source: mainline/kernel/generic/src/mm/as.c@ c6e314a

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c6e314a was c6e314a, checked in by Jakub Jermar <jakub@…>, 19 years ago

Change hw_map() on sparc64 to use virtual addresses that are
beyond the end of physical memory. It is beneficial in two
ways: first, physical memory is no longer being wasted by
otherwise necessary calls to frame_alloc() and, second,
virtual addresses for devices are now correctly allocated
and do not overlap with the 4M TLB-locked mapping for
kernel text and data.

  • Property mode set to 100644
File size: 41.2 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81/**
82 * Each architecture decides what functions will be used to carry out
83 * address space operations such as creating or locking page tables.
84 */
85as_operations_t *as_operations = NULL;
86
87/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
88SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
89
90/**
91 * This list contains address spaces that are not active on any
92 * processor and that have valid ASID.
93 */
94LIST_INITIALIZE(inactive_as_with_asid_head);
95
96/** Kernel address space. */
97as_t *AS_KERNEL = NULL;
98
99static int area_flags_to_page_flags(int aflags);
100static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
101static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area);
102static void sh_info_remove_reference(share_info_t *sh_info);
103
104/** Initialize address space subsystem. */
105void as_init(void)
106{
107 as_arch_init();
108 AS_KERNEL = as_create(FLAG_AS_KERNEL);
109 if (!AS_KERNEL)
110 panic("can't create kernel address space\n");
111
112}
113
114/** Create address space.
115 *
116 * @param flags Flags that influence way in wich the address space is created.
117 */
118as_t *as_create(int flags)
119{
120 as_t *as;
121
122 as = (as_t *) malloc(sizeof(as_t), 0);
123 link_initialize(&as->inactive_as_with_asid_link);
124 mutex_initialize(&as->lock);
125 btree_create(&as->as_area_btree);
126
127 if (flags & FLAG_AS_KERNEL)
128 as->asid = ASID_KERNEL;
129 else
130 as->asid = ASID_INVALID;
131
132 as->refcount = 0;
133 as->cpu_refcount = 0;
134 as->page_table = page_table_create(flags);
135
136 return as;
137}
138
139/** Destroy adress space.
140 *
141 * When there are no tasks referencing this address space (i.e. its refcount is zero),
142 * the address space can be destroyed.
143 */
144void as_destroy(as_t *as)
145{
146 ipl_t ipl;
147 bool cond;
148
149 ASSERT(as->refcount == 0);
150
151 /*
152 * Since there is no reference to this area,
153 * it is safe not to lock its mutex.
154 */
155 ipl = interrupts_disable();
156 spinlock_lock(&inactive_as_with_asid_lock);
157 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
158 if (as != AS && as->cpu_refcount == 0)
159 list_remove(&as->inactive_as_with_asid_link);
160 asid_put(as->asid);
161 }
162 spinlock_unlock(&inactive_as_with_asid_lock);
163
164 /*
165 * Destroy address space areas of the address space.
166 * The B+tee must be walked carefully because it is
167 * also being destroyed.
168 */
169 for (cond = true; cond; ) {
170 btree_node_t *node;
171
172 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
173 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
174
175 if ((cond = node->keys)) {
176 as_area_destroy(as, node->key[0]);
177 }
178 }
179
180 btree_destroy(&as->as_area_btree);
181 page_table_destroy(as->page_table);
182
183 interrupts_restore(ipl);
184
185 free(as);
186}
187
188/** Create address space area of common attributes.
189 *
190 * The created address space area is added to the target address space.
191 *
192 * @param as Target address space.
193 * @param flags Flags of the area memory.
194 * @param size Size of area.
195 * @param base Base address of area.
196 * @param attrs Attributes of the area.
197 * @param backend Address space area backend. NULL if no backend is used.
198 * @param backend_data NULL or a pointer to an array holding two void *.
199 *
200 * @return Address space area on success or NULL on failure.
201 */
202as_area_t *as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
203 mem_backend_t *backend, mem_backend_data_t *backend_data)
204{
205 ipl_t ipl;
206 as_area_t *a;
207
208 if (base % PAGE_SIZE)
209 return NULL;
210
211 if (!size)
212 return NULL;
213
214 /* Writeable executable areas are not supported. */
215 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
216 return NULL;
217
218 ipl = interrupts_disable();
219 mutex_lock(&as->lock);
220
221 if (!check_area_conflicts(as, base, size, NULL)) {
222 mutex_unlock(&as->lock);
223 interrupts_restore(ipl);
224 return NULL;
225 }
226
227 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
228
229 mutex_initialize(&a->lock);
230
231 a->as = as;
232 a->flags = flags;
233 a->attributes = attrs;
234 a->pages = SIZE2FRAMES(size);
235 a->base = base;
236 a->sh_info = NULL;
237 a->backend = backend;
238 if (backend_data)
239 a->backend_data = *backend_data;
240 else
241 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data), 0);
242
243 btree_create(&a->used_space);
244
245 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
246
247 mutex_unlock(&as->lock);
248 interrupts_restore(ipl);
249
250 return a;
251}
252
253/** Find address space area and change it.
