source: mainline/kernel/generic/src/mm/as.c@ b3b7e14a

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since b3b7e14a was 8f80c77, checked in by Jakub Jermar <jakub@…>, 15 years ago

Lock/interrupt assertions in the code are self-documenting. No need to have that information duplicated in the comments.

  • Property mode set to 100644
File size: 52.5 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 *
89 */
90as_operations_t *as_operations = NULL;
91
92/**
93 * Slab for as_t objects.
94 *
95 */
96static slab_cache_t *as_slab;
97
98/**
99 * This lock serializes access to the ASID subsystem.
100 * It protects:
101 * - inactive_as_with_asid_head list
102 * - as->asid for each as of the as_t type
103 * - asids_allocated counter
104 *
105 */
106SPINLOCK_INITIALIZE(asidlock);
107
108/**
109 * This list contains address spaces that are not active on any
110 * processor and that have valid ASID.
111 *
112 */
113LIST_INITIALIZE(inactive_as_with_asid_head);
114
115/** Kernel address space. */
116as_t *AS_KERNEL = NULL;
117
118static unsigned int area_flags_to_page_flags(unsigned int);
119static as_area_t *find_area_and_lock(as_t *, uintptr_t);
120static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
121static void sh_info_remove_reference(share_info_t *);
122
123static int as_constructor(void *obj, unsigned int flags)
124{
125 as_t *as = (as_t *) obj;
126
127 link_initialize(&as->inactive_as_with_asid_link);
128 mutex_initialize(&as->lock, MUTEX_PASSIVE);
129
130 int rc = as_constructor_arch(as, flags);
131
132 return rc;
133}
134
135static size_t as_destructor(void *obj)
136{
137 as_t *as = (as_t *) obj;
138 return as_destructor_arch(as);
139}
140
141/** Initialize address space subsystem. */
142void as_init(void)
143{
144 as_arch_init();
145
146 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
147 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
148
149 AS_KERNEL = as_create(FLAG_AS_KERNEL);
150 if (!AS_KERNEL)
151 panic("Cannot create kernel address space.");
152
153 /* Make sure the kernel address space
154 * reference count never drops to zero.
155 */
156 as_hold(AS_KERNEL);
157}
158
159/** Create address space.
160 *
161 * @param flags Flags that influence the way in wich the address
162 * space is created.
163 *
164 */
165as_t *as_create(unsigned int flags)
166{
167 as_t *as = (as_t *) slab_alloc(as_slab, 0);
168 (void) as_create_arch(as, 0);
169
170 btree_create(&as->as_area_btree);
171
172 if (flags & FLAG_AS_KERNEL)
173 as->asid = ASID_KERNEL;
174 else
175 as->asid = ASID_INVALID;
176
177 atomic_set(&as->refcount, 0);
178 as->cpu_refcount = 0;
179
180#ifdef AS_PAGE_TABLE
181 as->genarch.page_table = page_table_create(flags);
182#else
183 page_table_create(flags);
184#endif
185
186 return as;
187}
188
189/** Destroy adress space.
190 *
191 * When there are no tasks referencing this address space (i.e. its refcount is
192 * zero), the address space can be destroyed.
193 *
194 * We know that we don't hold any spinlock.
195 *
196 * @param as Address space to be destroyed.
197 *
198 */
199void as_destroy(as_t *as)
200{
201 DEADLOCK_PROBE_INIT(p_asidlock);
202
203 ASSERT(as != AS);
204 ASSERT(atomic_get(&as->refcount) == 0);
205
206 /*
207 * Since there is no reference to this address space, it is safe not to
208 * lock its mutex.
209 */
210
211 /*
212 * We need to avoid deadlock between TLB shootdown and asidlock.
213 * We therefore try to take asid conditionally and if we don't succeed,
214 * we enable interrupts and try again. This is done while preemption is
215 * disabled to prevent nested context switches. We also depend on the
216 * fact that so far no spinlocks are held.
217 *
218 */
219 preemption_disable();
220 ipl_t ipl = interrupts_read();
221
222retry:
223 interrupts_disable();
224 if (!spinlock_trylock(&asidlock)) {
225 interrupts_enable();
226 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
227 goto retry;
228 }
229
230 /* Interrupts disabled, enable preemption */
231 preemption_enable();
232
233 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
234 if (as->cpu_refcount == 0)
235 list_remove(&as->inactive_as_with_asid_link);
236
237 asid_put(as->asid);
238 }
239
240 spinlock_unlock(&asidlock);
241
242 /*
243 * Destroy address space areas of the address space.
