source: mainline/kernel/generic/src/mm/as.c@ c89ae25

topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c89ae25 was c680333, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 2 years ago

Move task switch handling into a separate function

  • Property mode set to 100644
File size: 54.2 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * Copyright (c) 2018 Jiri Svoboda
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_generic_mm
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Address space related functions.
37 *
38 * This file contains address space manipulation functions.
39 * Roughly speaking, this is a higher-level client of
40 * Virtual Address Translation (VAT) subsystem.
41 *
42 * Functionality provided by this file allows one to
43 * create address spaces and create, resize and share
44 * address space areas.
45 *
46 * @see page.c
47 *
48 */
49
50#include <mm/as.h>
51#include <arch/mm/as.h>
52#include <mm/page.h>
53#include <mm/frame.h>
54#include <mm/slab.h>
55#include <mm/tlb.h>
56#include <arch/mm/page.h>
57#include <genarch/mm/page_pt.h>
58#include <genarch/mm/page_ht.h>
59#include <mm/asid.h>
60#include <arch/mm/asid.h>
61#include <preemption.h>
62#include <synch/spinlock.h>
63#include <synch/mutex.h>
64#include <adt/list.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <assert.h>
70#include <stdio.h>
71#include <mem.h>
72#include <macros.h>
73#include <bitops.h>
74#include <arch.h>
75#include <errno.h>
76#include <config.h>
77#include <align.h>
78#include <typedefs.h>
79#include <syscall/copy.h>
80#include <arch/interrupt.h>
81#include <interrupt.h>
82#include <stdlib.h>
83
84/**
85 * Each architecture decides what functions will be used to carry out
86 * address space operations such as creating or locking page tables.
87 */
88const as_operations_t *as_operations = NULL;
89
90/** Cache for as_t objects */
91static slab_cache_t *as_cache;
92
93/** Cache for as_page_mapping_t objects */
94static slab_cache_t *as_page_mapping_cache;
95
96/** Cache for used_space_ival_t objects */
97static slab_cache_t *used_space_ival_cache;
98
99/** ASID subsystem lock.
100 *
101 * This lock protects:
102 * - inactive_as_with_asid_list
103 * - as->asid for each as of the as_t type
104 * - asids_allocated counter
105 *
106 */
107SPINLOCK_INITIALIZE(asidlock);
108
109/**
110 * Inactive address spaces (on all processors)
111 * that have valid ASID.
112 */
113LIST_INITIALIZE(inactive_as_with_asid_list);
114
115/** Kernel address space. */
116as_t *AS_KERNEL = NULL;
117
118static void *as_areas_getkey(odlink_t *);
119static int as_areas_cmp(void *, void *);
120
121static void used_space_initialize(used_space_t *);
122static void used_space_finalize(used_space_t *);
123static void *used_space_getkey(odlink_t *);
124static int used_space_cmp(void *, void *);
125static used_space_ival_t *used_space_last(used_space_t *);
126static void used_space_remove_ival(used_space_ival_t *);
127static void used_space_shorten_ival(used_space_ival_t *, size_t);
128
129_NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
130{
131 as_t *as = (as_t *) obj;
132
133 link_initialize(&as->inactive_as_with_asid_link);
134 mutex_initialize(&as->lock, MUTEX_PASSIVE);
135
136 return as_constructor_arch(as, flags);
137}
138
139_NO_TRACE static size_t as_destructor(void *obj)
140{
141 return as_destructor_arch((as_t *) obj);
142}
143
144/** Initialize address space subsystem. */
145void as_init(void)
146{
147 as_arch_init();
148
149 as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
150 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
151
152 as_page_mapping_cache = slab_cache_create("as_page_mapping_t",
153 sizeof(as_page_mapping_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
154
155 used_space_ival_cache = slab_cache_create("used_space_ival_t",
156 sizeof(used_space_ival_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
157
158 AS_KERNEL = as_create(FLAG_AS_KERNEL);
159 if (!AS_KERNEL)
160 panic("Cannot create kernel address space.");
161}
162
163/** Create address space.
164 *
165 * @param flags Flags that influence the way in wich the address
166 * space is created.
167 *
168 */
169as_t *as_create(unsigned int flags)
170{
171 as_t *as = (as_t *) slab_alloc(as_cache, FRAME_ATOMIC);
172 if (!as)
173 return NULL;
174
175 (void) as_create_arch(as, 0);
176
177 odict_initialize(&as->as_areas, as_areas_getkey, as_areas_cmp);
178
179 if (flags & FLAG_AS_KERNEL)
180 as->asid = ASID_KERNEL;
181 else
182 as->asid = ASID_INVALID;
183
184 refcount_init(&as->refcount);
185 as->cpu_refcount = 0;
186
187#ifdef AS_PAGE_TABLE
188 as->genarch.page_table = page_table_create(flags);
189#else
190 page_table_create(flags);
191#endif
192
193 return as;
194}
195
196/** Destroy address space.
197 *
198 * When there are no tasks referencing this address space (i.e. its refcount is
199 * zero), the address space can be destroyed.
200 *
201 * We know that we don't hold any spinlock.
202 *
203 * @param as Address space to be destroyed.
204 *
205 */
206static void as_destroy(as_t *as)
207{
208 DEADLOCK_PROBE_INIT(p_asidlock);
209
210 assert(as != AS);
211 assert(refcount_unique(&as->refcount));
212
213 /*
214 * Since there is no reference to this address space, it is safe not to
215 * lock its mutex.
216 */
217
218 /*
219 * We need to avoid deadlock between TLB shootdown and asidlock.
220 * We therefore try to take asid conditionally and if we don't succeed,
221 * we enable interrupts and try again. This is done while preemption is
222 * disabled to prevent nested context switches. We also depend on the
223 * fact that so far no spinlocks are held.
224 */
225 preemption_disable();
226 ipl_t ipl = interrupts_read();
227
228retry:
229 interrupts_disable();
230 if (!spinlock_trylock(&asidlock)) {
231 interrupts_enable();
232 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
233 goto retry;
234 }
235
236 /* Interrupts disabled, enable preemption */
237 preemption_enable();
238
239 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
240 if (as->cpu_refcount == 0)
241 list_remove(&as->inactive_as_with_asid_link);
242
243 asid_put(as->asid);
244 }
245
246 spinlock_unlock(&asidlock);
247 interrupts_restore(ipl);
248
249 /*
250 * Destroy address space areas of the address space.
251 * Need to start from the beginning each time since we are destroying
252 * the areas.
253 */
254 as_area_t *area = as_area_first(as);
255 while (area != NULL) {
256 /*
257 * XXX We already have as_area_t, but as_area_destroy will
258 * have to search for it. This could be made faster.
259 */
260 as_area_destroy(as, area->base);
261 area = as_area_first(as);
262 }
263
264 odict_finalize(&as->as_areas);
265
266#ifdef AS_PAGE_TABLE
267 page_table_destroy(as->genarch.page_table);
268#else
269 page_table_destroy(NULL);
270#endif
271
272 slab_free(as_cache, as);
273}
274
275/** Hold a reference to an address space.
276 *
277 * Holding a reference to an address space prevents destruction
278 * of that address space.
279 *
280 * @param as Address space to be held.
281 *
282 */
283_NO_TRACE void as_hold(as_t *as)
284{
285 refcount_up(&as->refcount);
286}
287
288/** Release a reference to an address space.
289 *
290 * The last one to release a reference to an address space
291 * destroys the address space.
292 *
293 * @param as Address space to be released.
294 *
295 */
296_NO_TRACE void as_release(as_t *as)
297{
298 if (refcount_down(&as->refcount))
299 as_destroy(as);
300}
301
302/** Return first address space area.
303 *
304 * @param as Address space
305 * @return First area in @a as (i.e. area with the lowest base address)
306 * or @c NULL if there is none
307 */
308as_area_t *as_area_first(as_t *as)
309{
310 odlink_t *odlink = odict_first(&as->as_areas);
311 if (odlink == NULL)
312 return NULL;
313
314 return odict_get_instance(odlink, as_area_t, las_areas);
315}
316
317/** Return next address space area.
318 *
319 * @param cur Current area
320 * @return Next area in the same address space or @c NULL if @a cur is the
321 * last area.