254 *
255 * @param as Address space.
256 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
257 * @param size New size of the virtual memory block starting at address.
258 * @param flags Flags influencing the remap operation. Currently unused.
259 *
260 * @return Zero on success or a value from @ref errno.h otherwise.
261 */
262int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
263{
264 as_area_t *area;
265 ipl_t ipl;
266 size_t pages;
267
268 ipl = interrupts_disable();
269 mutex_lock(&as->lock);
270
271 /*
272 * Locate the area.
273 */
274 area = find_area_and_lock(as, address);
275 if (!area) {
276 mutex_unlock(&as->lock);
277 interrupts_restore(ipl);
278 return ENOENT;
279 }
280
281 if (area->backend == &phys_backend) {
282 /*
283 * Remapping of address space areas associated
284 * with memory mapped devices is not supported.
285 */
286 mutex_unlock(&area->lock);
287 mutex_unlock(&as->lock);
288 interrupts_restore(ipl);
289 return ENOTSUP;
290 }
291 if (area->sh_info) {
292 /*
293 * Remapping of shared address space areas
294 * is not supported.
295 */
296 mutex_unlock(&area->lock);
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299 return ENOTSUP;
300 }
301
302 pages = SIZE2FRAMES((address - area->base) + size);
303 if (!pages) {
304 /*
305 * Zero size address space areas are not allowed.
306 */
307 mutex_unlock(&area->lock);
308 mutex_unlock(&as->lock);
309 interrupts_restore(ipl);
310 return EPERM;
311 }
312
313 if (pages < area->pages) {
314 bool cond;
315 uintptr_t start_free = area->base + pages*PAGE_SIZE;
316
317 /*
318 * Shrinking the area.
319 * No need to check for overlaps.
320 */
321
322 /*
323 * Start TLB shootdown sequence.
324 */
325 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
326
327 /*
328 * Remove frames belonging to used space starting from
329 * the highest addresses downwards until an overlap with
330 * the resized address space area is found. Note that this
331 * is also the right way to remove part of the used_space
332 * B+tree leaf list.
333 */
334 for (cond = true; cond;) {
335 btree_node_t *node;
336
337 ASSERT(!list_empty(&area->used_space.leaf_head));
338 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
339 if ((cond = (bool) node->keys)) {
340 uintptr_t b = node->key[node->keys - 1];
341 count_t c = (count_t) node->value[node->keys - 1];
342 int i = 0;
343
344 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
345
346 if (b + c*PAGE_SIZE <= start_free) {
347 /*
348 * The whole interval fits completely
349 * in the resized address space area.
350 */
351 break;
352 }
353
354 /*
355 * Part of the interval corresponding to b and c
356 * overlaps with the resized address space area.
357 */
358
359 cond = false; /* we are almost done */
360 i = (start_free - b) >> PAGE_WIDTH;
361 if (!used_space_remove(area, start_free, c - i))
362 panic("Could not remove used space.");
363 } else {
364 /*
365 * The interval of used space can be completely removed.
366 */
367 if (!used_space_remove(area, b, c))
368 panic("Could not remove used space.\n");
369 }
370
371 for (; i < c; i++) {
372 pte_t *pte;
373
374 page_table_lock(as, false);
375 pte = page_mapping_find(as, b + i*PAGE_SIZE);
376 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
377 if (area->backend && area->backend->frame_free) {
378 area->backend->frame_free(area,
379 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
380 }
381 page_mapping_remove(as, b + i*PAGE_SIZE);
382 page_table_unlock(as, false);
383 }
384 }
385 }
386
387 /*
388 * Finish TLB shootdown sequence.
389 */
390 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
391 tlb_shootdown_finalize();
392 } else {
393 /*
394 * Growing the area.
395 * Check for overlaps with other address space areas.
396 */
397 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
398 mutex_unlock(&area->lock);
399 mutex_unlock(&as->lock);
400 interrupts_restore(ipl);
401 return EADDRNOTAVAIL;
402 }
403 }
404
405 area->pages = pages;
406
407 mutex_unlock(&area->lock);
408 mutex_unlock(&as->lock);
409 interrupts_restore(ipl);
410
411 return 0;
412}
413
414/** Destroy address space area.
415 *
416 * @param as Address space.
417 * @param address Address withing the area to be deleted.
418 *
419 * @return Zero on success or a value from @ref errno.h on failure.
420 */
421int as_area_destroy(as_t *as, uintptr_t address)
422{
423 as_area_t *area;
424 uintptr_t base;
425 link_t *cur;
426 ipl_t ipl;
427
428 ipl = interrupts_disable();
429 mutex_lock(&as->lock);
430
431 area = find_area_and_lock(as, address);
432 if (!area) {
433 mutex_unlock(&as->lock);
434 interrupts_restore(ipl);
435 return ENOENT;
436 }
437
438 base = area->base;
439
440 /*
441 * Start TLB shootdown sequence.
442 */
443 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
444
445 /*
446 * Visit only the pages mapped by used_space B+tree.
