source: mainline/kernel/generic/src/mm/as.c@ d0485c6

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since d0485c6 was d0485c6, checked in by Jakub Jermar <jakub@…>, 19 years ago

Introduce page colors. So far, only sparc64 uses correct page color bits. Other architectures have a dummy define
specifying zero bits for a page color.

There is a new check of page color in as_area_share(). Because of lack of support for this in the userspace, the
check has been #ifef'ed out.

  • Property mode set to 100644
File size: 43.3 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81/**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
84 */
85as_operations_t *as_operations = NULL;
86
87/**
88 * Slab for as_t objects.
89 */
90static slab_cache_t *as_slab;
91
92/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
93SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
94
95/**
96 * This list contains address spaces that are not active on any
97 * processor and that have valid ASID.
98 */
99LIST_INITIALIZE(inactive_as_with_asid_head);
100
101/** Kernel address space. */
102as_t *AS_KERNEL = NULL;
103
104static int area_flags_to_page_flags(int aflags);
105static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
106static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
107static void sh_info_remove_reference(share_info_t *sh_info);
108
109static int as_constructor(void *obj, int flags)
110{
111 as_t *as = (as_t *) obj;
112 int rc;
113
114 link_initialize(&as->inactive_as_with_asid_link);
115 mutex_initialize(&as->lock);
116
117 rc = as_constructor_arch(as, flags);
118
119 return rc;
120}
121
122static int as_destructor(void *obj)
123{
124 as_t *as = (as_t *) obj;
125
126 return as_destructor_arch(as);
127}
128
129/** Initialize address space subsystem. */
130void as_init(void)
131{
132 as_arch_init();
133
134 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
135 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
136
137 AS_KERNEL = as_create(FLAG_AS_KERNEL);
138 if (!AS_KERNEL)
139 panic("can't create kernel address space\n");
140
141}
142
143/** Create address space.
144 *
145 * @param flags Flags that influence way in wich the address space is created.
146 */
147as_t *as_create(int flags)
148{
149 as_t *as;
150
151 as = (as_t *) slab_alloc(as_slab, 0);
152 (void) as_create_arch(as, 0);
153
154 btree_create(&as->as_area_btree);
155
156 if (flags & FLAG_AS_KERNEL)
157 as->asid = ASID_KERNEL;
158 else
159 as->asid = ASID_INVALID;
160
161 as->refcount = 0;
162 as->cpu_refcount = 0;
163 as->page_table = page_table_create(flags);
164
165 return as;
166}
167
168/** Destroy adress space.
169 *
170 * When there are no tasks referencing this address space (i.e. its refcount is zero),
171 * the address space can be destroyed.
172 */
173void as_destroy(as_t *as)
174{
175 ipl_t ipl;
176 bool cond;
177
178 ASSERT(as->refcount == 0);
179
180 /*
181 * Since there is no reference to this area,
182 * it is safe not to lock its mutex.
183 */
184 ipl = interrupts_disable();
185 spinlock_lock(&inactive_as_with_asid_lock);
186 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
187 if (as != AS && as->cpu_refcount == 0)
188 list_remove(&as->inactive_as_with_asid_link);
189 asid_put(as->asid);
190 }
191 spinlock_unlock(&inactive_as_with_asid_lock);
192
193 /*
194 * Destroy address space areas of the address space.
195 * The B+tree must be walked carefully because it is
196 * also being destroyed.
197 */
198 for (cond = true; cond; ) {
199 btree_node_t *node;
200
201 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
202 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
203
204 if ((cond = node->keys)) {
205 as_area_destroy(as, node->key[0]);
206 }
207 }
208
209 btree_destroy(&as->as_area_btree);
210 page_table_destroy(as->page_table);
211
212 interrupts_restore(ipl);
213
214 slab_free(as_slab, as);
215}
216
217/** Create address space area of common attributes.
218 *
219 * The created address space area is added to the target address space.
220 *
221 * @param as Target address space.
222 * @param flags Flags of the area memory.
223 * @param size Size of area.
224 * @param base Base address of area.
225 * @param attrs Attributes of the area.
226 * @param backend Address space area backend. NULL if no backend is used.
227 * @param backend_data NULL or a pointer to an array holding two void *.
228 *
229 * @return Address space area on success or NULL on failure.
230 */
231as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
232 mem_backend_t *backend, mem_backend_data_t *backend_data)
233{
234 ipl_t ipl;
235 as_area_t *a;
236
237 if (base % PAGE_SIZE)
238 return NULL;
239
240 if (!size)
241 return NULL;
242
243 /* Writeable executable areas are not supported. */
244 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
245 return NULL;
246
247 ipl = interrupts_disable();
248 mutex_lock(&as->lock);
249
250 if (!check_area_conflicts(as, base, size, NULL)) {
251 mutex_unlock(&as->lock);
252 interrupts_restore(ipl);
253 return NULL;
254 }
255
256 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
257
258 mutex_initialize(&a->lock);
259
260 a->as = as;
261 a->flags = flags;
262 a->attributes = attrs;
263 a->pages = SIZE2FRAMES(size);
264 a->base = base;
265 a->sh_info = NULL;
266 a->backend = backend;
267 if (backend_data)
268 a->backend_data = *backend_data;
269 else
270 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
271
272 btree_create(&a->used_space);
273
274 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
275
276 mutex_unlock(&as->lock);
277 interrupts_restore(ipl);
278
279 return a;
280}
281
282/** Find address space area and change it.