322 */
323as_area_t *as_area_next(as_area_t *cur)
324{
325 odlink_t *odlink = odict_next(&cur->las_areas, &cur->as->as_areas);
326 if (odlink == NULL)
327 return NULL;
328
329 return odict_get_instance(odlink, as_area_t, las_areas);
330}
331
332/** Determine if area with specified parameters would conflict with
333 * a specific existing address space area.
334 *
335 * @param addr Starting virtual address of the area being tested.
336 * @param count Number of pages in the area being tested.
337 * @param guarded True if the area being tested is protected by guard pages.
338 * @param area Area against which we are testing.
339 *
340 * @return True if the two areas conflict, false otherwise.
341 */
342_NO_TRACE static bool area_is_conflicting(uintptr_t addr,
343 size_t count, bool guarded, as_area_t *area)
344{
345 assert((addr % PAGE_SIZE) == 0);
346
347 size_t gsize = P2SZ(count);
348 size_t agsize = P2SZ(area->pages);
349
350 /*
351 * A guarded area has one guard page before, one page after.
352 * What we do here is: if either area is guarded, we add
353 * PAGE_SIZE to the size of both areas. That guarantees
354 * they will be spaced at least one page apart.
355 */
356 if (guarded || (area->flags & AS_AREA_GUARD) != 0) {
357 /* Add guard page size unless area is at the end of VA domain */
358 if (!overflows(addr, P2SZ(count)))
359 gsize += PAGE_SIZE;
360
361 /* Add guard page size unless area is at the end of VA domain */
362 if (!overflows(area->base, P2SZ(area->pages)))
363 agsize += PAGE_SIZE;
364 }
365
366 return overlaps(addr, gsize, area->base, agsize);
367
368}
369
370/** Check area conflicts with other areas.
371 *
372 * @param as Address space.
373 * @param addr Starting virtual address of the area being tested.
374 * @param count Number of pages in the area being tested.
375 * @param guarded True if the area being tested is protected by guard pages.
376 * @param avoid Do not touch this area. I.e. this area is not considered
377 * as presenting a conflict.
378 *
379 * @return True if there is no conflict, false otherwise.
380 *
381 */
382_NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
383 size_t count, bool guarded, as_area_t *avoid)
384{
385 assert((addr % PAGE_SIZE) == 0);
386 assert(mutex_locked(&as->lock));
387
388 /*
389 * If the addition of the supposed area address and size overflows,
390 * report conflict.
391 */
392 if (overflows_into_positive(addr, P2SZ(count)))
393 return false;
394
395 /*
396 * We don't want any area to have conflicts with NULL page.
397 */
398 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
399 return false;
400
401 /*
402 * To determine if we overlap with another area, we just need
403 * to look at overlap with the last area with base address <=
404 * to ours and on the first area with base address > than ours.
405 *
406 * First find last area with <= base address.
407 */
408 odlink_t *odlink = odict_find_leq(&as->as_areas, &addr, NULL);
409 if (odlink != NULL) {
410 as_area_t *area = odict_get_instance(odlink, as_area_t,
411 las_areas);
412
413 if (area != avoid) {
414 mutex_lock(&area->lock);
415 if (area_is_conflicting(addr, count, guarded, area)) {
416 mutex_unlock(&area->lock);
417 return false;
418 }
419
420 mutex_unlock(&area->lock);
421 }
422
423 /* Next area */
424 odlink = odict_next(odlink, &as->as_areas);
425 }
426
427 /*
428 * Next area, if any, is the first with base > than our base address.
429 * If there was no area with <= base, we need to look at the first area.
430 */
431 if (odlink == NULL)
432 odlink = odict_first(&as->as_areas);
433
434 if (odlink != NULL) {
435 as_area_t *area = odict_get_instance(odlink, as_area_t,
436 las_areas);
437
438 if (area != avoid) {
439 mutex_lock(&area->lock);
440 if (area_is_conflicting(addr, count, guarded, area)) {
441 mutex_unlock(&area->lock);
442 return false;
443 }
444
445 mutex_unlock(&area->lock);
446 }
447 }
448
449 /*
450 * So far, the area does not conflict with other areas.
451 * Check if it is contained in the user address space.
452 */
453 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
454 return iswithin(USER_ADDRESS_SPACE_START,
455 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
456 addr, P2SZ(count));
457 }
458
459 return true;
460}
461
462/** Return pointer to unmapped address space area
463 *
464 * The address space must be already locked when calling
465 * this function.
466 *
467 * @param as Address space.
468 * @param bound Lowest address bound.
469 * @param size Requested size of the allocation.
470 * @param guarded True if the allocation must be protected by guard pages.
471 *
472 * @return Address of the beginning of unmapped address space area.
473 * @return -1 if no suitable address space area was found.
474 *
475 */
476_NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
477 size_t size, bool guarded)
478{
479 assert(mutex_locked(&as->lock));
480
481 if (size == 0)
482 return (uintptr_t) -1;
483
484 /*
485 * Make sure we allocate from page-aligned
486 * address. Check for possible overflow in
487 * each step.
488 */
489
490 size_t pages = SIZE2FRAMES(size);
491
492 /*
493 * Find the lowest unmapped address aligned on the size
494 * boundary, not smaller than bound and of the required size.
495 */
496
497 /* First check the bound address itself */
498 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
499 if (addr >= bound) {
500 if (guarded) {
501 /*
502 * Leave an unmapped page between the lower
503 * bound and the area's start address.
504 */
505 addr += P2SZ(1);
506 }
507
508 if (check_area_conflicts(as, addr, pages, guarded, NULL))
509 return addr;
510 }
511
512 /* Eventually check the addresses behind each area */
513 as_area_t *area = as_area_first(as);
514 while (area != NULL) {
515 mutex_lock(&area->lock);
516
517 addr = area->base + P2SZ(area->pages);
518
519 if (guarded || area->flags & AS_AREA_GUARD) {
520 /*
521 * We must leave an unmapped page
522 * between the two areas.
523 */
524 addr += P2SZ(1);
525 }
526
527 bool avail =
528 ((addr >= bound) && (addr >= area->base) &&
529 (check_area_conflicts(as, addr, pages, guarded, area)));
530
531 mutex_unlock(&area->lock);
532
533 if (avail)
534 return addr;
535
536 area = as_area_next(area);
537 }
538
539 /* No suitable address space area found */
540 return (uintptr_t) -1;
541}
542
543/** Get key function for pagemap ordered dictionary.
544 *
545 * The key is the virtual address of the page (as_page_mapping_t.vaddr)
546 *
547 * @param odlink Link to as_pagemap_t.map ordered dictionary
548 * @return Pointer to virtual address cast as @c void *
549 */
550static void *as_pagemap_getkey(odlink_t *odlink)
551{
552 as_page_mapping_t *mapping;
553
554 mapping = odict_get_instance(odlink, as_page_mapping_t, lpagemap);
555 return (void *) &mapping->vaddr;
556}
557
558/** Comparison function for pagemap ordered dictionary.
559 *
560 * @param a Pointer to virtual address cast as @c void *
561 * @param b Pointer to virtual address cast as @c void *
562 * @return <0, =0, >0 if virtual address a is less than, equal to, or
563 * greater than b, respectively.
564 */
565static int as_pagemap_cmp(void *a, void *b)
566{
567 uintptr_t va = *(uintptr_t *)a;
568 uintptr_t vb = *(uintptr_t *)b;
569
570 if (va < vb)
571 return -1;
572 else if (va == vb)
573 return 0;
574 else
575 return +1;
576}
577
578/** Initialize pagemap.
579 *
580 * @param pagemap Pagemap
581 */
582_NO_TRACE void as_pagemap_initialize(as_pagemap_t *pagemap)
583{
584 odict_initialize(&pagemap->map, as_pagemap_getkey, as_pagemap_cmp);
585}
586
587/** Finalize pagemap.
588 *
589 * Destroy any entries in the pagemap.