447 */
448 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
449 btree_node_t *node;
450 int i;
451
452 node = list_get_instance(cur, btree_node_t, leaf_link);
453 for (i = 0; i < node->keys; i++) {
454 uintptr_t b = node->key[i];
455 count_t j;
456 pte_t *pte;
457
458 for (j = 0; j < (count_t) node->value[i]; j++) {
459 page_table_lock(as, false);
460 pte = page_mapping_find(as, b + j*PAGE_SIZE);
461 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
462 if (area->backend && area->backend->frame_free) {
463 area->backend->frame_free(area,
464 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
465 }
466 page_mapping_remove(as, b + j*PAGE_SIZE);
467 page_table_unlock(as, false);
468 }
469 }
470 }
471
472 /*
473 * Finish TLB shootdown sequence.
474 */
475 tlb_invalidate_pages(AS->asid, area->base, area->pages);
476 tlb_shootdown_finalize();
477
478 btree_destroy(&area->used_space);
479
480 area->attributes |= AS_AREA_ATTR_PARTIAL;
481
482 if (area->sh_info)
483 sh_info_remove_reference(area->sh_info);
484
485 mutex_unlock(&area->lock);
486
487 /*
488 * Remove the empty area from address space.
489 */
490 btree_remove(&AS->as_area_btree, base, NULL);
491
492 free(area);
493
494 mutex_unlock(&AS->lock);
495 interrupts_restore(ipl);
496 return 0;
497}
498
499/** Share address space area with another or the same address space.
500 *
501 * Address space area mapping is shared with a new address space area.
502 * If the source address space area has not been shared so far,
503 * a new sh_info is created. The new address space area simply gets the
504 * sh_info of the source area. The process of duplicating the
505 * mapping is done through the backend share function.
506 *
507 * @param src_as Pointer to source address space.
508 * @param src_base Base address of the source address space area.
509 * @param acc_size Expected size of the source area.
510 * @param dst_as Pointer to destination address space.
511 * @param dst_base Target base address.
512 * @param dst_flags_mask Destination address space area flags mask.
513 *
514 * @return Zero on success or ENOENT if there is no such task or
515 * if there is no such address space area,
516 * EPERM if there was a problem in accepting the area or
517 * ENOMEM if there was a problem in allocating destination
518 * address space area. ENOTSUP is returned if an attempt
519 * to share non-anonymous address space area is detected.
520 */
521int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
522 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
523{
524 ipl_t ipl;
525 int src_flags;
526 size_t src_size;
527 as_area_t *src_area, *dst_area;
528 share_info_t *sh_info;
529 mem_backend_t *src_backend;
530 mem_backend_data_t src_backend_data;
531
532 ipl = interrupts_disable();
533 mutex_lock(&src_as->lock);
534 src_area = find_area_and_lock(src_as, src_base);
535 if (!src_area) {
536 /*
537 * Could not find the source address space area.
538 */
539 mutex_unlock(&src_as->lock);
540 interrupts_restore(ipl);
541 return ENOENT;
542 }
543
544 if (!src_area->backend || !src_area->backend->share) {
545 /*
546 * There is now backend or the backend does not
547 * know how to share the area.
548 */
549 mutex_unlock(&src_area->lock);
550 mutex_unlock(&src_as->lock);
551 interrupts_restore(ipl);
552 return ENOTSUP;
553 }
554
555 src_size = src_area->pages * PAGE_SIZE;
556 src_flags = src_area->flags;
557 src_backend = src_area->backend;
558 src_backend_data = src_area->backend_data;
559
560 /* Share the cacheable flag from the original mapping */
561 if (src_flags & AS_AREA_CACHEABLE)
562 dst_flags_mask |= AS_AREA_CACHEABLE;
563
564 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
565 mutex_unlock(&src_area->lock);
566 mutex_unlock(&src_as->lock);
567 interrupts_restore(ipl);
568 return EPERM;
569 }
570
571 /*
572 * Now we are committed to sharing the area.
573 * First prepare the area for sharing.
574 * Then it will be safe to unlock it.
575 */
576 sh_info = src_area->sh_info;
577 if (!sh_info) {
578 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
579 mutex_initialize(&sh_info->lock);
580 sh_info->refcount = 2;
581 btree_create(&sh_info->pagemap);
582 src_area->sh_info = sh_info;
583 } else {
584 mutex_lock(&sh_info->lock);
585 sh_info->refcount++;
586 mutex_unlock(&sh_info->lock);
587 }
588
589 src_area->backend->share(src_area);
590
591 mutex_unlock(&src_area->lock);
592 mutex_unlock(&src_as->lock);
593
594 /*
595 * Create copy of the source address space area.
596 * The destination area is created with AS_AREA_ATTR_PARTIAL
597 * attribute set which prevents race condition with
598 * preliminary as_page_fault() calls.
599 * The flags of the source area are masked against dst_flags_mask
600 * to support sharing in less privileged mode.
601 */
602 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
603 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
604 if (!dst_area) {
605 /*
606 * Destination address space area could not be created.
607 */
608 sh_info_remove_reference(sh_info);
609
610 interrupts_restore(ipl);
611 return ENOMEM;
612 }
613
614 /*
615 * Now the destination address space area has been
616 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
617 * attribute and set the sh_info.