283 *
284 * @param as Address space.
285 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
286 * @param size New size of the virtual memory block starting at address.
287 * @param flags Flags influencing the remap operation. Currently unused.
288 *
289 * @return Zero on success or a value from @ref errno.h otherwise.
290 */
291int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
292{
293 as_area_t *area;
294 ipl_t ipl;
295 size_t pages;
296
297 ipl = interrupts_disable();
298 mutex_lock(&as->lock);
299
300 /*
301 * Locate the area.
302 */
303 area = find_area_and_lock(as, address);
304 if (!area) {
305 mutex_unlock(&as->lock);
306 interrupts_restore(ipl);
307 return ENOENT;
308 }
309
310 if (area->backend == &phys_backend) {
311 /*
312 * Remapping of address space areas associated
313 * with memory mapped devices is not supported.
314 */
315 mutex_unlock(&area->lock);
316 mutex_unlock(&as->lock);
317 interrupts_restore(ipl);
318 return ENOTSUP;
319 }
320 if (area->sh_info) {
321 /*
322 * Remapping of shared address space areas
323 * is not supported.
324 */
325 mutex_unlock(&area->lock);
326 mutex_unlock(&as->lock);
327 interrupts_restore(ipl);
328 return ENOTSUP;
329 }
330
331 pages = SIZE2FRAMES((address - area->base) + size);
332 if (!pages) {
333 /*
334 * Zero size address space areas are not allowed.
335 */
336 mutex_unlock(&area->lock);
337 mutex_unlock(&as->lock);
338 interrupts_restore(ipl);
339 return EPERM;
340 }
341
342 if (pages < area->pages) {
343 bool cond;
344 uintptr_t start_free = area->base + pages*PAGE_SIZE;
345
346 /*
347 * Shrinking the area.
348 * No need to check for overlaps.
349 */
350
351 /*
352 * Start TLB shootdown sequence.
353 */
354 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
355
356 /*
357 * Remove frames belonging to used space starting from
358 * the highest addresses downwards until an overlap with
359 * the resized address space area is found. Note that this
360 * is also the right way to remove part of the used_space
361 * B+tree leaf list.
362 */
363 for (cond = true; cond;) {
364 btree_node_t *node;
365
366 ASSERT(!list_empty(&area->used_space.leaf_head));
367 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
368 if ((cond = (bool) node->keys)) {
369 uintptr_t b = node->key[node->keys - 1];
370 count_t c = (count_t) node->value[node->keys - 1];
371 int i = 0;
372
373 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
374
375 if (b + c*PAGE_SIZE <= start_free) {
376 /*
377 * The whole interval fits completely
378 * in the resized address space area.
379 */
380 break;
381 }
382
383 /*
384 * Part of the interval corresponding to b and c
385 * overlaps with the resized address space area.
386 */
387
388 cond = false; /* we are almost done */
389 i = (start_free - b) >> PAGE_WIDTH;
390 if (!used_space_remove(area, start_free, c - i))
391 panic("Could not remove used space.\n");
392 } else {
393 /*
394 * The interval of used space can be completely removed.
395 */
396 if (!used_space_remove(area, b, c))
397 panic("Could not remove used space.\n");
398 }
399
400 for (; i < c; i++) {
401 pte_t *pte;
402
403 page_table_lock(as, false);
404 pte = page_mapping_find(as, b + i*PAGE_SIZE);
405 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
406 if (area->backend && area->backend->frame_free) {
407 area->backend->frame_free(area,
408 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
409 }
410 page_mapping_remove(as, b + i*PAGE_SIZE);
411 page_table_unlock(as, false);
412 }
413 }
414 }
415
416 /*
417 * Finish TLB shootdown sequence.
418 */
419 tlb_invalidate_pages(as->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
420 tlb_shootdown_finalize();
421
422 /*
423 * Invalidate software translation caches (e.g. TSB on sparc64).
424 */
425 as_invalidate_translation_cache(as, area->base + pages*PAGE_SIZE, area->pages - pages);
426 } else {
427 /*
428 * Growing the area.
429 * Check for overlaps with other address space areas.
430 */
431 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
432 mutex_unlock(&area->lock);
433 mutex_unlock(&as->lock);
434 interrupts_restore(ipl);
435 return EADDRNOTAVAIL;
436 }
437 }
438
439 area->pages = pages;
440
441 mutex_unlock(&area->lock);
442 mutex_unlock(&as->lock);
443 interrupts_restore(ipl);
444
445 return 0;
446}
447
448/** Destroy address space area.
449 *
450 * @param as Address space.
451 * @param address Address withing the area to be deleted.
452 *
453 * @return Zero on success or a value from @ref errno.h on failure.
454 */
455int as_area_destroy(as_t *as, uintptr_t address)
456{
457 as_area_t *area;
458 uintptr_t base;
459 link_t *cur;
460 ipl_t ipl;
461
462 ipl = interrupts_disable();
463 mutex_lock(&as->lock);
464
465 area = find_area_and_lock(as, address);
466 if (!area) {
467 mutex_unlock(&as->lock);
468 interrupts_restore(ipl);
469 return ENOENT;
470 }
471
472 base = area->base;
473
474 /*
475 * Start TLB shootdown sequence.
476 */
477 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
478
479 /*
480 * Visit only the pages mapped by used_space B+tree.