590 *
591 * @param pagemap Pagemap
592 */
593_NO_TRACE void as_pagemap_finalize(as_pagemap_t *pagemap)
594{
595 as_page_mapping_t *mapping = as_pagemap_first(pagemap);
596 while (mapping != NULL) {
597 as_pagemap_remove(mapping);
598 mapping = as_pagemap_first(pagemap);
599 }
600 odict_finalize(&pagemap->map);
601}
602
603/** Get first page mapping.
604 *
605 * @param pagemap Pagemap
606 * @return First mapping or @c NULL if there is none
607 */
608_NO_TRACE as_page_mapping_t *as_pagemap_first(as_pagemap_t *pagemap)
609{
610 odlink_t *odlink;
611
612 odlink = odict_first(&pagemap->map);
613 if (odlink == NULL)
614 return NULL;
615
616 return odict_get_instance(odlink, as_page_mapping_t, lpagemap);
617}
618
619/** Get next page mapping.
620 *
621 * @param cur Current mapping
622 * @return Next mapping or @c NULL if @a cur is the last one
623 */
624_NO_TRACE as_page_mapping_t *as_pagemap_next(as_page_mapping_t *cur)
625{
626 odlink_t *odlink;
627
628 odlink = odict_next(&cur->lpagemap, &cur->pagemap->map);
629 if (odlink == NULL)
630 return NULL;
631
632 return odict_get_instance(odlink, as_page_mapping_t, lpagemap);
633}
634
635/** Find frame by virtual address.
636 *
637 * @param pagemap Pagemap
638 * @param vaddr Virtual address of page
639 * @param rframe Place to store physical frame address
640 * @return EOK on succcess or ENOENT if no mapping found
641 */
642_NO_TRACE errno_t as_pagemap_find(as_pagemap_t *pagemap, uintptr_t vaddr,
643 uintptr_t *rframe)
644{
645 odlink_t *odlink;
646 as_page_mapping_t *mapping;
647
648 odlink = odict_find_eq(&pagemap->map, &vaddr, NULL);
649 if (odlink == NULL)
650 return ENOENT;
651
652 mapping = odict_get_instance(odlink, as_page_mapping_t, lpagemap);
653 *rframe = mapping->frame;
654 return EOK;
655}
656
657/** Insert new page mapping.
658 *
659 * This function can block to allocate kernel memory.
660 *
661 * @param pagemap Pagemap
662 * @param vaddr Virtual page address
663 * @param frame Physical frame address
664 */
665_NO_TRACE void as_pagemap_insert(as_pagemap_t *pagemap, uintptr_t vaddr,
666 uintptr_t frame)
667{
668 as_page_mapping_t *mapping;
669
670 mapping = slab_alloc(as_page_mapping_cache, 0);
671 mapping->pagemap = pagemap;
672 odlink_initialize(&mapping->lpagemap);
673 mapping->vaddr = vaddr;
674 mapping->frame = frame;
675 odict_insert(&mapping->lpagemap, &pagemap->map, NULL);
676}
677
678/** Remove page mapping.
679 *
680 * @param mapping Mapping
681 */
682_NO_TRACE void as_pagemap_remove(as_page_mapping_t *mapping)
683{
684 odict_remove(&mapping->lpagemap);
685 slab_free(as_page_mapping_cache, mapping);
686}
687
688/** Remove reference to address space area share info.
689 *
690 * If the reference count drops to 0, the sh_info is deallocated.
691 *
692 * @param sh_info Pointer to address space area share info.
693 *
694 */
695_NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
696{
697 bool dealloc = false;
698
699 mutex_lock(&sh_info->lock);
700 assert(sh_info->refcount);
701
702 if (--sh_info->refcount == 0) {
703 dealloc = true;
704
705 as_page_mapping_t *mapping = as_pagemap_first(&sh_info->pagemap);
706 while (mapping != NULL) {
707 frame_free(mapping->frame, 1);
708 mapping = as_pagemap_next(mapping);
709 }
710
711 }
712 mutex_unlock(&sh_info->lock);
713
714 if (dealloc) {
715 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
716 sh_info->backend->destroy_shared_data(
717 sh_info->backend_shared_data);
718 }
719 as_pagemap_finalize(&sh_info->pagemap);
720 free(sh_info);
721 }
722}
723
724/** Create address space area of common attributes.
725 *
726 * The created address space area is added to the target address space.
727 *
728 * @param as Target address space.
729 * @param flags Flags of the area memory.
730 * @param size Size of area.
731 * @param attrs Attributes of the area.
732 * @param backend Address space area backend. NULL if no backend is used.
733 * @param backend_data NULL or a pointer to custom backend data.
734 * @param base Starting virtual address of the area.
735 * If set to AS_AREA_ANY, a suitable mappable area is
736 * found.
737 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
738 * Otherwise ignored.
739 *
740 * @return Address space area on success or NULL on failure.
741 *
742 */
743as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
744 unsigned int attrs, mem_backend_t *backend,
745 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
746{
747 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
748 return NULL;
749
750 if (size == 0)
751 return NULL;
752
753 size_t pages = SIZE2FRAMES(size);
754
755 /* Writeable executable areas are not supported. */
756 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
757 return NULL;
758
759 bool const guarded = flags & AS_AREA_GUARD;
760
761 mutex_lock(&as->lock);
762
763 if (*base == (uintptr_t) AS_AREA_ANY) {
764 *base = as_get_unmapped_area(as, bound, size, guarded);
765 if (*base == (uintptr_t) -1) {
766 mutex_unlock(&as->lock);
767 return NULL;
768 }
769 }
770
771 if (overflows_into_positive(*base, size)) {
772 mutex_unlock(&as->lock);
773 return NULL;
774 }
775
776 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
777 mutex_unlock(&as->lock);
778 return NULL;
779 }
780
781 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
782 if (!area) {
783 mutex_unlock(&as->lock);
784 return NULL;
785 }
786
787 mutex_initialize(&area->lock, MUTEX_PASSIVE);
788
789 area->as = as;
790 odlink_initialize(&area->las_areas);
791 area->flags = flags;
792 area->attributes = attrs;
793 area->pages = pages;
794 area->base = *base;
795 area->backend = backend;
796 area->sh_info = NULL;
797
798 if (backend_data)
799 area->backend_data = *backend_data;
800 else
801 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
802
803 share_info_t *si = NULL;
804
805 /*
806 * Create the sharing info structure.
807 * We do this in advance for every new area, even if it is not going
808 * to be shared.
809 */
810 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
811 si = (share_info_t *) malloc(sizeof(share_info_t));
812 if (!si) {
813 free(area);
814 mutex_unlock(&as->lock);
815 return NULL;
816 }
817 mutex_initialize(&si->lock, MUTEX_PASSIVE);
818 si->refcount = 1;
819 si->shared = false;
820 si->backend_shared_data = NULL;
821 si->backend = backend;
822 as_pagemap_initialize(&si->pagemap);
823
824 area->sh_info = si;
825
826 if (area->backend && area->backend->create_shared_data) {
827 if (!area->backend->create_shared_data(area)) {
828 free(area);
829 mutex_unlock(&as->lock);
830 sh_info_remove_reference(si);
831 return NULL;
832 }
833 }
834 }
835
836 if (area->backend && area->backend->create) {
837 if (!area->backend->create(area)) {
838 free(area);
839 mutex_unlock(&as->lock);
840 if (!(attrs & AS_AREA_ATTR_PARTIAL))
841 sh_info_remove_reference(si);
842 return NULL;
843 }
844 }
845
846 used_space_initialize(&area->used_space);
847 odict_insert(&area->las_areas, &as->as_areas, NULL);
848
849 mutex_unlock(&as->lock);
850
851 return area;
852}
853
854/** Find address space area and lock it.
855 *
856 * @param as Address space.
857 * @param va Virtual address.
858 *
859 * @return Locked address space area containing va on success or
860 * NULL on failure.
861 *
862 */
863_NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
864{
865 assert(mutex_locked(&as->lock));
866
867 odlink_t *odlink = odict_find_leq(&as->as_areas, &va, NULL);
868 if (odlink == NULL)
869 return NULL;
870
871 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
872 mutex_lock(&area->lock);
873
874 assert(area->base <= va);
875
876 if (va <= area->base + (P2SZ(area->pages) - 1))
877 return area;
878
879 mutex_unlock(&area->lock);
880 return NULL;
881}
882
883/** Find address space area and change it.