244 * The B+tree must be walked carefully because it is
245 * also being destroyed.
246 *
247 */
248 bool cond = true;
249 while (cond) {
250 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
251
252 btree_node_t *node =
253 list_get_instance(as->as_area_btree.leaf_head.next,
254 btree_node_t, leaf_link);
255
256 if ((cond = node->keys))
257 as_area_destroy(as, node->key[0]);
258 }
259
260 btree_destroy(&as->as_area_btree);
261
262#ifdef AS_PAGE_TABLE
263 page_table_destroy(as->genarch.page_table);
264#else
265 page_table_destroy(NULL);
266#endif
267
268 interrupts_restore(ipl);
269
270 slab_free(as_slab, as);
271}
272
273/** Hold a reference to an address space.
274 *
275 * Holding a reference to an address space prevents destruction of that address
276 * space.
277 *
278 * @param as Address space to be held.
279 *
280 */
281void as_hold(as_t *as)
282{
283 atomic_inc(&as->refcount);
284}
285
286/** Release a reference to an address space.
287 *
288 * The last one to release a reference to an address space destroys the address
289 * space.
290 *
291 * @param asAddress space to be released.
292 *
293 */
294void as_release(as_t *as)
295{
296 if (atomic_predec(&as->refcount) == 0)
297 as_destroy(as);
298}
299
300/** Create address space area of common attributes.
301 *
302 * The created address space area is added to the target address space.
303 *
304 * @param as Target address space.
305 * @param flags Flags of the area memory.
306 * @param size Size of area.
307 * @param base Base address of area.
308 * @param attrs Attributes of the area.
309 * @param backend Address space area backend. NULL if no backend is used.
310 * @param backend_data NULL or a pointer to an array holding two void *.
311 *
312 * @return Address space area on success or NULL on failure.
313 *
314 */
315as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
316 uintptr_t base, unsigned int attrs, mem_backend_t *backend,
317 mem_backend_data_t *backend_data)
318{
319 if (base % PAGE_SIZE)
320 return NULL;
321
322 if (!size)
323 return NULL;
324
325 /* Writeable executable areas are not supported. */
326 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
327 return NULL;
328
329 ipl_t ipl = interrupts_disable();
330 mutex_lock(&as->lock);
331
332 if (!check_area_conflicts(as, base, size, NULL)) {
333 mutex_unlock(&as->lock);
334 interrupts_restore(ipl);
335 return NULL;
336 }
337
338 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t), 0);
339
340 mutex_initialize(&area->lock, MUTEX_PASSIVE);
341
342 area->as = as;
343 area->flags = flags;
344 area->attributes = attrs;
345 area->pages = SIZE2FRAMES(size);
346 area->base = base;
347 area->sh_info = NULL;
348 area->backend = backend;
349
350 if (backend_data)
351 area->backend_data = *backend_data;
352 else
353 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
354
355 btree_create(&area->used_space);
356 btree_insert(&as->as_area_btree, base, (void *) area, NULL);
357
358 mutex_unlock(&as->lock);
359 interrupts_restore(ipl);
360
361 return area;
362}
363
364/** Find address space area and change it.
365 *
366 * @param as Address space.
367 * @param address Virtual address belonging to the area to be changed.
368 * Must be page-aligned.
369 * @param size New size of the virtual memory block starting at
370 * address.
371 * @param flags Flags influencing the remap operation. Currently unused.
372 *
373 * @return Zero on success or a value from @ref errno.h otherwise.
374 *
375 */
376int as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
377{
378 ipl_t ipl = interrupts_disable();
379 mutex_lock(&as->lock);
380
381 /*
382 * Locate the area.
383 *
384 */
385 as_area_t *area = find_area_and_lock(as, address);
386 if (!area) {
387 mutex_unlock(&as->lock);
388 interrupts_restore(ipl);
389 return ENOENT;
390 }
391
392 if (area->backend == &phys_backend) {
393 /*
394 * Remapping of address space areas associated
395 * with memory mapped devices is not supported.
396 *
397 */
398 mutex_unlock(&area->lock);
399 mutex_unlock(&as->lock);
400 interrupts_restore(ipl);
401 return ENOTSUP;
402 }
403
404 if (area->sh_info) {
405 /*
406 * Remapping of shared address space areas
407 * is not supported.