618 */
619 mutex_lock(&dst_area->lock);
620 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
621 dst_area->sh_info = sh_info;
622 mutex_unlock(&dst_area->lock);
623
624 interrupts_restore(ipl);
625
626 return 0;
627}
628
629/** Check access mode for address space area.
630 *
631 * The address space area must be locked prior to this call.
632 *
633 * @param area Address space area.
634 * @param access Access mode.
635 *
636 * @return False if access violates area's permissions, true otherwise.
637 */
638bool as_area_check_access(as_area_t *area, pf_access_t access)
639{
640 int flagmap[] = {
641 [PF_ACCESS_READ] = AS_AREA_READ,
642 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
643 [PF_ACCESS_EXEC] = AS_AREA_EXEC
644 };
645
646 if (!(area->flags & flagmap[access]))
647 return false;
648
649 return true;
650}
651
652/** Handle page fault within the current address space.
653 *
654 * This is the high-level page fault handler. It decides
655 * whether the page fault can be resolved by any backend
656 * and if so, it invokes the backend to resolve the page
657 * fault.
658 *
659 * Interrupts are assumed disabled.
660 *
661 * @param page Faulting page.
662 * @param access Access mode that caused the fault (i.e. read/write/exec).
663 * @param istate Pointer to interrupted state.
664 *
665 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
666 * fault was caused by copy_to_uspace() or copy_from_uspace().
667 */
668int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
669{
670 pte_t *pte;
671 as_area_t *area;
672
673 if (!THREAD)
674 return AS_PF_FAULT;
675
676 ASSERT(AS);
677
678 mutex_lock(&AS->lock);
679 area = find_area_and_lock(AS, page);
680 if (!area) {
681 /*
682 * No area contained mapping for 'page'.
683 * Signal page fault to low-level handler.
684 */
685 mutex_unlock(&AS->lock);
686 goto page_fault;
687 }
688
689 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
690 /*
691 * The address space area is not fully initialized.
692 * Avoid possible race by returning error.
693 */
694 mutex_unlock(&area->lock);
695 mutex_unlock(&AS->lock);
696 goto page_fault;
697 }
698
699 if (!area->backend || !area->backend->page_fault) {
700 /*
701 * The address space area is not backed by any backend
702 * or the backend cannot handle page faults.
703 */
704 mutex_unlock(&area->lock);
705 mutex_unlock(&AS->lock);
706 goto page_fault;
707 }
708
709 page_table_lock(AS, false);
710
711 /*
712 * To avoid race condition between two page faults
713 * on the same address, we need to make sure
714 * the mapping has not been already inserted.
715 */
716 if ((pte = page_mapping_find(AS, page))) {
717 if (PTE_PRESENT(pte)) {
718 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
719 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
720 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
721 page_table_unlock(AS, false);
722 mutex_unlock(&area->lock);
723 mutex_unlock(&AS->lock);
724 return AS_PF_OK;
725 }
726 }
727 }
728
729 /*
730 * Resort to the backend page fault handler.
731 */
732 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
733 page_table_unlock(AS, false);
734 mutex_unlock(&area->lock);
735 mutex_unlock(&AS->lock);
736 goto page_fault;
737 }
738
739 page_table_unlock(AS, false);
740 mutex_unlock(&area->lock);
741 mutex_unlock(&AS->lock);
742 return AS_PF_OK;
743
744page_fault:
745 if (THREAD->in_copy_from_uspace) {
746 THREAD->in_copy_from_uspace = false;
747 istate_set_retaddr(istate, (uintptr_t) &memcpy_from_uspace_failover_address);
748 } else if (THREAD->in_copy_to_uspace) {
749 THREAD->in_copy_to_uspace = false;
750 istate_set_retaddr(istate, (uintptr_t) &memcpy_to_uspace_failover_address);
751 } else {
752 return AS_PF_FAULT;
753 }
754
755 return AS_PF_DEFER;
756}
757
758/** Switch address spaces.
759 *
760 * Note that this function cannot sleep as it is essentially a part of
761 * scheduling. Sleeping here would lead to deadlock on wakeup.
762 *
763 * @param old Old address space or NULL.
764 * @param new New address space.
765 */
766void as_switch(as_t *old, as_t *new)
767{
768 ipl_t ipl;
769 bool needs_asid = false;
770
771 ipl = interrupts_disable();
772 spinlock_lock(&inactive_as_with_asid_lock);
773
774 /*
775 * First, take care of the old address space.
776 */
777 if (old) {
778 mutex_lock_active(&old->lock);
779 ASSERT(old->cpu_refcount);
780 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
781 /*
782 * The old address space is no longer active on
783 * any processor. It can be appended to the
784 * list of inactive address spaces with assigned
785 * ASID.
786 */
787 ASSERT(old->asid != ASID_INVALID);
788 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
789 }
790 mutex_unlock(&old->lock);
791 }
792
793 /*
794 * Second, prepare the new address space.