481 */
482 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
483 btree_node_t *node;
484 int i;
485
486 node = list_get_instance(cur, btree_node_t, leaf_link);
487 for (i = 0; i < node->keys; i++) {
488 uintptr_t b = node->key[i];
489 count_t j;
490 pte_t *pte;
491
492 for (j = 0; j < (count_t) node->value[i]; j++) {
493 page_table_lock(as, false);
494 pte = page_mapping_find(as, b + j*PAGE_SIZE);
495 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
496 if (area->backend && area->backend->frame_free) {
497 area->backend->frame_free(area,
498 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
499 }
500 page_mapping_remove(as, b + j*PAGE_SIZE);
501 page_table_unlock(as, false);
502 }
503 }
504 }
505
506 /*
507 * Finish TLB shootdown sequence.
508 */
509 tlb_invalidate_pages(as->asid, area->base, area->pages);
510 tlb_shootdown_finalize();
511
512 /*
513 * Invalidate potential software translation caches (e.g. TSB on sparc64).
514 */
515 as_invalidate_translation_cache(as, area->base, area->pages);
516
517 btree_destroy(&area->used_space);
518
519 area->attributes |= AS_AREA_ATTR_PARTIAL;
520
521 if (area->sh_info)
522 sh_info_remove_reference(area->sh_info);
523
524 mutex_unlock(&area->lock);
525
526 /*
527 * Remove the empty area from address space.
528 */
529 btree_remove(&as->as_area_btree, base, NULL);
530
531 free(area);
532
533 mutex_unlock(&as->lock);
534 interrupts_restore(ipl);
535 return 0;
536}
537
538/** Share address space area with another or the same address space.
539 *
540 * Address space area mapping is shared with a new address space area.
541 * If the source address space area has not been shared so far,
542 * a new sh_info is created. The new address space area simply gets the
543 * sh_info of the source area. The process of duplicating the
544 * mapping is done through the backend share function.
545 *
546 * @param src_as Pointer to source address space.
547 * @param src_base Base address of the source address space area.
548 * @param acc_size Expected size of the source area.
549 * @param dst_as Pointer to destination address space.
550 * @param dst_base Target base address.
551 * @param dst_flags_mask Destination address space area flags mask.
552 *
553 * @return Zero on success or ENOENT if there is no such task or if there is no
554 * such address space area, EPERM if there was a problem in accepting the area
555 * or ENOMEM if there was a problem in allocating destination address space
556 * area. ENOTSUP is returned if the address space area backend does not support
557 * sharing. It can be also returned if the architecture uses virtually indexed
558 * caches and the source and destination areas start at pages with different
559 * page colors.
560 */
561int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
562 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
563{
564 ipl_t ipl;
565 int src_flags;
566 size_t src_size;
567 as_area_t *src_area, *dst_area;
568 share_info_t *sh_info;
569 mem_backend_t *src_backend;
570 mem_backend_data_t src_backend_data;
571
572 ipl = interrupts_disable();
573 mutex_lock(&src_as->lock);
574 src_area = find_area_and_lock(src_as, src_base);
575 if (!src_area) {
576 /*
577 * Could not find the source address space area.
578 */
579 mutex_unlock(&src_as->lock);
580 interrupts_restore(ipl);
581 return ENOENT;
582 }
583
584#if 0 /* disable the check for now */
585#ifdef CONFIG_VIRT_IDX_CACHE
586 if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
587 /*
588 * Refuse to create illegal address alias.
589 */
590 mutex_unlock(&src_area->lock);
591 mutex_unlock(&src_as->lock);
592 interrupts_restore(ipl);
593 return ENOTSUP;
594 }
595#endif /* CONFIG_VIRT_IDX_CACHE */
596#endif
597
598 if (!src_area->backend || !src_area->backend->share) {
599 /*
600 * There is no backend or the backend does not
601 * know how to share the area.
602 */
603 mutex_unlock(&src_area->lock);
604 mutex_unlock(&src_as->lock);
605 interrupts_restore(ipl);
606 return ENOTSUP;
607 }
608
609 src_size = src_area->pages * PAGE_SIZE;
610 src_flags = src_area->flags;
611 src_backend = src_area->backend;
612 src_backend_data = src_area->backend_data;
613
614 /* Share the cacheable flag from the original mapping */
615 if (src_flags & AS_AREA_CACHEABLE)
616 dst_flags_mask |= AS_AREA_CACHEABLE;
617
618 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
619 mutex_unlock(&src_area->lock);
620 mutex_unlock(&src_as->lock);
621 interrupts_restore(ipl);
622 return EPERM;
623 }
624
625 /*
626 * Now we are committed to sharing the area.
627 * First, prepare the area for sharing.
628 * Then it will be safe to unlock it.
629 */
630 sh_info = src_area->sh_info;
631 if (!sh_info) {
632 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
633 mutex_initialize(&sh_info->lock);
634 sh_info->refcount = 2;
635 btree_create(&sh_info->pagemap);
636 src_area->sh_info = sh_info;
637 } else {
638 mutex_lock(&sh_info->lock);
639 sh_info->refcount++;
640 mutex_unlock(&sh_info->lock);
641 }
642
643 src_area->backend->share(src_area);
644
645 mutex_unlock(&src_area->lock);
646 mutex_unlock(&src_as->lock);
647
648 /*
649 * Create copy of the source address space area.
650 * The destination area is created with AS_AREA_ATTR_PARTIAL
651 * attribute set which prevents race condition with
652 * preliminary as_page_fault() calls.