884 *
885 * @param as Address space.
886 * @param address Virtual address belonging to the area to be changed.
887 * Must be page-aligned.
888 * @param size New size of the virtual memory block starting at
889 * address.
890 * @param flags Flags influencing the remap operation. Currently unused.
891 *
892 * @return Zero on success or a value from @ref errno.h otherwise.
893 *
894 */
895errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
896{
897 if (!IS_ALIGNED(address, PAGE_SIZE))
898 return EINVAL;
899
900 mutex_lock(&as->lock);
901
902 /*
903 * Locate the area.
904 */
905 as_area_t *area = find_area_and_lock(as, address);
906 if (!area) {
907 mutex_unlock(&as->lock);
908 return ENOENT;
909 }
910
911 if (!area->backend->is_resizable(area)) {
912 /*
913 * The backend does not support resizing for this area.
914 */
915 mutex_unlock(&area->lock);
916 mutex_unlock(&as->lock);
917 return ENOTSUP;
918 }
919
920 mutex_lock(&area->sh_info->lock);
921 if (area->sh_info->shared) {
922 /*
923 * Remapping of shared address space areas
924 * is not supported.
925 */
926 mutex_unlock(&area->sh_info->lock);
927 mutex_unlock(&area->lock);
928 mutex_unlock(&as->lock);
929 return ENOTSUP;
930 }
931 mutex_unlock(&area->sh_info->lock);
932
933 size_t pages = SIZE2FRAMES((address - area->base) + size);
934 if (!pages) {
935 /*
936 * Zero size address space areas are not allowed.
937 */
938 mutex_unlock(&area->lock);
939 mutex_unlock(&as->lock);
940 return EPERM;
941 }
942
943 if (pages < area->pages) {
944 uintptr_t start_free = area->base + P2SZ(pages);
945
946 /*
947 * Shrinking the area.
948 * No need to check for overlaps.
949 */
950
951 page_table_lock(as, false);
952
953 /*
954 * Start TLB shootdown sequence.
955 */
956
957 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
958 as->asid, area->base + P2SZ(pages),
959 area->pages - pages);
960
961 /*
962 * Remove frames belonging to used space starting from
963 * the highest addresses downwards until an overlap with
964 * the resized address space area is found.
965 */
966 bool cond = true;
967 while (cond) {
968 used_space_ival_t *ival =
969 used_space_last(&area->used_space);
970 assert(ival != NULL);
971
972 uintptr_t ptr = ival->page;
973 size_t pcount = ival->count;
974 size_t i = 0;
975
976 if (overlaps(ptr, P2SZ(pcount), area->base,
977 P2SZ(pages))) {
978
979 if (ptr + P2SZ(pcount) <= start_free) {
980 /*
981 * The whole interval fits completely
982 * in the resized address space area.
983 */
984 break;
985 }
986
987 /*
988 * Part of the interval corresponding to b and
989 * c overlaps with the resized address space
990 * area.
991 */
992
993 /* We are almost done */
994 cond = false;
995 i = (start_free - ptr) >> PAGE_WIDTH;
996
997 /* Shorten the interval to @c i pages */
998 used_space_shorten_ival(ival, i);
999 } else {
1000 /*
1001 * The interval of used space can be completely
1002 * removed.
1003 */
1004 used_space_remove_ival(ival);
1005 }
1006
1007 for (; i < pcount; i++) {
1008 pte_t pte;
1009 bool found = page_mapping_find(as,
1010 ptr + P2SZ(i), false, &pte);
1011
1012 (void) found;
1013 assert(found);
1014 assert(PTE_VALID(&pte));
1015 assert(PTE_PRESENT(&pte));
1016
1017 if ((area->backend) &&
1018 (area->backend->frame_free)) {
1019 area->backend->frame_free(area,
1020 ptr + P2SZ(i),
1021 PTE_GET_FRAME(&pte));
1022 }
1023
1024 page_mapping_remove(as, ptr + P2SZ(i));
1025 }
1026
1027 }
1028
1029 /*
1030 * Finish TLB shootdown sequence.
1031 */
1032
1033 tlb_invalidate_pages(as->asid,
1034 area->base + P2SZ(pages),
1035 area->pages - pages);
1036
1037 /*
1038 * Invalidate software translation caches
1039 * (e.g. TSB on sparc64, PHT on ppc32).
1040 */
1041 as_invalidate_translation_cache(as,
1042 area->base + P2SZ(pages),
1043 area->pages - pages);
1044 tlb_shootdown_finalize(ipl);
1045
1046 page_table_unlock(as, false);
1047 } else {
1048 /*
1049 * Growing the area.
1050 */
1051
1052 if (overflows_into_positive(address, P2SZ(pages)))
1053 return EINVAL;
1054
1055 /*
1056 * Check for overlaps with other address space areas.
1057 */
1058 bool const guarded = area->flags & AS_AREA_GUARD;
1059 if (!check_area_conflicts(as, address, pages, guarded, area)) {
1060 mutex_unlock(&area->lock);
1061 mutex_unlock(&as->lock);
1062 return EADDRNOTAVAIL;
1063 }
1064 }
1065
1066 if (area->backend && area->backend->resize) {
1067 if (!area->backend->resize(area, pages)) {
1068 mutex_unlock(&area->lock);
1069 mutex_unlock(&as->lock);
1070 return ENOMEM;
1071 }
1072 }
1073
1074 area->pages = pages;
1075
1076 mutex_unlock(&area->lock);
1077 mutex_unlock(&as->lock);
1078
1079 return 0;
1080}
1081
1082/** Destroy address space area.
1083 *
1084 * @param as Address space.
1085 * @param address Address within the area to be deleted.
1086 *
1087 * @return Zero on success or a value from @ref errno.h on failure.
1088 *
1089 */
1090errno_t as_area_destroy(as_t *as, uintptr_t address)
1091{
1092 mutex_lock(&as->lock);
1093
1094 as_area_t *area = find_area_and_lock(as, address);
1095 if (!area) {
1096 mutex_unlock(&as->lock);
1097 return ENOENT;
1098 }
1099
1100 if (area->backend && area->backend->destroy)
1101 area->backend->destroy(area);
1102
1103 page_table_lock(as, false);
1104 /*
1105 * Start TLB shootdown sequence.
1106 */
1107 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1108 area->pages);
1109
1110 /*
1111 * Visit only the pages mapped by used_space.
1112 */
1113 used_space_ival_t *ival = used_space_first(&area->used_space);
1114 while (ival != NULL) {
1115 uintptr_t ptr = ival->page;
1116
1117 for (size_t size = 0; size < ival->count; size++) {
1118 pte_t pte;
1119 bool found = page_mapping_find(as,
1120 ptr + P2SZ(size), false, &pte);
1121
1122 (void) found;
1123 assert(found);
1124 assert(PTE_VALID(&pte));
1125 assert(PTE_PRESENT(&pte));
1126
1127 if ((area->backend) &&
1128 (area->backend->frame_free)) {
1129 area->backend->frame_free(area,
1130 ptr + P2SZ(size),
1131 PTE_GET_FRAME(&pte));
1132 }
1133
1134 page_mapping_remove(as, ptr + P2SZ(size));
1135 }
1136
1137 used_space_remove_ival(ival);
1138 ival = used_space_first(&area->used_space);
1139 }
1140
1141 /*
1142 * Finish TLB shootdown sequence.
1143 */
1144
1145 tlb_invalidate_pages(as->asid, area->base, area->pages);
1146
1147 /*
1148 * Invalidate potential software translation caches
1149 * (e.g. TSB on sparc64, PHT on ppc32).
1150 */
1151 as_invalidate_translation_cache(as, area->base, area->pages);
1152 tlb_shootdown_finalize(ipl);
1153
1154 page_table_unlock(as, false);
1155
1156 used_space_finalize(&area->used_space);
1157 area->attributes |= AS_AREA_ATTR_PARTIAL;
1158 sh_info_remove_reference(area->sh_info);
1159
1160 mutex_unlock(&area->lock);
1161
1162 /*
1163 * Remove the empty area from address space.