408 *
409 */
410 mutex_unlock(&area->lock);
411 mutex_unlock(&as->lock);
412 interrupts_restore(ipl);
413 return ENOTSUP;
414 }
415
416 size_t pages = SIZE2FRAMES((address - area->base) + size);
417 if (!pages) {
418 /*
419 * Zero size address space areas are not allowed.
420 *
421 */
422 mutex_unlock(&area->lock);
423 mutex_unlock(&as->lock);
424 interrupts_restore(ipl);
425 return EPERM;
426 }
427
428 if (pages < area->pages) {
429 uintptr_t start_free = area->base + pages * PAGE_SIZE;
430
431 /*
432 * Shrinking the area.
433 * No need to check for overlaps.
434 *
435 */
436
437 page_table_lock(as, false);
438
439 /*
440 * Start TLB shootdown sequence.
441 *
442 */
443 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
444 pages * PAGE_SIZE, area->pages - pages);
445
446 /*
447 * Remove frames belonging to used space starting from
448 * the highest addresses downwards until an overlap with
449 * the resized address space area is found. Note that this
450 * is also the right way to remove part of the used_space
451 * B+tree leaf list.
452 *
453 */
454 bool cond = true;
455 while (cond) {
456 ASSERT(!list_empty(&area->used_space.leaf_head));
457
458 btree_node_t *node =
459 list_get_instance(area->used_space.leaf_head.prev,
460 btree_node_t, leaf_link);
461
462 if ((cond = (bool) node->keys)) {
463 uintptr_t ptr = node->key[node->keys - 1];
464 size_t size =
465 (size_t) node->value[node->keys - 1];
466 size_t i = 0;
467
468 if (overlaps(ptr, size * PAGE_SIZE, area->base,
469 pages * PAGE_SIZE)) {
470
471 if (ptr + size * PAGE_SIZE <= start_free) {
472 /*
473 * The whole interval fits
474 * completely in the resized
475 * address space area.
476 *
477 */
478 break;
479 }
480
481 /*
482 * Part of the interval corresponding
483 * to b and c overlaps with the resized
484 * address space area.
485 *
486 */
487
488 /* We are almost done */
489 cond = false;
490 i = (start_free - ptr) >> PAGE_WIDTH;
491 if (!used_space_remove(area, start_free,
492 size - i))
493 panic("Cannot remove used space.");
494 } else {
495 /*
496 * The interval of used space can be
497 * completely removed.
498 */
499 if (!used_space_remove(area, ptr, size))
500 panic("Cannot remove used space.");
501 }
502
503 for (; i < size; i++) {
504 pte_t *pte = page_mapping_find(as, ptr +
505 i * PAGE_SIZE);
506
507 ASSERT(pte);
508 ASSERT(PTE_VALID(pte));
509 ASSERT(PTE_PRESENT(pte));
510
511 if ((area->backend) &&
512 (area->backend->frame_free)) {
513 area->backend->frame_free(area,
514 ptr + i * PAGE_SIZE,
515 PTE_GET_FRAME(pte));
516 }
517
518 page_mapping_remove(as, ptr +
519 i * PAGE_SIZE);
520 }
521 }
522 }
523
524 /*
525 * Finish TLB shootdown sequence.
526 *
527 */
528
529 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
530 area->pages - pages);
531
532 /*
533 * Invalidate software translation caches (e.g. TSB on sparc64).
534 *
535 */
536 as_invalidate_translation_cache(as, area->base +
537 pages * PAGE_SIZE, area->pages - pages);
538 tlb_shootdown_finalize();
539
540 page_table_unlock(as, false);
541 } else {
542 /*
543 * Growing the area.
544 * Check for overlaps with other address space areas.
545 *
546 */
547 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
548 area)) {
549 mutex_unlock(&area->lock);
550 mutex_unlock(&as->lock);
551 interrupts_restore(ipl);
552 return EADDRNOTAVAIL;
553 }
554 }
555
556 area->pages = pages;
557
558 mutex_unlock(&area->lock);
559 mutex_unlock(&as->lock);
560 interrupts_restore(ipl);
561
562 return 0;
563}
564
565/** Destroy address space area.
566 *
567 * @param as Address space.
568 * @param address Address within the area to be deleted.
569 *
570 * @return Zero on success or a value from @ref errno.h on failure.
571 *
572 */
573int as_area_destroy(as_t *as, uintptr_t address)
574{
575 ipl_t ipl = interrupts_disable();
576 mutex_lock(&as->lock);
577
578 as_area_t *area = find_area_and_lock(as, address);
579 if (!area) {
580 mutex_unlock(&as->lock);
581 interrupts_restore(ipl);
582 return ENOENT;
583 }
584
585 uintptr_t base = area->base;
586
587 page_table_lock(as, false);
588
589 /*
590 * Start TLB shootdown sequence.