653 * The flags of the source area are masked against dst_flags_mask
654 * to support sharing in less privileged mode.
655 */
656 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
657 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
658 if (!dst_area) {
659 /*
660 * Destination address space area could not be created.
661 */
662 sh_info_remove_reference(sh_info);
663
664 interrupts_restore(ipl);
665 return ENOMEM;
666 }
667
668 /*
669 * Now the destination address space area has been
670 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
671 * attribute and set the sh_info.
672 */
673 mutex_lock(&dst_area->lock);
674 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
675 dst_area->sh_info = sh_info;
676 mutex_unlock(&dst_area->lock);
677
678 interrupts_restore(ipl);
679
680 return 0;
681}
682
683/** Check access mode for address space area.
684 *
685 * The address space area must be locked prior to this call.
686 *
687 * @param area Address space area.
688 * @param access Access mode.
689 *
690 * @return False if access violates area's permissions, true otherwise.
691 */
692bool as_area_check_access(as_area_t *area, pf_access_t access)
693{
694 int flagmap[] = {
695 [PF_ACCESS_READ] = AS_AREA_READ,
696 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
697 [PF_ACCESS_EXEC] = AS_AREA_EXEC
698 };
699
700 if (!(area->flags & flagmap[access]))
701 return false;
702
703 return true;
704}
705
706/** Handle page fault within the current address space.
707 *
708 * This is the high-level page fault handler. It decides
709 * whether the page fault can be resolved by any backend
710 * and if so, it invokes the backend to resolve the page
711 * fault.
712 *
713 * Interrupts are assumed disabled.
714 *
715 * @param page Faulting page.
716 * @param access Access mode that caused the fault (i.e. read/write/exec).
717 * @param istate Pointer to interrupted state.
718 *
719 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
720 * fault was caused by copy_to_uspace() or copy_from_uspace().
721 */
722int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
723{
724 pte_t *pte;
725 as_area_t *area;
726
727 if (!THREAD)
728 return AS_PF_FAULT;
729
730 ASSERT(AS);
731
732 mutex_lock(&AS->lock);
733 area = find_area_and_lock(AS, page);
734 if (!area) {
735 /*
736 * No area contained mapping for 'page'.
737 * Signal page fault to low-level handler.
738 */
739 mutex_unlock(&AS->lock);
740 goto page_fault;
741 }
742
743 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
744 /*
745 * The address space area is not fully initialized.
746 * Avoid possible race by returning error.
747 */
748 mutex_unlock(&area->lock);
749 mutex_unlock(&AS->lock);
750 goto page_fault;
751 }
752
753 if (!area->backend || !area->backend->page_fault) {
754 /*
755 * The address space area is not backed by any backend
756 * or the backend cannot handle page faults.
757 */
758 mutex_unlock(&area->lock);
759 mutex_unlock(&AS->lock);
760 goto page_fault;
761 }
762
763 page_table_lock(AS, false);
764
765 /*
766 * To avoid race condition between two page faults
767 * on the same address, we need to make sure
768 * the mapping has not been already inserted.
769 */
770 if ((pte = page_mapping_find(AS, page))) {
771 if (PTE_PRESENT(pte)) {
772 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
773 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
774 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
775 page_table_unlock(AS, false);
776 mutex_unlock(&area->lock);
777 mutex_unlock(&AS->lock);
778 return AS_PF_OK;
779 }
780 }
781 }
782
783 /*
784 * Resort to the backend page fault handler.
785 */
786 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
787 page_table_unlock(AS, false);
788 mutex_unlock(&area->lock);
789 mutex_unlock(&AS->lock);
790 goto page_fault;
791 }
792
793 page_table_unlock(AS, false);
794 mutex_unlock(&area->lock);
795 mutex_unlock(&AS->lock);
796 return AS_PF_OK;
797
798page_fault:
799 if (THREAD->in_copy_from_uspace) {
800 THREAD->in_copy_from_uspace = false;
801 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
802 } else if (THREAD->in_copy_to_uspace) {
803 THREAD->in_copy_to_uspace = false;
804 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
805 } else {
806 return AS_PF_FAULT;
807 }
808
809 return AS_PF_DEFER;
810}
811
812/** Switch address spaces.
813 *
814 * Note that this function cannot sleep as it is essentially a part of
815 * scheduling. Sleeping here would lead to deadlock on wakeup.
816 *
817 * @param old Old address space or NULL.
818 * @param new New address space.
819 */
820void as_switch(as_t *old, as_t *new)
821{
822 ipl_t ipl;
823 bool needs_asid = false;
824
825 ipl = interrupts_disable();
826 spinlock_lock(&inactive_as_with_asid_lock);
827
828 /*
829 * First, take care of the old address space.
830 */
831 if (old) {
832 mutex_lock_active(&old->lock);
833 ASSERT(old->cpu_refcount);
834 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
835 /*
836 * The old address space is no longer active on
837 * any processor. It can be appended to the
838 * list of inactive address spaces with assigned
839 * ASID.
840 */
841 ASSERT(old->asid != ASID_INVALID);
842 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
843 }
844 mutex_unlock(&old->lock);
845
846 /*
847 * Perform architecture-specific tasks when the address space
848 * is being removed from the CPU.
849 */
850 as_deinstall_arch(old);
851 }
852
853 /*
854 * Second, prepare the new address space.