1164 */
1165 odict_remove(&area->las_areas);
1166
1167 free(area);
1168
1169 mutex_unlock(&as->lock);
1170 return 0;
1171}
1172
1173/** Share address space area with another or the same address space.
1174 *
1175 * Address space area mapping is shared with a new address space area.
1176 * If the source address space area has not been shared so far,
1177 * a new sh_info is created. The new address space area simply gets the
1178 * sh_info of the source area. The process of duplicating the
1179 * mapping is done through the backend share function.
1180 *
1181 * @param src_as Pointer to source address space.
1182 * @param src_base Base address of the source address space area.
1183 * @param acc_size Expected size of the source area.
1184 * @param dst_as Pointer to destination address space.
1185 * @param dst_flags_mask Destination address space area flags mask.
1186 * @param dst_base Target base address. If set to -1,
1187 * a suitable mappable area is found.
1188 * @param bound Lowest address bound if dst_base is set to -1.
1189 * Otherwise ignored.
1190 *
1191 * @return Zero on success.
1192 * @return ENOENT if there is no such task or such address space.
1193 * @return EPERM if there was a problem in accepting the area.
1194 * @return ENOMEM if there was a problem in allocating destination
1195 * address space area.
1196 * @return ENOTSUP if the address space area backend does not support
1197 * sharing.
1198 *
1199 */
1200errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1201 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1202 uintptr_t bound)
1203{
1204 mutex_lock(&src_as->lock);
1205 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1206 if (!src_area) {
1207 /*
1208 * Could not find the source address space area.
1209 */
1210 mutex_unlock(&src_as->lock);
1211 return ENOENT;
1212 }
1213
1214 if (!src_area->backend->is_shareable(src_area)) {
1215 /*
1216 * The backend does not permit sharing of this area.
1217 */
1218 mutex_unlock(&src_area->lock);
1219 mutex_unlock(&src_as->lock);
1220 return ENOTSUP;
1221 }
1222
1223 size_t src_size = P2SZ(src_area->pages);
1224 unsigned int src_flags = src_area->flags;
1225 mem_backend_t *src_backend = src_area->backend;
1226 mem_backend_data_t src_backend_data = src_area->backend_data;
1227
1228 /* Share the cacheable flag from the original mapping */
1229 if (src_flags & AS_AREA_CACHEABLE)
1230 dst_flags_mask |= AS_AREA_CACHEABLE;
1231
1232 if ((src_size != acc_size) ||
1233 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1234 mutex_unlock(&src_area->lock);
1235 mutex_unlock(&src_as->lock);
1236 return EPERM;
1237 }
1238
1239 /*
1240 * Now we are committed to sharing the area.
1241 * First, prepare the area for sharing.
1242 * Then it will be safe to unlock it.
1243 */
1244 share_info_t *sh_info = src_area->sh_info;
1245
1246 mutex_lock(&sh_info->lock);
1247 sh_info->refcount++;
1248 bool shared = sh_info->shared;
1249 sh_info->shared = true;
1250 mutex_unlock(&sh_info->lock);
1251
1252 if (!shared) {
1253 /*
1254 * Call the backend to setup sharing.
1255 * This only happens once for each sh_info.
1256 */
1257 src_area->backend->share(src_area);
1258 }
1259
1260 mutex_unlock(&src_area->lock);
1261 mutex_unlock(&src_as->lock);
1262
1263 /*
1264 * Create copy of the source address space area.
1265 * The destination area is created with AS_AREA_ATTR_PARTIAL
1266 * attribute set which prevents race condition with
1267 * preliminary as_page_fault() calls.
1268 * The flags of the source area are masked against dst_flags_mask
1269 * to support sharing in less privileged mode.
1270 */
1271 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1272 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1273 &src_backend_data, dst_base, bound);
1274 if (!dst_area) {
1275 /*
1276 * Destination address space area could not be created.
1277 */
1278 sh_info_remove_reference(sh_info);
1279
1280 return ENOMEM;
1281 }
1282
1283 /*
1284 * Now the destination address space area has been
1285 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1286 * attribute and set the sh_info.
1287 */
1288 mutex_lock(&dst_as->lock);
1289 mutex_lock(&dst_area->lock);
1290 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1291 dst_area->sh_info = sh_info;
1292 mutex_unlock(&dst_area->lock);
1293 mutex_unlock(&dst_as->lock);
1294
1295 return 0;
1296}
1297
1298/** Check access mode for address space area.
1299 *
1300 * @param area Address space area.
1301 * @param access Access mode.
1302 *
1303 * @return False if access violates area's permissions, true
1304 * otherwise.
1305 *
1306 */
1307_NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1308{
1309 assert(mutex_locked(&area->lock));
1310
1311 int flagmap[] = {
1312 [PF_ACCESS_READ] = AS_AREA_READ,
1313 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1314 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1315 };
1316
1317 if (!(area->flags & flagmap[access]))
1318 return false;
1319
1320 return true;
1321}
1322
1323/** Convert address space area flags to page flags.
1324 *
1325 * @param aflags Flags of some address space area.
1326 *
1327 * @return Flags to be passed to page_mapping_insert().
1328 *
1329 */
1330_NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1331{
1332 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1333
1334 if (aflags & AS_AREA_READ)
1335 flags |= PAGE_READ;
1336
1337 if (aflags & AS_AREA_WRITE)
1338 flags |= PAGE_WRITE;
1339
1340 if (aflags & AS_AREA_EXEC)
1341 flags |= PAGE_EXEC;
1342
1343 if (aflags & AS_AREA_CACHEABLE)
1344 flags |= PAGE_CACHEABLE;
1345
1346 return flags;
1347}
1348
1349/** Change address space area flags.
1350 *
1351 * The idea is to have the same data, but with a different access mode.
1352 * This is needed e.g. for writing code into memory and then executing it.
1353 * In order for this to work properly, this may copy the data
1354 * into private anonymous memory (unless it's already there).
1355 *
1356 * @param as Address space.
1357 * @param flags Flags of the area memory.
1358 * @param address Address within the area to be changed.
1359 *
1360 * @return Zero on success or a value from @ref errno.h on failure.
1361 *
1362 */
1363errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1364{
1365 /* Flags for the new memory mapping */
1366 unsigned int page_flags = area_flags_to_page_flags(flags);
1367
1368 mutex_lock(&as->lock);
1369
1370 as_area_t *area = find_area_and_lock(as, address);
1371 if (!area) {
1372 mutex_unlock(&as->lock);
1373 return ENOENT;
1374 }
1375
1376 if (area->backend != &anon_backend) {
1377 /* Copying non-anonymous memory not supported yet */
1378 mutex_unlock(&area->lock);
1379 mutex_unlock(&as->lock);
1380 return ENOTSUP;
1381 }
1382
1383 mutex_lock(&area->sh_info->lock);
1384 if (area->sh_info->shared) {
1385 /* Copying shared areas not supported yet */
1386 mutex_unlock(&area->sh_info->lock);
1387 mutex_unlock(&area->lock);
1388 mutex_unlock(&as->lock);
1389 return ENOTSUP;
1390 }
1391 mutex_unlock(&area->sh_info->lock);
1392
1393 /* An array for storing frame numbers */
1394 uintptr_t *old_frame = malloc(area->used_space.pages *
1395 sizeof(uintptr_t));
1396 if (!old_frame) {
1397 mutex_unlock(&area->lock);
1398 mutex_unlock(&as->lock);
1399 return ENOMEM;
1400 }
1401
1402 page_table_lock(as, false);
1403
1404 /*
1405 * Start TLB shootdown sequence.
1406 */
1407 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1408 area->pages);
1409
1410 /*
1411 * Remove used pages from page tables and remember their frame
1412 * numbers.
1413 */
1414 size_t frame_idx = 0;
1415
1416 used_space_ival_t *ival = used_space_first(&area->used_space);
1417 while (ival != NULL) {
1418 uintptr_t ptr = ival->page;
1419 size_t size;
1420
1421 for (size = 0; size < ival->count; size++) {
1422 pte_t pte;
1423 bool found = page_mapping_find(as, ptr + P2SZ(size),
1424 false, &pte);
1425
1426 (void) found;
1427 assert(found);
1428 assert(PTE_VALID(&pte));
1429 assert(PTE_PRESENT(&pte));
1430
1431 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1432
1433 /* Remove old mapping */
1434 page_mapping_remove(as, ptr + P2SZ(size));
1435 }
1436
1437 ival = used_space_next(ival);
1438 }
1439
1440 /*
1441 * Finish TLB shootdown sequence.