795 */
796 mutex_lock_active(&new->lock);
797 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
798 if (new->asid != ASID_INVALID)
799 list_remove(&new->inactive_as_with_asid_link);
800 else
801 needs_asid = true; /* defer call to asid_get() until new->lock is released */
802 }
803 SET_PTL0_ADDRESS(new->page_table);
804 mutex_unlock(&new->lock);
805
806 if (needs_asid) {
807 /*
808 * Allocation of new ASID was deferred
809 * until now in order to avoid deadlock.
810 */
811 asid_t asid;
812
813 asid = asid_get();
814 mutex_lock_active(&new->lock);
815 new->asid = asid;
816 mutex_unlock(&new->lock);
817 }
818 spinlock_unlock(&inactive_as_with_asid_lock);
819 interrupts_restore(ipl);
820
821 /*
822 * Perform architecture-specific steps.
823 * (e.g. write ASID to hardware register etc.)
824 */
825 as_install_arch(new);
826
827 AS = new;
828}
829
830/** Convert address space area flags to page flags.
831 *
832 * @param aflags Flags of some address space area.
833 *
834 * @return Flags to be passed to page_mapping_insert().
835 */
836int area_flags_to_page_flags(int aflags)
837{
838 int flags;
839
840 flags = PAGE_USER | PAGE_PRESENT;
841
842 if (aflags & AS_AREA_READ)
843 flags |= PAGE_READ;
844
845 if (aflags & AS_AREA_WRITE)
846 flags |= PAGE_WRITE;
847
848 if (aflags & AS_AREA_EXEC)
849 flags |= PAGE_EXEC;
850
851 if (aflags & AS_AREA_CACHEABLE)
852 flags |= PAGE_CACHEABLE;
853
854 return flags;
855}
856
857/** Compute flags for virtual address translation subsytem.
858 *
859 * The address space area must be locked.
860 * Interrupts must be disabled.
861 *
862 * @param a Address space area.
863 *
864 * @return Flags to be used in page_mapping_insert().
865 */
866int as_area_get_flags(as_area_t *a)
867{
868 return area_flags_to_page_flags(a->flags);
869}
870
871/** Create page table.
872 *
873 * Depending on architecture, create either address space
874 * private or global page table.
875 *
876 * @param flags Flags saying whether the page table is for kernel address space.
877 *
878 * @return First entry of the page table.
879 */
880pte_t *page_table_create(int flags)
881{
882 ASSERT(as_operations);
883 ASSERT(as_operations->page_table_create);
884
885 return as_operations->page_table_create(flags);
886}
887
888/** Destroy page table.
889 *
890 * Destroy page table in architecture specific way.
891 *
892 * @param page_table Physical address of PTL0.
893 */
894void page_table_destroy(pte_t *page_table)
895{
896 ASSERT(as_operations);
897 ASSERT(as_operations->page_table_destroy);
898
899 as_operations->page_table_destroy(page_table);
900}
901
902/** Lock page table.
903 *
904 * This function should be called before any page_mapping_insert(),
905 * page_mapping_remove() and page_mapping_find().
906 *
907 * Locking order is such that address space areas must be locked
908 * prior to this call. Address space can be locked prior to this
909 * call in which case the lock argument is false.
910 *
911 * @param as Address space.
912 * @param lock If false, do not attempt to lock as->lock.
913 */
914void page_table_lock(as_t *as, bool lock)
915{
916 ASSERT(as_operations);
917 ASSERT(as_operations->page_table_lock);
918
919 as_operations->page_table_lock(as, lock);
920}
921
922/** Unlock page table.
923 *
924 * @param as Address space.
925 * @param unlock If false, do not attempt to unlock as->lock.
926 */
927void page_table_unlock(as_t *as, bool unlock)
928{
929 ASSERT(as_operations);
930 ASSERT(as_operations->page_table_unlock);
931
932 as_operations->page_table_unlock(as, unlock);
933}
934
935
936/** Find address space area and lock it.
937 *
938 * The address space must be locked and interrupts must be disabled.
939 *
940 * @param as Address space.
941 * @param va Virtual address.
942 *
943 * @return Locked address space area containing va on success or NULL on failure.
944 */
945as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
946{
947 as_area_t *a;
948 btree_node_t *leaf, *lnode;
949 int i;
950
951 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
952 if (a) {
953 /* va is the base address of an address space area */
954 mutex_lock(&a->lock);
955 return a;
956 }
957
958 /*
959 * Search the leaf node and the righmost record of its left neighbour
960 * to find out whether this is a miss or va belongs to an address
961 * space area found there.
962 */
963
964 /* First, search the leaf node itself. */
965 for (i = 0; i < leaf->keys; i++) {
966 a = (as_area_t *) leaf->value[i];
967 mutex_lock(&a->lock);
968 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
969 return a;
970 }
971 mutex_unlock(&a->lock);
972 }
973
974 /*
975 * Second, locate the left neighbour and test its last record.
976 * Because of its position in the B+tree, it must have base < va.
977 */
978 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
979 a = (as_area_t *) lnode->value[lnode->keys - 1];
980 mutex_lock(&a->lock);
981 if (va < a->base + a->pages * PAGE_SIZE) {
982 return a;
983 }
984 mutex_unlock(&a->lock);
985 }
986
987 return NULL;
988}
989
990/** Check area conflicts with other areas.