855 */
856 mutex_lock_active(&new->lock);
857 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
858 if (new->asid != ASID_INVALID)
859 list_remove(&new->inactive_as_with_asid_link);
860 else
861 needs_asid = true; /* defer call to asid_get() until new->lock is released */
862 }
863 SET_PTL0_ADDRESS(new->page_table);
864 mutex_unlock(&new->lock);
865
866 if (needs_asid) {
867 /*
868 * Allocation of new ASID was deferred
869 * until now in order to avoid deadlock.
870 */
871 asid_t asid;
872
873 asid = asid_get();
874 mutex_lock_active(&new->lock);
875 new->asid = asid;
876 mutex_unlock(&new->lock);
877 }
878 spinlock_unlock(&inactive_as_with_asid_lock);
879 interrupts_restore(ipl);
880
881 /*
882 * Perform architecture-specific steps.
883 * (e.g. write ASID to hardware register etc.)
884 */
885 as_install_arch(new);
886
887 AS = new;
888}
889
890/** Convert address space area flags to page flags.
891 *
892 * @param aflags Flags of some address space area.
893 *
894 * @return Flags to be passed to page_mapping_insert().
895 */
896int area_flags_to_page_flags(int aflags)
897{
898 int flags;
899
900 flags = PAGE_USER | PAGE_PRESENT;
901
902 if (aflags & AS_AREA_READ)
903 flags |= PAGE_READ;
904
905 if (aflags & AS_AREA_WRITE)
906 flags |= PAGE_WRITE;
907
908 if (aflags & AS_AREA_EXEC)
909 flags |= PAGE_EXEC;
910
911 if (aflags & AS_AREA_CACHEABLE)
912 flags |= PAGE_CACHEABLE;
913
914 return flags;
915}
916
917/** Compute flags for virtual address translation subsytem.
918 *
919 * The address space area must be locked.
920 * Interrupts must be disabled.
921 *
922 * @param a Address space area.
923 *
924 * @return Flags to be used in page_mapping_insert().
925 */
926int as_area_get_flags(as_area_t *a)
927{
928 return area_flags_to_page_flags(a->flags);
929}
930
931/** Create page table.
932 *
933 * Depending on architecture, create either address space
934 * private or global page table.
935 *
936 * @param flags Flags saying whether the page table is for kernel address space.
937 *
938 * @return First entry of the page table.
939 */
940pte_t *page_table_create(int flags)
941{
942 ASSERT(as_operations);
943 ASSERT(as_operations->page_table_create);
944
945 return as_operations->page_table_create(flags);
946}
947
948/** Destroy page table.
949 *
950 * Destroy page table in architecture specific way.
951 *
952 * @param page_table Physical address of PTL0.
953 */
954void page_table_destroy(pte_t *page_table)
955{
956 ASSERT(as_operations);
957 ASSERT(as_operations->page_table_destroy);
958
959 as_operations->page_table_destroy(page_table);
960}
961
962/** Lock page table.
963 *
964 * This function should be called before any page_mapping_insert(),
965 * page_mapping_remove() and page_mapping_find().
966 *
967 * Locking order is such that address space areas must be locked
968 * prior to this call. Address space can be locked prior to this
969 * call in which case the lock argument is false.
970 *
971 * @param as Address space.
972 * @param lock If false, do not attempt to lock as->lock.
973 */
974void page_table_lock(as_t *as, bool lock)
975{
976 ASSERT(as_operations);
977 ASSERT(as_operations->page_table_lock);
978
979 as_operations->page_table_lock(as, lock);
980}
981
982/** Unlock page table.
983 *
984 * @param as Address space.
985 * @param unlock If false, do not attempt to unlock as->lock.
986 */
987void page_table_unlock(as_t *as, bool unlock)
988{
989 ASSERT(as_operations);
990 ASSERT(as_operations->page_table_unlock);
991
992 as_operations->page_table_unlock(as, unlock);
993}
994
995
996/** Find address space area and lock it.
997 *
998 * The address space must be locked and interrupts must be disabled.
999 *
1000 * @param as Address space.
1001 * @param va Virtual address.
1002 *
1003 * @return Locked address space area containing va on success or NULL on failure.
1004 */
1005as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1006{
1007 as_area_t *a;
1008 btree_node_t *leaf, *lnode;
1009 int i;
1010
1011 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1012 if (a) {
1013 /* va is the base address of an address space area */
1014 mutex_lock(&a->lock);
1015 return a;
1016 }
1017
1018 /*
1019 * Search the leaf node and the righmost record of its left neighbour
1020 * to find out whether this is a miss or va belongs to an address
1021 * space area found there.
1022 */
1023
1024 /* First, search the leaf node itself. */
1025 for (i = 0; i < leaf->keys; i++) {
1026 a = (as_area_t *) leaf->value[i];
1027 mutex_lock(&a->lock);
1028 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1029 return a;
1030 }
1031 mutex_unlock(&a->lock);
1032 }
1033
1034 /*
1035 * Second, locate the left neighbour and test its last record.
1036 * Because of its position in the B+tree, it must have base < va.
1037 */
1038 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1039 a = (as_area_t *) lnode->value[lnode->keys - 1];
1040 mutex_lock(&a->lock);
1041 if (va < a->base + a->pages * PAGE_SIZE) {
1042 return a;
1043 }
1044 mutex_unlock(&a->lock);
1045 }
1046
1047 return NULL;
1048}
1049
1050/** Check area conflicts with other areas.