1442 */
1443
1444 tlb_invalidate_pages(as->asid, area->base, area->pages);
1445
1446 /*
1447 * Invalidate potential software translation caches
1448 * (e.g. TSB on sparc64, PHT on ppc32).
1449 */
1450 as_invalidate_translation_cache(as, area->base, area->pages);
1451 tlb_shootdown_finalize(ipl);
1452
1453 page_table_unlock(as, false);
1454
1455 /*
1456 * Set the new flags.
1457 */
1458 area->flags = flags;
1459
1460 /*
1461 * Map pages back in with new flags. This step is kept separate
1462 * so that the memory area could not be accesed with both the old and
1463 * the new flags at once.
1464 */
1465 frame_idx = 0;
1466
1467 ival = used_space_first(&area->used_space);
1468 while (ival != NULL) {
1469 uintptr_t ptr = ival->page;
1470 size_t size;
1471
1472 for (size = 0; size < ival->count; size++) {
1473 page_table_lock(as, false);
1474
1475 /* Insert the new mapping */
1476 page_mapping_insert(as, ptr + P2SZ(size),
1477 old_frame[frame_idx++], page_flags);
1478
1479 page_table_unlock(as, false);
1480 }
1481
1482 ival = used_space_next(ival);
1483 }
1484
1485 free(old_frame);
1486
1487 mutex_unlock(&area->lock);
1488 mutex_unlock(&as->lock);
1489
1490 return 0;
1491}
1492
1493/** Handle page fault within the current address space.
1494 *
1495 * This is the high-level page fault handler. It decides whether the page fault
1496 * can be resolved by any backend and if so, it invokes the backend to resolve
1497 * the page fault.
1498 *
1499 * Interrupts are assumed disabled.
1500 *
1501 * @param address Faulting address.
1502 * @param access Access mode that caused the page fault (i.e.
1503 * read/write/exec).
1504 * @param istate Pointer to the interrupted state.
1505 *
1506 * @return AS_PF_FAULT on page fault.
1507 * @return AS_PF_OK on success.
1508 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1509 * or copy_from_uspace().
1510 *
1511 */
1512int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1513{
1514 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1515 int rc = AS_PF_FAULT;
1516
1517 if (!THREAD)
1518 goto page_fault;
1519
1520 if (!AS)
1521 goto page_fault;
1522
1523 mutex_lock(&AS->lock);
1524 as_area_t *area = find_area_and_lock(AS, page);
1525 if (!area) {
1526 /*
1527 * No area contained mapping for 'page'.
1528 * Signal page fault to low-level handler.
1529 */
1530 mutex_unlock(&AS->lock);
1531 goto page_fault;
1532 }
1533
1534 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1535 /*
1536 * The address space area is not fully initialized.
1537 * Avoid possible race by returning error.
1538 */
1539 mutex_unlock(&area->lock);
1540 mutex_unlock(&AS->lock);
1541 goto page_fault;
1542 }
1543
1544 if ((!area->backend) || (!area->backend->page_fault)) {
1545 /*
1546 * The address space area is not backed by any backend
1547 * or the backend cannot handle page faults.
1548 */
1549 mutex_unlock(&area->lock);
1550 mutex_unlock(&AS->lock);
1551 goto page_fault;
1552 }
1553
1554 page_table_lock(AS, false);
1555
1556 /*
1557 * To avoid race condition between two page faults on the same address,
1558 * we need to make sure the mapping has not been already inserted.
1559 */
1560 pte_t pte;
1561 bool found = page_mapping_find(AS, page, false, &pte);
1562 if (found && PTE_PRESENT(&pte)) {
1563 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1564 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1565 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1566 page_table_unlock(AS, false);
1567 mutex_unlock(&area->lock);
1568 mutex_unlock(&AS->lock);
1569 return AS_PF_OK;
1570 }
1571 }
1572
1573 /*
1574 * Resort to the backend page fault handler.
1575 */
1576 rc = area->backend->page_fault(area, page, access);
1577 if (rc != AS_PF_OK) {
1578 page_table_unlock(AS, false);
1579 mutex_unlock(&area->lock);
1580 mutex_unlock(&AS->lock);
1581 goto page_fault;
1582 }
1583
1584 page_table_unlock(AS, false);
1585 mutex_unlock(&area->lock);
1586 mutex_unlock(&AS->lock);
1587 return AS_PF_OK;
1588
1589page_fault:
1590 if (THREAD && THREAD->in_copy_from_uspace) {
1591 THREAD->in_copy_from_uspace = false;
1592 istate_set_retaddr(istate,
1593 (uintptr_t) &memcpy_from_uspace_failover_address);
1594 } else if (THREAD && THREAD->in_copy_to_uspace) {
1595 THREAD->in_copy_to_uspace = false;
1596 istate_set_retaddr(istate,
1597 (uintptr_t) &memcpy_to_uspace_failover_address);
1598 } else if (rc == AS_PF_SILENT) {
1599 printf("Killing task %" PRIu64 " due to a "
1600 "failed late reservation request.\n", TASK->taskid);
1601 task_kill_self(true);
1602 } else {
1603 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1604 panic_memtrap(istate, access, address, NULL);
1605 }
1606
1607 return AS_PF_DEFER;
1608}
1609
1610/** Switch address spaces.
1611 *
1612 * Note that this function cannot sleep as it is essentially a part of
1613 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1614 * thing which is forbidden in this context is locking the address space.
1615 *
1616 * When this function is entered, no spinlocks may be held.
1617 *
1618 * @param old Old address space or NULL.
1619 * @param new New address space.
1620 *
1621 */
1622void as_switch(as_t *old_as, as_t *new_as)
1623{
1624 DEADLOCK_PROBE_INIT(p_asidlock);
1625 preemption_disable();
1626
1627retry:
1628 (void) interrupts_disable();
1629 if (!spinlock_trylock(&asidlock)) {
1630 /*
1631 * Avoid deadlock with TLB shootdown.
1632 * We can enable interrupts here because
1633 * preemption is disabled. We should not be
1634 * holding any other lock.
1635 */
1636 (void) interrupts_enable();
1637 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1638 goto retry;
1639 }
1640 preemption_enable();
1641
1642 /*
1643 * First, take care of the old address space.
1644 */
1645 if (old_as) {
1646 assert(old_as->cpu_refcount);
1647
1648 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1649 /*
1650 * The old address space is no longer active on
1651 * any processor. It can be appended to the
1652 * list of inactive address spaces with assigned
1653 * ASID.
1654 */
1655 assert(old_as->asid != ASID_INVALID);
1656
1657 list_append(&old_as->inactive_as_with_asid_link,
1658 &inactive_as_with_asid_list);
1659 }
1660
1661 /*
1662 * Perform architecture-specific tasks when the address space
1663 * is being removed from the CPU.
1664 */
1665 as_deinstall_arch(old_as);
1666 }
1667
1668 /*
1669 * Second, prepare the new address space.
1670 */
1671 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1672 if (new_as->asid != ASID_INVALID)
1673 list_remove(&new_as->inactive_as_with_asid_link);
1674 else
1675 new_as->asid = asid_get();
1676 }
1677
1678#ifdef AS_PAGE_TABLE
1679 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1680#endif
1681
1682 /*
1683 * Perform architecture-specific steps.
1684 * (e.g. write ASID to hardware register etc.)
1685 */
1686 as_install_arch(new_as);
1687
1688 spinlock_unlock(&asidlock);
1689
1690 if (AS)
1691 as_release(AS);
1692
1693 AS = new_as;
1694
1695 as_hold(AS);
1696}
1697
1698/** Compute flags for virtual address translation subsytem.
1699 *
1700 * @param area Address space area.
1701 *
1702 * @return Flags to be used in page_mapping_insert().
1703 *
1704 */
1705_NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1706{
1707 assert(mutex_locked(&area->lock));
1708
1709 return area_flags_to_page_flags(area->flags);
1710}
1711
1712/** Get key function for the @c as_t.as_areas ordered dictionary.