991 *
992 * The address space must be locked and interrupts must be disabled.
993 *
994 * @param as Address space.
995 * @param va Starting virtual address of the area being tested.
996 * @param size Size of the area being tested.
997 * @param avoid_area Do not touch this area.
998 *
999 * @return True if there is no conflict, false otherwise.
1000 */
1001bool check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1002{
1003 as_area_t *a;
1004 btree_node_t *leaf, *node;
1005 int i;
1006
1007 /*
1008 * We don't want any area to have conflicts with NULL page.
1009 */
1010 if (overlaps(va, size, NULL, PAGE_SIZE))
1011 return false;
1012
1013 /*
1014 * The leaf node is found in O(log n), where n is proportional to
1015 * the number of address space areas belonging to as.
1016 * The check for conflicts is then attempted on the rightmost
1017 * record in the left neighbour, the leftmost record in the right
1018 * neighbour and all records in the leaf node itself.
1019 */
1020
1021 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1022 if (a != avoid_area)
1023 return false;
1024 }
1025
1026 /* First, check the two border cases. */
1027 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1028 a = (as_area_t *) node->value[node->keys - 1];
1029 mutex_lock(&a->lock);
1030 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1031 mutex_unlock(&a->lock);
1032 return false;
1033 }
1034 mutex_unlock(&a->lock);
1035 }
1036 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1037 a = (as_area_t *) node->value[0];
1038 mutex_lock(&a->lock);
1039 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1040 mutex_unlock(&a->lock);
1041 return false;
1042 }
1043 mutex_unlock(&a->lock);
1044 }
1045
1046 /* Second, check the leaf node. */
1047 for (i = 0; i < leaf->keys; i++) {
1048 a = (as_area_t *) leaf->value[i];
1049
1050 if (a == avoid_area)
1051 continue;
1052
1053 mutex_lock(&a->lock);
1054 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1055 mutex_unlock(&a->lock);
1056 return false;
1057 }
1058 mutex_unlock(&a->lock);
1059 }
1060
1061 /*
1062 * So far, the area does not conflict with other areas.
1063 * Check if it doesn't conflict with kernel address space.
1064 */
1065 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1066 return !overlaps(va, size,
1067 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1068 }
1069
1070 return true;
1071}
1072
1073/** Return size of the address space area with given base. */
1074size_t as_get_size(uintptr_t base)
1075{
1076 ipl_t ipl;
1077 as_area_t *src_area;
1078 size_t size;
1079
1080 ipl = interrupts_disable();
1081 src_area = find_area_and_lock(AS, base);
1082 if (src_area){
1083 size = src_area->pages * PAGE_SIZE;
1084 mutex_unlock(&src_area->lock);
1085 } else {
1086 size = 0;
1087 }
1088 interrupts_restore(ipl);
1089 return size;
1090}
1091
1092/** Mark portion of address space area as used.
1093 *
1094 * The address space area must be already locked.
1095 *
1096 * @param a Address space area.
1097 * @param page First page to be marked.
1098 * @param count Number of page to be marked.
1099 *
1100 * @return 0 on failure and 1 on success.
1101 */
1102int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1103{
1104 btree_node_t *leaf, *node;
1105 count_t pages;
1106 int i;
1107
1108 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1109 ASSERT(count);
1110
1111 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1112 if (pages) {
1113 /*
1114 * We hit the beginning of some used space.
1115 */
1116 return 0;
1117 }
1118
1119 if (!leaf->keys) {
1120 btree_insert(&a->used_space, page, (void *) count, leaf);
1121 return 1;
1122 }
1123
1124 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1125 if (node) {
1126 uintptr_t left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1127 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1128
1129 /*
1130 * Examine the possibility that the interval fits
1131 * somewhere between the rightmost interval of
1132 * the left neigbour and the first interval of the leaf.
1133 */
1134
1135 if (page >= right_pg) {
1136 /* Do nothing. */
1137 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1138 /* The interval intersects with the left interval. */
1139 return 0;
1140 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1141 /* The interval intersects with the right interval. */
1142 return 0;
1143 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1144 /* The interval can be added by merging the two already present intervals. */
1145 node->value[node->keys - 1] += count + right_cnt;
1146 btree_remove(&a->used_space, right_pg, leaf);
1147 return 1;
1148 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1149 /* The interval can be added by simply growing the left interval. */
1150 node->value[node->keys - 1] += count;
1151 return 1;
1152 } else if (page + count*PAGE_SIZE == right_pg) {
1153 /*
1154 * The interval can be addded by simply moving base of the right
1155 * interval down and increasing its size accordingly.
1156 */
1157 leaf->value[0] += count;
1158 leaf->key[0] = page;
1159 return 1;
1160 } else {
1161 /*
1162 * The interval is between both neigbouring intervals,
1163 * but cannot be merged with any of them.
1164 */
1165 btree_insert(&a->used_space, page, (void *) count, leaf);
1166 return 1;
1167 }
1168 } else if (page < leaf->key[0]) {
1169 uintptr_t right_pg = leaf->key[0];
1170 count_t right_cnt = (count_t) leaf->value[0];
1171
1172 /*
1173 * Investigate the border case in which the left neighbour does not
1174 * exist but the interval fits from the left.
