 as_area_t *area = node->value[i];
2136
2137 mutex_lock(&area->lock);
2138 printf("as_area: %p, base=%p, pages=%zu"
2139 " (%p - %p)\n", area, (void *) area->base,
2140 area->pages, (void *) area->base,
2141 (void *) (area->base + P2SZ(area->pages)));
2142 mutex_unlock(&area->lock);
2143 }
2144 }
2145
2146 mutex_unlock(&as->lock);
2147}
2148
2149/** @}
2150 */
Note: See TracBrowser for help on using the repository browser.