1051 *
1052 * The address space must be locked and interrupts must be disabled.
1053 *
1054 * @param as Address space.
1055 * @param va Starting virtual address of the area being tested.
1056 * @param size Size of the area being tested.
1057 * @param avoid_area Do not touch this area.
1058 *
1059 * @return True if there is no conflict, false otherwise.
1060 */
1061bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1062{
1063 as_area_t *a;
1064 btree_node_t *leaf, *node;
1065 int i;
1066
1067 /*
1068 * We don't want any area to have conflicts with NULL page.
1069 */
1070 if (overlaps(va, size, NULL, PAGE_SIZE))
1071 return false;
1072
1073 /*
1074 * The leaf node is found in O(log n), where n is proportional to
1075 * the number of address space areas belonging to as.
1076 * The check for conflicts is then attempted on the rightmost
1077 * record in the left neighbour, the leftmost record in the right
1078 * neighbour and all records in the leaf node itself.
1079 */
1080
1081 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1082 if (a != avoid_area)
1083 return false;
1084 }
1085
1086 /* First, check the two border cases. */
1087 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1088 a = (as_area_t *) node->value[node->keys - 1];
1089 mutex_lock(&a->lock);
1090 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1091 mutex_unlock(&a->lock);
1092 return false;
1093 }
1094 mutex_unlock(&a->lock);
1095 }
1096 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1097 a = (as_area_t *) node->value[0];
1098 mutex_lock(&a->lock);
1099 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1100 mutex_unlock(&a->lock);
1101 return false;
1102 }
1103 mutex_unlock(&a->lock);
1104 }
1105
1106 /* Second, check the leaf node. */
1107 for (i = 0; i < leaf->keys; i++) {
1108 a = (as_area_t *) leaf->value[i];
1109
1110 if (a == avoid_area)
1111 continue;
1112
1113 mutex_lock(&a->lock);
1114 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1115 mutex_unlock(&a->lock);
1116 return false;
1117 }
1118 mutex_unlock(&a->lock);
1119 }
1120
1121 /*
1122 * So far, the area does not conflict with other areas.
1123 * Check if it doesn't conflict with kernel address space.
1124 */
1125 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1126 return !overlaps(va, size,
1127 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1128 }
1129
1130 return true;
1131}
1132
1133/** Return size of the address space area with given base. */
1134size_t as_get_size(uintptr_t base)
1135{
1136 ipl_t ipl;
1137 as_area_t *src_area;
1138 size_t size;
1139
1140 ipl = interrupts_disable();
1141 src_area = find_area_and_lock(AS, base);
1142 if (src_area){
1143 size = src_area->pages * PAGE_SIZE;
1144 mutex_unlock(&src_area->lock);
1145 } else {
1146 size = 0;
1147 }
1148 interrupts_restore(ipl);
1149 return size;
1150}
1151
1152/** Mark portion of address space area as used.
1153 *
1154 * The address space area must be already locked.
1155 *
1156 * @param a Address space area.
1157 * @param page First page to be marked.
1158 * @param count Number of page to be marked.
1159 *
1160 * @return 0 on failure and 1 on success.
1161 */
1162int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1163{
1164 btree_node_t *leaf, *node;
1165 count_t pages;
1166 int i;
1167
1168 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1169 ASSERT(count);
1170
1171 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1172 if (pages) {
1173 /*
1174 * We hit the beginning of some used space.
1175 */
1176 return 0;
1177 }
1178
1179 if (!leaf->keys) {
1180 btree_insert(&a->used_space, page, (void *) count, leaf);
1181 return 1;
1182 }
1183
1184 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1185 if (node) {
1186 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1187 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1188
1189 /*
1190 * Examine the possibility that the interval fits
1191 * somewhere between the rightmost interval of
1192 * the left neigbour and the first interval of the leaf.
1193 */
1194
1195 if (page >= right_pg) {
1196 /* Do nothing. */
1197 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1198 /* The interval intersects with the left interval. */
1199 return 0;
1200 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1201 /* The interval intersects with the right interval. */
1202 return 0;
1203 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1204 /* The interval can be added by merging the two already present intervals. */
1205 node->value[node->keys - 1] += count + right_cnt;
1206 btree_remove(&a->used_space, right_pg, leaf);
1207 return 1;
1208 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1209 /* The interval can be added by simply growing the left interval. */
1210 node->value[node->keys - 1] += count;
1211 return 1;
1212 } else if (page + count*PAGE_SIZE == right_pg) {
1213 /*
1214 * The interval can be addded by simply moving base of the right
1215 * interval down and increasing its size accordingly.
1216 */
1217 leaf->value[0] += count;
1218 leaf->key[0] = page;
1219 return 1;
1220 } else {
1221 /*
1222 * The interval is between both neigbouring intervals,
1223 * but cannot be merged with any of them.
1224 */
1225 btree_insert(&a->used_space, page, (void *) count, leaf);
1226 return 1;
1227 }
1228 } else if (page < leaf->key[0]) {
1229 uintptr_t right_pg = leaf->key[0];
1230 count_t right_cnt = (count_t) leaf->value[0];
1231
1232 /*
1233 * Investigate the border case in which the left neighbour does not
1234 * exist but the interval fits from the left.
1235 */
1236
1237 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1238 /* The interval intersects with the right interval. */
1239 return 0;
1240 } else if (page + count*PAGE_SIZE == right_pg) {
1241 /*
1242 * The interval can be added by moving the base of the right interval down
1243 * and increasing its size accordingly.