591 */
592 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
593
594 /*
595 * Visit only the pages mapped by used_space B+tree.
596 */
597 link_t *cur;
598 for (cur = area->used_space.leaf_head.next;
599 cur != &area->used_space.leaf_head; cur = cur->next) {
600 btree_node_t *node;
601 btree_key_t i;
602
603 node = list_get_instance(cur, btree_node_t, leaf_link);
604 for (i = 0; i < node->keys; i++) {
605 uintptr_t ptr = node->key[i];
606 size_t size;
607
608 for (size = 0; size < (size_t) node->value[i]; size++) {
609 pte_t *pte = page_mapping_find(as, ptr + size * PAGE_SIZE);
610
611 ASSERT(pte);
612 ASSERT(PTE_VALID(pte));
613 ASSERT(PTE_PRESENT(pte));
614
615 if ((area->backend) &&
616 (area->backend->frame_free)) {
617 area->backend->frame_free(area,
618 ptr + size * PAGE_SIZE, PTE_GET_FRAME(pte));
619 }
620
621 page_mapping_remove(as, ptr + size * PAGE_SIZE);
622 }
623 }
624 }
625
626 /*
627 * Finish TLB shootdown sequence.
628 *
629 */
630
631 tlb_invalidate_pages(as->asid, area->base, area->pages);
632
633 /*
634 * Invalidate potential software translation caches (e.g. TSB on
635 * sparc64).
636 *
637 */
638 as_invalidate_translation_cache(as, area->base, area->pages);
639 tlb_shootdown_finalize();
640
641 page_table_unlock(as, false);
642
643 btree_destroy(&area->used_space);
644
645 area->attributes |= AS_AREA_ATTR_PARTIAL;
646
647 if (area->sh_info)
648 sh_info_remove_reference(area->sh_info);
649
650 mutex_unlock(&area->lock);
651
652 /*
653 * Remove the empty area from address space.
654 *
655 */
656 btree_remove(&as->as_area_btree, base, NULL);
657
658 free(area);
659
660 mutex_unlock(&as->lock);
661 interrupts_restore(ipl);
662 return 0;
663}
664
665/** Share address space area with another or the same address space.
666 *
667 * Address space area mapping is shared with a new address space area.
668 * If the source address space area has not been shared so far,
669 * a new sh_info is created. The new address space area simply gets the
670 * sh_info of the source area. The process of duplicating the
671 * mapping is done through the backend share function.
672 *
673 * @param src_as Pointer to source address space.
674 * @param src_base Base address of the source address space area.
675 * @param acc_size Expected size of the source area.
676 * @param dst_as Pointer to destination address space.
677 * @param dst_base Target base address.
678 * @param dst_flags_mask Destination address space area flags mask.
679 *
680 * @return Zero on success.
681 * @return ENOENT if there is no such task or such address space.
682 * @return EPERM if there was a problem in accepting the area.
683 * @return ENOMEM if there was a problem in allocating destination
684 * address space area.
685 * @return ENOTSUP if the address space area backend does not support
686 * sharing.
687 *
688 */
689int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
690 as_t *dst_as, uintptr_t dst_base, unsigned int dst_flags_mask)
691{
692 ipl_t ipl = interrupts_disable();
693 mutex_lock(&src_as->lock);
694 as_area_t *src_area = find_area_and_lock(src_as, src_base);
695 if (!src_area) {
696 /*
697 * Could not find the source address space area.
698 *
699 */
700 mutex_unlock(&src_as->lock);
701 interrupts_restore(ipl);
702 return ENOENT;
703 }
704
705 if ((!src_area->backend) || (!src_area->backend->share)) {
706 /*
707 * There is no backend or the backend does not
708 * know how to share the area.
709 *
710 */
711 mutex_unlock(&src_area->lock);
712 mutex_unlock(&src_as->lock);
713 interrupts_restore(ipl);
714 return ENOTSUP;
715 }
716
717 size_t src_size = src_area->pages * PAGE_SIZE;
718 unsigned int src_flags = src_area->flags;
719 mem_backend_t *src_backend = src_area->backend;
720 mem_backend_data_t src_backend_data = src_area->backend_data;
721
722 /* Share the cacheable flag from the original mapping */
723 if (src_flags & AS_AREA_CACHEABLE)
724 dst_flags_mask |= AS_AREA_CACHEABLE;
725
726 if ((src_size != acc_size) ||
727 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
728 mutex_unlock(&src_area->lock);
729 mutex_unlock(&src_as->lock);
730 interrupts_restore(ipl);
731 return EPERM;
732 }
733
734 /*
735 * Now we are committed to sharing the area.