1175 */
1176
1177 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1178 /* The interval intersects with the right interval. */
1179 return 0;
1180 } else if (page + count*PAGE_SIZE == right_pg) {
1181 /*
1182 * The interval can be added by moving the base of the right interval down
1183 * and increasing its size accordingly.
1184 */
1185 leaf->key[0] = page;
1186 leaf->value[0] += count;
1187 return 1;
1188 } else {
1189 /*
1190 * The interval doesn't adjoin with the right interval.
1191 * It must be added individually.
1192 */
1193 btree_insert(&a->used_space, page, (void *) count, leaf);
1194 return 1;
1195 }
1196 }
1197
1198 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1199 if (node) {
1200 uintptr_t left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1201 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1202
1203 /*
1204 * Examine the possibility that the interval fits
1205 * somewhere between the leftmost interval of
1206 * the right neigbour and the last interval of the leaf.
1207 */
1208
1209 if (page < left_pg) {
1210 /* Do nothing. */
1211 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1212 /* The interval intersects with the left interval. */
1213 return 0;
1214 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1215 /* The interval intersects with the right interval. */
1216 return 0;
1217 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1218 /* The interval can be added by merging the two already present intervals. */
1219 leaf->value[leaf->keys - 1] += count + right_cnt;
1220 btree_remove(&a->used_space, right_pg, node);
1221 return 1;
1222 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1223 /* The interval can be added by simply growing the left interval. */
1224 leaf->value[leaf->keys - 1] += count;
1225 return 1;
1226 } else if (page + count*PAGE_SIZE == right_pg) {
1227 /*
1228 * The interval can be addded by simply moving base of the right
1229 * interval down and increasing its size accordingly.
1230 */
1231 node->value[0] += count;
1232 node->key[0] = page;
1233 return 1;
1234 } else {
1235 /*
1236 * The interval is between both neigbouring intervals,
1237 * but cannot be merged with any of them.
1238 */
1239 btree_insert(&a->used_space, page, (void *) count, leaf);
1240 return 1;
1241 }
1242 } else if (page >= leaf->key[leaf->keys - 1]) {
1243 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1244 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1245
1246 /*
1247 * Investigate the border case in which the right neighbour does not
1248 * exist but the interval fits from the right.
1249 */
1250
1251 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1252 /* The interval intersects with the left interval. */
1253 return 0;
1254 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1255 /* The interval can be added by growing the left interval. */
1256 leaf->value[leaf->keys - 1] += count;
1257 return 1;
1258 } else {
1259 /*
1260 * The interval doesn't adjoin with the left interval.
1261 * It must be added individually.
1262 */
1263 btree_insert(&a->used_space, page, (void *) count, leaf);
1264 return 1;
1265 }
1266 }
1267
1268 /*
1269 * Note that if the algorithm made it thus far, the interval can fit only
1270 * between two other intervals of the leaf. The two border cases were already
1271 * resolved.
1272 */
1273 for (i = 1; i < leaf->keys; i++) {
1274 if (page < leaf->key[i]) {
1275 uintptr_t left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1276 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1277
1278 /*
1279 * The interval fits between left_pg and right_pg.
1280 */
1281
1282 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1283 /* The interval intersects with the left interval. */
1284 return 0;
1285 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1286 /* The interval intersects with the right interval. */
1287 return 0;
1288 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1289 /* The interval can be added by merging the two already present intervals. */
1290 leaf->value[i - 1] += count + right_cnt;
1291 btree_remove(&a->used_space, right_pg, leaf);
1292 return 1;
1293 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1294 /* The interval can be added by simply growing the left interval. */
1295 leaf->value[i - 1] += count;
1296 return 1;
1297 } else if (page + count*PAGE_SIZE == right_pg) {
1298 /*
1299 * The interval can be addded by simply moving base of the right
1300 * interval down and increasing its size accordingly.
1301 */
1302 leaf->value[i] += count;
1303 leaf->key[i] = page;
1304 return 1;
1305 } else {
1306 /*
1307 * The interval is between both neigbouring intervals,
1308 * but cannot be merged with any of them.
1309 */
1310 btree_insert(&a->used_space, page, (void *) count, leaf);
1311 return 1;
1312 }
1313 }
1314 }
1315
1316 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1317}
1318
1319/** Mark portion of address space area as unused.
1320 *
1321 * The address space area must be already locked.
1322 *
1323 * @param a Address space area.
1324 * @param page First page to be marked.
1325 * @param count Number of page to be marked.
1326 *
1327 * @return 0 on failure and 1 on success.
1328 */
1329int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1330{
1331 btree_node_t *leaf, *node;
1332 count_t pages;
1333 int i;
1334
1335 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1336 ASSERT(count);
1337
1338 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1339 if (pages) {
1340 /*
1341 * We are lucky, page is the beginning of some interval.
1342 */
1343 if (count > pages) {
1344 return 0;
1345 } else if (count == pages) {
1346 btree_remove(&a->used_space, page, leaf);
1347 return 1;
1348 } else {
1349 /*
1350 * Find the respective interval.