1244 */
1245 leaf->key[0] = page;
1246 leaf->value[0] += count;
1247 return 1;
1248 } else {
1249 /*
1250 * The interval doesn't adjoin with the right interval.
1251 * It must be added individually.
1252 */
1253 btree_insert(&a->used_space, page, (void *) count, leaf);
1254 return 1;
1255 }
1256 }
1257
1258 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1259 if (node) {
1260 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1261 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1262
1263 /*
1264 * Examine the possibility that the interval fits
1265 * somewhere between the leftmost interval of
1266 * the right neigbour and the last interval of the leaf.
1267 */
1268
1269 if (page < left_pg) {
1270 /* Do nothing. */
1271 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1272 /* The interval intersects with the left interval. */
1273 return 0;
1274 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1275 /* The interval intersects with the right interval. */
1276 return 0;
1277 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1278 /* The interval can be added by merging the two already present intervals. */
1279 leaf->value[leaf->keys - 1] += count + right_cnt;
1280 btree_remove(&a->used_space, right_pg, node);
1281 return 1;
1282 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1283 /* The interval can be added by simply growing the left interval. */
1284 leaf->value[leaf->keys - 1] += count;
1285 return 1;
1286 } else if (page + count*PAGE_SIZE == right_pg) {
1287 /*
1288 * The interval can be addded by simply moving base of the right
1289 * interval down and increasing its size accordingly.
1290 */
1291 node->value[0] += count;
1292 node->key[0] = page;
1293 return 1;
1294 } else {
1295 /*
1296 * The interval is between both neigbouring intervals,
1297 * but cannot be merged with any of them.
1298 */
1299 btree_insert(&a->used_space, page, (void *) count, leaf);
1300 return 1;
1301 }
1302 } else if (page >= leaf->key[leaf->keys - 1]) {
1303 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1304 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1305
1306 /*
1307 * Investigate the border case in which the right neighbour does not
1308 * exist but the interval fits from the right.
1309 */
1310
1311 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1312 /* The interval intersects with the left interval. */
1313 return 0;
1314 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1315 /* The interval can be added by growing the left interval. */
1316 leaf->value[leaf->keys - 1] += count;
1317 return 1;
1318 } else {
1319 /*
1320 * The interval doesn't adjoin with the left interval.
1321 * It must be added individually.
1322 */
1323 btree_insert(&a->used_space, page, (void *) count, leaf);
1324 return 1;
1325 }
1326 }
1327
1328 /*
1329 * Note that if the algorithm made it thus far, the interval can fit only
1330 * between two other intervals of the leaf. The two border cases were already
1331 * resolved.
1332 */
1333 for (i = 1; i < leaf->keys; i++) {
1334 if (page < leaf->key[i]) {
1335 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1336 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1337
1338 /*
1339 * The interval fits between left_pg and right_pg.
1340 */
1341
1342 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1343 /* The interval intersects with the left interval. */
1344 return 0;
1345 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1346 /* The interval intersects with the right interval. */
1347 return 0;
1348 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1349 /* The interval can be added by merging the two already present intervals. */
1350 leaf->value[i - 1] += count + right_cnt;
1351 btree_remove(&a->used_space, right_pg, leaf);
1352 return 1;
1353 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1354 /* The interval can be added by simply growing the left interval. */
1355 leaf->value[i - 1] += count;
1356 return 1;
1357 } else if (page + count*PAGE_SIZE == right_pg) {
1358 /*
1359 * The interval can be addded by simply moving base of the right
1360 * interval down and increasing its size accordingly.
1361 */
1362 leaf->value[i] += count;
1363 leaf->key[i] = page;
1364 return 1;
1365 } else {
1366 /*
1367 * The interval is between both neigbouring intervals,
1368 * but cannot be merged with any of them.
1369 */
1370 btree_insert(&a->used_space, page, (void *) count, leaf);
1371 return 1;
1372 }
1373 }
1374 }
1375
1376 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1377}
1378
1379/** Mark portion of address space area as unused.
1380 *
1381 * The address space area must be already locked.
1382 *
1383 * @param a Address space area.
1384 * @param page First page to be marked.
1385 * @param count Number of page to be marked.
1386 *
1387 * @return 0 on failure and 1 on success.
1388 */
1389int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1390{
1391 btree_node_t *leaf, *node;
1392 count_t pages;
1393 int i;
1394
1395 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1396 ASSERT(count);
1397
1398 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1399 if (pages) {
1400 /*
1401 * We are lucky, page is the beginning of some interval.
1402 */
1403 if (count > pages) {
1404 return 0;
1405 } else if (count == pages) {
1406 btree_remove(&a->used_space, page, leaf);
1407 return 1;
1408 } else {
1409 /*
1410 * Find the respective interval.
1411 * Decrease its size and relocate its start address.
1412 */
1413 for (i = 0; i < leaf->keys; i++) {
1414 if (leaf->key[i] == page) {
1415 leaf->key[i] += count*PAGE_SIZE;
1416 leaf->value[i] -= count;
1417 return 1;
1418 }
1419 }
1420 goto error;
1421 }
1422 }
1423
1424 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1425 if (node && page < leaf->key[0]) {
1426 uintptr_t left_pg = node->key[node->keys - 1];
1427 count_t left_cnt = (count_t) node->value[node->keys - 1];
1428
1429 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1430 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1431 /*
1432 * The interval is contained in the rightmost interval
1433 * of the left neighbour and can be removed by
1434 * updating the size of the bigger interval.