736 * First, prepare the area for sharing.
737 * Then it will be safe to unlock it.
738 *
739 */
740 share_info_t *sh_info = src_area->sh_info;
741 if (!sh_info) {
742 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
743 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
744 sh_info->refcount = 2;
745 btree_create(&sh_info->pagemap);
746 src_area->sh_info = sh_info;
747
748 /*
749 * Call the backend to setup sharing.
750 *
751 */
752 src_area->backend->share(src_area);
753 } else {
754 mutex_lock(&sh_info->lock);
755 sh_info->refcount++;
756 mutex_unlock(&sh_info->lock);
757 }
758
759 mutex_unlock(&src_area->lock);
760 mutex_unlock(&src_as->lock);
761
762 /*
763 * Create copy of the source address space area.
764 * The destination area is created with AS_AREA_ATTR_PARTIAL
765 * attribute set which prevents race condition with
766 * preliminary as_page_fault() calls.
767 * The flags of the source area are masked against dst_flags_mask
768 * to support sharing in less privileged mode.
769 *
770 */
771 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask, src_size,
772 dst_base, AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
773 if (!dst_area) {
774 /*
775 * Destination address space area could not be created.
776 */
777 sh_info_remove_reference(sh_info);
778
779 interrupts_restore(ipl);
780 return ENOMEM;
781 }
782
783 /*
784 * Now the destination address space area has been
785 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
786 * attribute and set the sh_info.
787 *
788 */
789 mutex_lock(&dst_as->lock);
790 mutex_lock(&dst_area->lock);
791 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
792 dst_area->sh_info = sh_info;
793 mutex_unlock(&dst_area->lock);
794 mutex_unlock(&dst_as->lock);
795
796 interrupts_restore(ipl);
797
798 return 0;
799}
800
801/** Check access mode for address space area.
802 *
803 * @param area Address space area.
804 * @param access Access mode.
805 *
806 * @return False if access violates area's permissions, true
807 * otherwise.
808 *
809 */
810bool as_area_check_access(as_area_t *area, pf_access_t access)
811{
812 int flagmap[] = {
813 [PF_ACCESS_READ] = AS_AREA_READ,
814 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
815 [PF_ACCESS_EXEC] = AS_AREA_EXEC
816 };
817
818 ASSERT(interrupts_disabled());
819 ASSERT(mutex_locked(&area->lock));
820
821 if (!(area->flags & flagmap[access]))
822 return false;
823
824 return true;
825}
826
827/** Change adress space area flags.
828 *
829 * The idea is to have the same data, but with a different access mode.
830 * This is needed e.g. for writing code into memory and then executing it.
831 * In order for this to work properly, this may copy the data
832 * into private anonymous memory (unless it's already there).
833 *
834 * @param as Address space.
835 * @param flags Flags of the area memory.
836 * @param address Address within the area to be changed.
837 *
838 * @return Zero on success or a value from @ref errno.h on failure.
839 *
840 */
841int as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
842{
843 /* Flags for the new memory mapping */
844 unsigned int page_flags = area_flags_to_page_flags(flags);
845
846 ipl_t ipl = interrupts_disable();
847 mutex_lock(&as->lock);
848
849 as_area_t *area = find_area_and_lock(as, address);
850 if (!area) {
851 mutex_unlock(&as->lock);
852 interrupts_restore(ipl);
853 return ENOENT;
854 }
855
856 if ((area->sh_info) || (area->backend != &anon_backend)) {
857 /* Copying shared areas not supported yet */
858 /* Copying non-anonymous memory not supported yet */
859 mutex_unlock(&area->lock);
860 mutex_unlock(&as->lock);
861 interrupts_restore(ipl);
862 return ENOTSUP;
863 }
864
865 /*
866 * Compute total number of used pages in the used_space B+tree
867 *
868 */
869 size_t used_pages = 0;
870 link_t *cur;
871
872 for (cur = area->used_space.leaf_head.next;
873 cur != &area->used_space.leaf_head; cur = cur->next) {
874 btree_node_t *node
875 = list_get_instance(cur, btree_node_t, leaf_link);
876 btree_key_t i;
877
878 for (i = 0; i < node->keys; i++)
879 used_pages += (size_t) node->value[i];
880 }
881
882 /* An array for storing frame numbers */
883 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
884
885 page_table_lock(as, false);
886
887 /*
888 * Start TLB shootdown sequence.