1713 *
1714 * @param odlink Link
1715 * @return Pointer to task ID cast as 'void *'
1716 */
1717static void *as_areas_getkey(odlink_t *odlink)
1718{
1719 as_area_t *area = odict_get_instance(odlink, as_area_t, las_areas);
1720 return (void *) &area->base;
1721}
1722
1723/** Key comparison function for the @c as_t.as_areas ordered dictionary.
1724 *
1725 * @param a Pointer to area A base
1726 * @param b Pointer to area B base
1727 * @return -1, 0, 1 iff base of A is lower than, equal to, higher than B
1728 */
1729static int as_areas_cmp(void *a, void *b)
1730{
1731 uintptr_t base_a = *(uintptr_t *)a;
1732 uintptr_t base_b = *(uintptr_t *)b;
1733
1734 if (base_a < base_b)
1735 return -1;
1736 else if (base_a == base_b)
1737 return 0;
1738 else
1739 return +1;
1740}
1741
1742/** Create page table.
1743 *
1744 * Depending on architecture, create either address space private or global page
1745 * table.
1746 *
1747 * @param flags Flags saying whether the page table is for the kernel
1748 * address space.
1749 *
1750 * @return First entry of the page table.
1751 *
1752 */
1753_NO_TRACE pte_t *page_table_create(unsigned int flags)
1754{
1755 assert(as_operations);
1756 assert(as_operations->page_table_create);
1757
1758 return as_operations->page_table_create(flags);
1759}
1760
1761/** Destroy page table.
1762 *
1763 * Destroy page table in architecture specific way.
1764 *
1765 * @param page_table Physical address of PTL0.
1766 *
1767 */
1768_NO_TRACE void page_table_destroy(pte_t *page_table)
1769{
1770 assert(as_operations);
1771 assert(as_operations->page_table_destroy);
1772
1773 as_operations->page_table_destroy(page_table);
1774}
1775
1776/** Lock page table.
1777 *
1778 * This function should be called before any page_mapping_insert(),
1779 * page_mapping_remove() and page_mapping_find().
1780 *
1781 * Locking order is such that address space areas must be locked
1782 * prior to this call. Address space can be locked prior to this
1783 * call in which case the lock argument is false.
1784 *
1785 * @param as Address space.
1786 * @param lock If false, do not attempt to lock as->lock.
1787 *
1788 */
1789_NO_TRACE void page_table_lock(as_t *as, bool lock)
1790{
1791 assert(as_operations);
1792 assert(as_operations->page_table_lock);
1793
1794 as_operations->page_table_lock(as, lock);
1795}
1796
1797/** Unlock page table.
1798 *
1799 * @param as Address space.
1800 * @param unlock If false, do not attempt to unlock as->lock.
1801 *
1802 */
1803_NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1804{
1805 assert(as_operations);
1806 assert(as_operations->page_table_unlock);
1807
1808 as_operations->page_table_unlock(as, unlock);
1809}
1810
1811/** Test whether page tables are locked.
1812 *
1813 * @param as Address space where the page tables belong.
1814 *
1815 * @return True if the page tables belonging to the address soace
1816 * are locked, otherwise false.
1817 */
1818_NO_TRACE bool page_table_locked(as_t *as)
1819{
1820 assert(as_operations);
1821 assert(as_operations->page_table_locked);
1822
1823 return as_operations->page_table_locked(as);
1824}
1825
1826/** Return size of the address space area with given base.
1827 *
1828 * @param base Arbitrary address inside the address space area.
1829 *
1830 * @return Size of the address space area in bytes or zero if it
1831 * does not exist.
1832 *
1833 */
1834size_t as_area_get_size(uintptr_t base)
1835{
1836 size_t size;
1837
1838 page_table_lock(AS, true);
1839 as_area_t *src_area = find_area_and_lock(AS, base);
1840
1841 if (src_area) {
1842 size = P2SZ(src_area->pages);
1843 mutex_unlock(&src_area->lock);
1844 } else
1845 size = 0;
1846
1847 page_table_unlock(AS, true);
1848 return size;
1849}
1850
1851/** Initialize used space map.
1852 *
1853 * @param used_space Used space map
1854 */
1855static void used_space_initialize(used_space_t *used_space)
1856{
1857 odict_initialize(&used_space->ivals, used_space_getkey, used_space_cmp);
1858 used_space->pages = 0;
1859}
1860
1861/** Finalize used space map.
1862 *
1863 * @param used_space Used space map
1864 */
1865static void used_space_finalize(used_space_t *used_space)
1866{
1867 assert(odict_empty(&used_space->ivals));
1868 odict_finalize(&used_space->ivals);
1869}
1870
1871/** Get first interval of used space.
1872 *
1873 * @param used_space Used space map
1874 * @return First interval or @c NULL if there are none
1875 */
1876used_space_ival_t *used_space_first(used_space_t *used_space)
1877{
1878 odlink_t *odlink = odict_first(&used_space->ivals);
1879
1880 if (odlink == NULL)
1881 return NULL;
1882
1883 return odict_get_instance(odlink, used_space_ival_t, lused_space);
1884}
1885
1886/** Get next interval of used space.
1887 *
1888 * @param cur Current interval
1889 * @return Next interval or @c NULL if there are none
1890 */
1891used_space_ival_t *used_space_next(used_space_ival_t *cur)
1892{
1893 odlink_t *odlink = odict_next(&cur->lused_space,
1894 &cur->used_space->ivals);
1895
1896 if (odlink == NULL)
1897 return NULL;
1898
1899 return odict_get_instance(odlink, used_space_ival_t, lused_space);
1900}
1901
1902/** Get last interval of used space.
1903 *
1904 * @param used_space Used space map
1905 * @return First interval or @c NULL if there are none
1906 */
1907static used_space_ival_t *used_space_last(used_space_t *used_space)
1908{
1909 odlink_t *odlink = odict_last(&used_space->ivals);
1910
1911 if (odlink == NULL)
1912 return NULL;
1913
1914 return odict_get_instance(odlink, used_space_ival_t, lused_space);
1915}
1916
1917/** Find the first interval that contains addresses greater than or equal to
1918 * @a ptr.
1919 *
1920 * @param used_space Used space map
1921 * @param ptr Virtual address
1922 *
1923 * @return Used space interval or @c NULL if none matches
1924 */
1925used_space_ival_t *used_space_find_gteq(used_space_t *used_space, uintptr_t ptr)
1926{
1927 odlink_t *odlink;
1928 used_space_ival_t *ival;
1929
1930 /* Find last interval to start at address less than @a ptr */
1931 odlink = odict_find_lt(&used_space->ivals, &ptr, NULL);
1932 if (odlink != NULL) {
1933 ival = odict_get_instance(odlink, used_space_ival_t,
1934 lused_space);
1935
1936 /* If the interval extends above @a ptr, return it */
1937 if (ival->page + P2SZ(ival->count) > ptr)
1938 return ival;
1939
1940 /*
1941 * Otherwise, if a next interval exists, it must match
1942 * the criteria.
1943 */
1944 odlink = odict_next(&ival->lused_space, &used_space->ivals);
1945 } else {
1946 /*
1947 * No interval with lower base address, so if there is any
1948 * interval at all, it must match the criteria
1949 */
1950 odlink = odict_first(&used_space->ivals);
1951 }
1952
1953 if (odlink != NULL) {
1954 ival = odict_get_instance(odlink, used_space_ival_t,
1955 lused_space);
1956 return ival;
1957 }
1958
1959 return NULL;
1960}
1961
1962/** Get key function for used space ordered dictionary.
1963 *
1964 * The key is the virtual address of the first page
1965 *
1966 * @param odlink Ordered dictionary link (used_space_ival_t.lused_space)
1967 * @return Pointer to virtual address of first page cast as @c void *.
1968 */
1969static void *used_space_getkey(odlink_t *odlink)
1970{
1971 used_space_ival_t *ival = odict_get_instance(odlink, used_space_ival_t,
1972 lused_space);
1973 return (void *) &ival->page;
1974}
1975
1976/** Compare function for used space ordered dictionary.