1435 */
1436 node->value[node->keys - 1] -= count;
1437 return 1;
1438 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1439 count_t new_cnt;
1440
1441 /*
1442 * The interval is contained in the rightmost interval
1443 * of the left neighbour but its removal requires
1444 * both updating the size of the original interval and
1445 * also inserting a new interval.
1446 */
1447 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1448 node->value[node->keys - 1] -= count + new_cnt;
1449 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1450 return 1;
1451 }
1452 }
1453 return 0;
1454 } else if (page < leaf->key[0]) {
1455 return 0;
1456 }
1457
1458 if (page > leaf->key[leaf->keys - 1]) {
1459 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1460 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1461
1462 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1463 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1464 /*
1465 * The interval is contained in the rightmost interval
1466 * of the leaf and can be removed by updating the size
1467 * of the bigger interval.
1468 */
1469 leaf->value[leaf->keys - 1] -= count;
1470 return 1;
1471 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1472 count_t new_cnt;
1473
1474 /*
1475 * The interval is contained in the rightmost interval
1476 * of the leaf but its removal requires both updating
1477 * the size of the original interval and
1478 * also inserting a new interval.
1479 */
1480 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1481 leaf->value[leaf->keys - 1] -= count + new_cnt;
1482 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1483 return 1;
1484 }
1485 }
1486 return 0;
1487 }
1488
1489 /*
1490 * The border cases have been already resolved.
1491 * Now the interval can be only between intervals of the leaf.
1492 */
1493 for (i = 1; i < leaf->keys - 1; i++) {
1494 if (page < leaf->key[i]) {
1495 uintptr_t left_pg = leaf->key[i - 1];
1496 count_t left_cnt = (count_t) leaf->value[i - 1];
1497
1498 /*
1499 * Now the interval is between intervals corresponding to (i - 1) and i.
1500 */
1501 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1502 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1503 /*
1504 * The interval is contained in the interval (i - 1)
1505 * of the leaf and can be removed by updating the size
1506 * of the bigger interval.
1507 */
1508 leaf->value[i - 1] -= count;
1509 return 1;
1510 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1511 count_t new_cnt;
1512
1513 /*
1514 * The interval is contained in the interval (i - 1)
1515 * of the leaf but its removal requires both updating
1516 * the size of the original interval and
1517 * also inserting a new interval.
1518 */
1519 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1520 leaf->value[i - 1] -= count + new_cnt;
1521 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1522 return 1;
1523 }
1524 }
1525 return 0;
1526 }
1527 }
1528
1529error:
1530 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1531}
1532
1533/** Remove reference to address space area share info.
1534 *
1535 * If the reference count drops to 0, the sh_info is deallocated.
1536 *
1537 * @param sh_info Pointer to address space area share info.
1538 */
1539void sh_info_remove_reference(share_info_t *sh_info)
1540{
1541 bool dealloc = false;
1542
1543 mutex_lock(&sh_info->lock);
1544 ASSERT(sh_info->refcount);
1545 if (--sh_info->refcount == 0) {
1546 dealloc = true;
1547 link_t *cur;
1548
1549 /*
1550 * Now walk carefully the pagemap B+tree and free/remove
1551 * reference from all frames found there.
1552 */
1553 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1554 btree_node_t *node;
1555 int i;
1556
1557 node = list_get_instance(cur, btree_node_t, leaf_link);
1558 for (i = 0; i < node->keys; i++)
1559 frame_free((uintptr_t) node->value[i]);
1560 }
1561
1562 }
1563 mutex_unlock(&sh_info->lock);
1564
1565 if (dealloc) {
1566 btree_destroy(&sh_info->pagemap);
1567 free(sh_info);
1568 }
1569}
1570
1571/*
1572 * Address space related syscalls.
1573 */
1574
1575/** Wrapper for as_area_create(). */
1576unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1577{
1578 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1579 return (unative_t) address;
1580 else
1581 return (unative_t) -1;
1582}
1583
1584/** Wrapper for as_area_resize(). */
1585unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1586{
1587 return (unative_t) as_area_resize(AS, address, size, 0);
1588}
1589
1590/** Wrapper for as_area_destroy(). */
1591unative_t sys_as_area_destroy(uintptr_t address)
1592{
1593 return (unative_t) as_area_destroy(AS, address);
1594}
1595
1596/** Print out information about address space.
1597 *
1598 * @param as Address space.
1599 */
1600void as_print(as_t *as)
1601{
1602 ipl_t ipl;
1603
1604 ipl = interrupts_disable();
1605 mutex_lock(&as->lock);
1606
1607 /* print out info about address space areas */
1608 link_t *cur;
1609 for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1610 btree_node_t *node = list_get_instance(cur, btree_node_t, leaf_link);
1611
1612 int i;
1613 for (i = 0; i < node->keys; i++) {
1614 as_area_t *area = node->value[i];
1615
1616 mutex_lock(&area->lock);
1617 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1618 area, area->base, area->pages, area->base, area->base + area->pages*PAGE_SIZE);
1619 mutex_unlock(&area->lock);
1620 }
1621 }
1622
1623 mutex_unlock(&as->lock);
1624 interrupts_restore(ipl);
1625}
1626
1627/** @}
1628 */
Note: See TracBrowser for help on using the repository browser.