889 *
890 */
891 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
892
893 /*
894 * Remove used pages from page tables and remember their frame
895 * numbers.
896 *
897 */
898 size_t frame_idx = 0;
899
900 for (cur = area->used_space.leaf_head.next;
901 cur != &area->used_space.leaf_head; cur = cur->next) {
902 btree_node_t *node
903 = list_get_instance(cur, btree_node_t, leaf_link);
904 btree_key_t i;
905
906 for (i = 0; i < node->keys; i++) {
907 uintptr_t ptr = node->key[i];
908 size_t size;
909
910 for (size = 0; size < (size_t) node->value[i]; size++) {
911 pte_t *pte = page_mapping_find(as, ptr + size * PAGE_SIZE);
912
913 ASSERT(pte);
914 ASSERT(PTE_VALID(pte));
915 ASSERT(PTE_PRESENT(pte));
916
917 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
918
919 /* Remove old mapping */
920 page_mapping_remove(as, ptr + size * PAGE_SIZE);
921 }
922 }
923 }
924
925 /*
926 * Finish TLB shootdown sequence.
927 *
928 */
929
930 tlb_invalidate_pages(as->asid, area->base, area->pages);
931
932 /*
933 * Invalidate potential software translation caches (e.g. TSB on
934 * sparc64).
935 *
936 */
937 as_invalidate_translation_cache(as, area->base, area->pages);
938 tlb_shootdown_finalize();
939
940 page_table_unlock(as, false);
941
942 /*
943 * Set the new flags.
944 */
945 area->flags = flags;
946
947 /*
948 * Map pages back in with new flags. This step is kept separate
949 * so that the memory area could not be accesed with both the old and
950 * the new flags at once.
951 */
952 frame_idx = 0;
953
954 for (cur = area->used_space.leaf_head.next;
955 cur != &area->used_space.leaf_head; cur = cur->next) {
956 btree_node_t *node
957 = list_get_instance(cur, btree_node_t, leaf_link);
958 btree_key_t i;
959
960 for (i = 0; i < node->keys; i++) {
961 uintptr_t ptr = node->key[i];
962 size_t size;
963
964 for (size = 0; size < (size_t) node->value[i]; size++) {
965 page_table_lock(as, false);
966
967 /* Insert the new mapping */
968 page_mapping_insert(as, ptr + size * PAGE_SIZE,
969 old_frame[frame_idx++], page_flags);
970
971 page_table_unlock(as, false);
972 }
973 }
974 }
975
976 free(old_frame);
977
978 mutex_unlock(&area->lock);
979 mutex_unlock(&as->lock);
980 interrupts_restore(ipl);
981
982 return 0;
983}
984
985/** Handle page fault within the current address space.
986 *
987 * This is the high-level page fault handler. It decides whether the page fault
988 * can be resolved by any backend and if so, it invokes the backend to resolve
989 * the page fault.
990 *
991 * Interrupts are assumed disabled.
992 *
993 * @param page Faulting page.
994 * @param access Access mode that caused the page fault (i.e.
995 * read/write/exec).
996 * @param istate Pointer to the interrupted state.
997 *
998 * @return AS_PF_FAULT on page fault.
999 * @return AS_PF_OK on success.
1000 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1001 * or copy_from_uspace().
1002 *
1003 */
1004int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
1005{
1006 if (!THREAD)
1007 return AS_PF_FAULT;
1008
1009 if (!AS)
1010 return AS_PF_FAULT;
1011
1012 mutex_lock(&AS->lock);
1013 as_area_t *area = find_area_and_lock(AS, page);
1014 if (!area) {
1015 /*
1016 * No area contained mapping for 'page'.
1017 * Signal page fault to low-level handler.
1018 *
1019 */
1020 mutex_unlock(&AS->lock);
1021 goto page_fault;
1022 }
1023
1024 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1025 /*
1026 * The address space area is not fully initialized.
1027 * Avoid possible race by returning error.
1028 */
1029 mutex_unlock(&area->lock);
1030 mutex_unlock(&AS->lock);
1031 goto page_fault;
1032 }
1033
1034 if ((!area->backend) || (!area->backend->page_fault)) {
1035 /*
1036 * The address space area is not backed by any backend
1037 * or the backend cannot handle page faults.