1977 *
1978 * @param a Pointer to virtual address of first page cast as @c void *
1979 * @param b Pointer to virtual address of first page cast as @c void *
1980 * @return Less than zero, zero, greater than zero if virtual address @a a
1981 * is less than, equal to, greater than virtual address b, respectively.
1982 */
1983static int used_space_cmp(void *a, void *b)
1984{
1985 uintptr_t va = *(uintptr_t *) a;
1986 uintptr_t vb = *(uintptr_t *) b;
1987
1988 if (va < vb)
1989 return -1;
1990 else if (va == vb)
1991 return 0;
1992 else
1993 return +1;
1994}
1995
1996/** Remove used space interval.
1997 *
1998 * @param ival Used space interval
1999 */
2000static void used_space_remove_ival(used_space_ival_t *ival)
2001{
2002 ival->used_space->pages -= ival->count;
2003 odict_remove(&ival->lused_space);
2004 slab_free(used_space_ival_cache, ival);
2005}
2006
2007/** Shorten used space interval.
2008 *
2009 * @param ival Used space interval
2010 * @param count New number of pages in the interval
2011 */
2012static void used_space_shorten_ival(used_space_ival_t *ival, size_t count)
2013{
2014 assert(count > 0);
2015 assert(count < ival->count);
2016
2017 ival->used_space->pages -= ival->count - count;
2018 ival->count = count;
2019}
2020
2021/** Mark portion of address space area as used.
2022 *
2023 * The address space area must be already locked.
2024 *
2025 * @param used_space Used space map
2026 * @param page First page to be marked.
2027 * @param count Number of page to be marked.
2028 *
2029 * @return False on failure or true on success.
2030 *
2031 */
2032bool used_space_insert(used_space_t *used_space, uintptr_t page, size_t count)
2033{
2034 used_space_ival_t *a;
2035 used_space_ival_t *b;
2036 bool adj_a;
2037 bool adj_b;
2038 odlink_t *odlink;
2039 used_space_ival_t *ival;
2040
2041 assert(IS_ALIGNED(page, PAGE_SIZE));
2042 assert(count);
2043
2044 /* Interval to the left */
2045 odlink = odict_find_lt(&used_space->ivals, &page, NULL);
2046 a = (odlink != NULL) ?
2047 odict_get_instance(odlink, used_space_ival_t, lused_space) :
2048 NULL;
2049
2050 /* Interval to the right */
2051 b = (a != NULL) ? used_space_next(a) :
2052 used_space_first(used_space);
2053
2054 /* Check for conflict with left interval */
2055 if (a != NULL && overlaps(a->page, P2SZ(a->count), page, P2SZ(count)))
2056 return false;
2057
2058 /* Check for conflict with right interval */
2059 if (b != NULL && overlaps(page, P2SZ(count), b->page, P2SZ(b->count)))
2060 return false;
2061
2062 /* Check if A is adjacent to the new interval */
2063 adj_a = (a != NULL) && (a->page + P2SZ(a->count) == page);
2064 /* Check if the new interval is adjacent to B */
2065 adj_b = (b != NULL) && page + P2SZ(count) == b->page;
2066
2067 if (adj_a && adj_b) {
2068 /* Fuse into a single interval */
2069 a->count += count + b->count;
2070 used_space_remove_ival(b);
2071 } else if (adj_a) {
2072 /* Append to A */
2073 a->count += count;
2074 } else if (adj_b) {
2075 /* Prepend to B */
2076 b->page = page;
2077 b->count += count;
2078 } else {
2079 /* Create new interval */
2080 ival = slab_alloc(used_space_ival_cache, 0);
2081 ival->used_space = used_space;
2082 odlink_initialize(&ival->lused_space);
2083 ival->page = page;
2084 ival->count = count;
2085
2086 odict_insert(&ival->lused_space, &used_space->ivals,
2087 NULL);
2088 }
2089
2090 used_space->pages += count;
2091 return true;
2092}
2093
2094/*
2095 * Address space related syscalls.
2096 */
2097
2098sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2099 uintptr_t bound, uspace_ptr_as_area_pager_info_t pager_info)
2100{
2101 uintptr_t virt = base;
2102 mem_backend_t *backend;
2103 mem_backend_data_t backend_data;
2104
2105 if (!pager_info)
2106 backend = &anon_backend;
2107 else {
2108 backend = &user_backend;
2109 if (copy_from_uspace(&backend_data.pager_info, pager_info,
2110 sizeof(as_area_pager_info_t)) != EOK) {
2111 return (sysarg_t) AS_MAP_FAILED;
2112 }
2113 }
2114 as_area_t *area = as_area_create(AS, flags, size,
2115 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2116 if (area == NULL)
2117 return (sysarg_t) AS_MAP_FAILED;
2118
2119 return (sysarg_t) virt;
2120}
2121
2122sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2123{
2124 return (sys_errno_t) as_area_resize(AS, address, size, 0);
2125}
2126
2127sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2128{
2129 return (sys_errno_t) as_area_change_flags(AS, flags, address);
2130}
2131
2132sys_errno_t sys_as_area_get_info(uintptr_t address, uspace_ptr_as_area_info_t dest)
2133{
2134 as_area_t *area;
2135 as_area_info_t info;
2136
2137 /* Prevent leaking stack bytes via structure padding. */
2138 memset(&info, 0, sizeof(info));
2139
2140 mutex_lock(&AS->lock);
2141 area = find_area_and_lock(AS, address);
2142 if (area == NULL) {
2143 mutex_unlock(&AS->lock);
2144 return ENOENT;
2145 }
2146
2147 info.start_addr = area->base;
2148 info.size = P2SZ(area->pages);
2149 info.flags = area->flags;
2150
2151 mutex_unlock(&area->lock);
2152 mutex_unlock(&AS->lock);
2153
2154 copy_to_uspace(dest, &info, sizeof(info));
2155 return EOK;
2156}
2157
2158sys_errno_t sys_as_area_destroy(uintptr_t address)
2159{
2160 return (sys_errno_t) as_area_destroy(AS, address);
2161}
2162
2163/** Get list of address space areas.
2164 *
2165 * @param as Address space.
2166 * @param obuf Place to save pointer to returned buffer.
2167 * @param osize Place to save size of returned buffer.
2168 *
2169 */
2170as_area_info_t *as_get_area_info(as_t *as, size_t *osize)
2171{
2172 mutex_lock(&as->lock);
2173
2174 /* Count number of areas. */
2175 size_t area_cnt = odict_count(&as->as_areas);
2176
2177 size_t isize = area_cnt * sizeof(as_area_info_t);
2178 as_area_info_t *info = malloc(isize);
2179 if (!info) {
2180 mutex_unlock(&as->lock);
2181 return NULL;
2182 }
2183
2184 /* Record area data. */
2185
2186 size_t area_idx = 0;
2187
2188 as_area_t *area = as_area_first(as);
2189 while (area != NULL) {
2190 assert(area_idx < area_cnt);
2191 mutex_lock(&area->lock);
2192
2193 info[area_idx].start_addr = area->base;
2194 info[area_idx].size = P2SZ(area->pages);
2195 info[area_idx].flags = area->flags;
2196 ++area_idx;
2197
2198 mutex_unlock(&area->lock);
2199 area = as_area_next(area);
2200 }
2201
2202 mutex_unlock(&as->lock);
2203
2204 *osize = isize;
2205 return info;
2206}
2207
2208/** Print out information about address space.
2209 *
2210 * @param as Address space.
2211 *
2212 */
2213void as_print(as_t *as)
2214{
2215 mutex_lock(&as->lock);
2216
2217 /* Print out info about address space areas */
2218 as_area_t *area = as_area_first(as);
2219 while (area != NULL) {
2220 mutex_lock(&area->lock);
2221 printf("as_area: %p, base=%p, pages=%zu"
2222 " (%p - %p)\n", area, (void *) area->base,
2223 area->pages, (void *) area->base,
2224 (void *) (area->base + P2SZ(area->pages)));
2225 mutex_unlock(&area->lock);
2226
2227 area = as_area_next(area);
2228 }
2229
2230 mutex_unlock(&as->lock);
2231}
2232
2233/** @}
2234 */
Note: See TracBrowser for help on using the repository browser.