1351 * Decrease its size and relocate its start address.
1352 */
1353 for (i = 0; i < leaf->keys; i++) {
1354 if (leaf->key[i] == page) {
1355 leaf->key[i] += count*PAGE_SIZE;
1356 leaf->value[i] -= count;
1357 return 1;
1358 }
1359 }
1360 goto error;
1361 }
1362 }
1363
1364 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1365 if (node && page < leaf->key[0]) {
1366 uintptr_t left_pg = node->key[node->keys - 1];
1367 count_t left_cnt = (count_t) node->value[node->keys - 1];
1368
1369 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1370 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1371 /*
1372 * The interval is contained in the rightmost interval
1373 * of the left neighbour and can be removed by
1374 * updating the size of the bigger interval.
1375 */
1376 node->value[node->keys - 1] -= count;
1377 return 1;
1378 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1379 count_t new_cnt;
1380
1381 /*
1382 * The interval is contained in the rightmost interval
1383 * of the left neighbour but its removal requires
1384 * both updating the size of the original interval and
1385 * also inserting a new interval.
1386 */
1387 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1388 node->value[node->keys - 1] -= count + new_cnt;
1389 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1390 return 1;
1391 }
1392 }
1393 return 0;
1394 } else if (page < leaf->key[0]) {
1395 return 0;
1396 }
1397
1398 if (page > leaf->key[leaf->keys - 1]) {
1399 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1400 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1401
1402 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1403 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1404 /*
1405 * The interval is contained in the rightmost interval
1406 * of the leaf and can be removed by updating the size
1407 * of the bigger interval.
1408 */
1409 leaf->value[leaf->keys - 1] -= count;
1410 return 1;
1411 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1412 count_t new_cnt;
1413
1414 /*
1415 * The interval is contained in the rightmost interval
1416 * of the leaf but its removal requires both updating
1417 * the size of the original interval and
1418 * also inserting a new interval.
1419 */
1420 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1421 leaf->value[leaf->keys - 1] -= count + new_cnt;
1422 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1423 return 1;
1424 }
1425 }
1426 return 0;
1427 }
1428
1429 /*
1430 * The border cases have been already resolved.
1431 * Now the interval can be only between intervals of the leaf.
1432 */
1433 for (i = 1; i < leaf->keys - 1; i++) {
1434 if (page < leaf->key[i]) {
1435 uintptr_t left_pg = leaf->key[i - 1];
1436 count_t left_cnt = (count_t) leaf->value[i - 1];
1437
1438 /*
1439 * Now the interval is between intervals corresponding to (i - 1) and i.
1440 */
1441 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1442 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1443 /*
1444 * The interval is contained in the interval (i - 1)
1445 * of the leaf and can be removed by updating the size
1446 * of the bigger interval.
1447 */
1448 leaf->value[i - 1] -= count;
1449 return 1;
1450 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1451 count_t new_cnt;
1452
1453 /*
1454 * The interval is contained in the interval (i - 1)
1455 * of the leaf but its removal requires both updating
1456 * the size of the original interval and
1457 * also inserting a new interval.
1458 */
1459 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1460 leaf->value[i - 1] -= count + new_cnt;
1461 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1462 return 1;
1463 }
1464 }
1465 return 0;
1466 }
1467 }
1468
1469error:
1470 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1471}
1472
1473/** Remove reference to address space area share info.
1474 *
1475 * If the reference count drops to 0, the sh_info is deallocated.
1476 *
1477 * @param sh_info Pointer to address space area share info.
1478 */
1479void sh_info_remove_reference(share_info_t *sh_info)
1480{
1481 bool dealloc = false;
1482
1483 mutex_lock(&sh_info->lock);
1484 ASSERT(sh_info->refcount);
1485 if (--sh_info->refcount == 0) {
1486 dealloc = true;
1487 link_t *cur;
1488
1489 /*
1490 * Now walk carefully the pagemap B+tree and free/remove
1491 * reference from all frames found there.
1492 */
1493 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1494 btree_node_t *node;
1495 int i;
1496
1497 node = list_get_instance(cur, btree_node_t, leaf_link);
1498 for (i = 0; i < node->keys; i++)
1499 frame_free((uintptr_t) node->value[i]);
1500 }
1501
1502 }
1503 mutex_unlock(&sh_info->lock);
1504
1505 if (dealloc) {
1506 btree_destroy(&sh_info->pagemap);
1507 free(sh_info);
1508 }
1509}
1510
1511/*
1512 * Address space related syscalls.
1513 */
1514
1515/** Wrapper for as_area_create(). */
1516unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1517{
1518 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1519 return (unative_t) address;
1520 else
1521 return (unative_t) -1;
1522}
1523
1524/** Wrapper for as_area_resize(). */
1525unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1526{
1527 return (unative_t) as_area_resize(AS, address, size, 0);
1528}
1529
1530/** Wrapper for as_area_destroy(). */
1531unative_t sys_as_area_destroy(uintptr_t address)
1532{
1533 return (unative_t) as_area_destroy(AS, address);
1534}
1535
1536/** @}
1537 */
Note: See TracBrowser for help on using the repository browser.