1038 *
1039 */
1040 mutex_unlock(&area->lock);
1041 mutex_unlock(&AS->lock);
1042 goto page_fault;
1043 }
1044
1045 page_table_lock(AS, false);
1046
1047 /*
1048 * To avoid race condition between two page faults on the same address,
1049 * we need to make sure the mapping has not been already inserted.
1050 *
1051 */
1052 pte_t *pte;
1053 if ((pte = page_mapping_find(AS, page))) {
1054 if (PTE_PRESENT(pte)) {
1055 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
1056 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
1057 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1058 page_table_unlock(AS, false);
1059 mutex_unlock(&area->lock);
1060 mutex_unlock(&AS->lock);
1061 return AS_PF_OK;
1062 }
1063 }
1064 }
1065
1066 /*
1067 * Resort to the backend page fault handler.
1068 *
1069 */
1070 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1071 page_table_unlock(AS, false);
1072 mutex_unlock(&area->lock);
1073 mutex_unlock(&AS->lock);
1074 goto page_fault;
1075 }
1076
1077 page_table_unlock(AS, false);
1078 mutex_unlock(&area->lock);
1079 mutex_unlock(&AS->lock);
1080 return AS_PF_OK;
1081
1082page_fault:
1083 if (THREAD->in_copy_from_uspace) {
1084 THREAD->in_copy_from_uspace = false;
1085 istate_set_retaddr(istate,
1086 (uintptr_t) &memcpy_from_uspace_failover_address);
1087 } else if (THREAD->in_copy_to_uspace) {
1088 THREAD->in_copy_to_uspace = false;
1089 istate_set_retaddr(istate,
1090 (uintptr_t) &memcpy_to_uspace_failover_address);
1091 } else {
1092 return AS_PF_FAULT;
1093 }
1094
1095 return AS_PF_DEFER;
1096}
1097
1098/** Switch address spaces.
1099 *
1100 * Note that this function cannot sleep as it is essentially a part of
1101 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1102 * thing which is forbidden in this context is locking the address space.
1103 *
1104 * When this function is enetered, no spinlocks may be held.
1105 *
1106 * @param old Old address space or NULL.
1107 * @param new New address space.
1108 *
1109 */
1110void as_switch(as_t *old_as, as_t *new_as)
1111{
1112 DEADLOCK_PROBE_INIT(p_asidlock);
1113 preemption_disable();
1114
1115retry:
1116 (void) interrupts_disable();
1117 if (!spinlock_trylock(&asidlock)) {
1118 /*
1119 * Avoid deadlock with TLB shootdown.
1120 * We can enable interrupts here because
1121 * preemption is disabled. We should not be
1122 * holding any other lock.
1123 *
1124 */
1125 (void) interrupts_enable();
1126 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1127 goto retry;
1128 }
1129 preemption_enable();
1130
1131 /*
1132 * First, take care of the old address space.
1133 */
1134 if (old_as) {
1135 ASSERT(old_as->cpu_refcount);
1136
1137 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1138 /*
1139 * The old address space is no longer active on
1140 * any processor. It can be appended to the
1141 * list of inactive address spaces with assigned
1142 * ASID.
1143 *
1144 */
1145 ASSERT(old_as->asid != ASID_INVALID);
1146
1147 list_append(&old_as->inactive_as_with_asid_link,
1148 &inactive_as_with_asid_head);
1149 }
1150
1151 /*
1152 * Perform architecture-specific tasks when the address space
1153 * is being removed from the CPU.
1154 *
1155 */
1156 as_deinstall_arch(old_as);
1157 }
1158
1159 /*
1160 * Second, prepare the new address space.
1161 *
1162 */
1163 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1164 if (new_as->asid != ASID_INVALID)
1165 list_remove(&new_as->inactive_as_with_asid_link);
1166 else
1167 new_as->asid = asid_get();
1168 }
1169
1170#ifdef AS_PAGE_TABLE
1171 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1172#endif
1173
1174 /*
1175 * Perform architecture-specific steps.
1176 * (e.g. write ASID to hardware register etc.)
1177 *
1178 */
1179 as_install_arch(new_as);
1180
1181 spinlock_unlock(&asidlock);
1182
1183 AS = new_as;
1184}
1185
1186/** Convert address space area flags to page flags.
1187 *
1188 * @param aflags Flags of some address space area.
1189 *
1190 * @return Flags to be passed to page_mapping_insert().
1191 *
1192 */
1193unsigned int area_flags_to_page_flags(unsigned int aflags)
1194{
1195 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1196
1197 if (aflags & AS_AREA_READ)
1198 flags |= PAGE_READ;
1199
1200 if (aflags & AS_AREA_WRITE)
1201 flags |= PAGE_WRITE;
1202
1203 if (aflags & AS_AREA_EXEC)
1204 flags |= PAGE_EXEC;
1205
1206 if (aflags & AS_AREA_CACHEABLE)
1207 flags |= PAGE_CACHEABLE;
1208
1209 return flags;
1210}
1211
1212/** Compute flags for virtual address translation subsytem.
1213 *
1214 * @param area Address space area.
1215 *
1216 * @return Flags to be used in page_mapping_insert().
1217 *
1218 */
1219unsigned int as_area_get_flags(as_area_t *area)
1220{
1221 ASSERT(interrupts_disabled());
1222 ASSERT(mutex_locked(&area->lock));
1223
1224 return area_flags_to_page_flags(area->flags);
1225}
1226
1227/** Create page table.
1228 *
1229 * Depending on architecture, create either address space private or global page
1230 * table.
1231 *
1232 * @param flags Flags saying whether the page table is for the kernel
1233 * address space.
1234 *
1235 * @return First entry of the page table.
1236 *
1237 */
1238pte_t *page_table_create(unsigned int flags)
1239{
1240 ASSERT(as_operations);
1241 ASSERT(as_operations->page_table_create);
1242
1243 return as_operations->page_table_create(flags);
1244}
1245
1246/** Destroy page table.
1247 *
1248 * Destroy page table in architecture specific way.
1249 *
1250 * @param page_table Physical address of PTL0.
1251 *
1252 */
1253void page_table_destroy(pte_t *page_table)
1254{
1255 ASSERT(as_operations);
1256 ASSERT(as_operations->page_table_destroy);
1257
1258 as_operations->page_table_destroy(page_table);
1259}
1260
1261/** Lock page table.
1262 *
1263 * This function should be called before any page_mapping_insert(),
1264 * page_mapping_remove() and page_mapping_find().
1265 *
1266 * Locking order is such that address space areas must be locked
1267 * prior to this call. Address space can be locked prior to this
1268 * call in which case the lock argument is false.
1269 *
1270 * @param as Address space.
1271 * @param lock If false, do not attempt to lock as->lock.
1272 *
1273 */
1274void page_table_lock(as_t *as, bool lock)
1275{
1276 ASSERT(as_operations);
1277 ASSERT(as_operations->page_table_lock);
1278
1279 as_operations->page_table_lock(as, lock);
1280}
1281
1282/** Unlock page table.
1283 *
1284 * @param as Address space.
1285 * @param unlock If false, do not attempt to unlock as->lock.
1286 *
1287 */
1288void page_table_unlock(as_t *as, bool unlock)
1289{
1290 ASSERT(as_operations);
1291 ASSERT(as_operations->page_table_unlock);
1292
1293 as_operations->page_table_unlock(as, unlock);
1294}
1295
1296/** Test whether page tables are locked.
1297 *
1298 * @param as Address space where the page tables belong.
1299 *
1300 * @return True if the page tables belonging to the address soace
1301 * are locked, otherwise false.
1302 */
1303bool page_table_locked(as_t *as)
1304{
1305 ASSERT(as_operations);
1306 ASSERT(as_operations->page_table_locked);
1307
1308 return as_operations->page_table_locked(as);
1309}
1310
1311
1312/** Find address space area and lock it.
1313 *
1314 * @param as Address space.
1315 * @param va Virtual address.
1316 *
1317 * @return Locked address space area containing va on success or
1318 * NULL on failure.
1319 *
1320 */
1321as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1322{
1323 ASSERT(interrupts_disabled());
1324 ASSERT(mutex_locked(&as->lock));
1325
1326 btree_node_t *leaf;
1327 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1328 if (area) {
1329 /* va is the base address of an address space area */
1330 mutex_lock(&area->lock);
1331 return area;
1332 }
1333
1334 /*
1335 * Search the leaf node and the righmost record of its left neighbour
1336 * to find out whether this is a miss or va belongs to an address
1337 * space area found there.
1338 *
1339 */
1340
1341 /* First, search the leaf node itself. */
1342 btree_key_t i;
1343
1344 for (i = 0; i < leaf->keys; i++) {
1345 area = (as_area_t *) leaf->value[i];
1346
1347 mutex_lock(&area->lock);
1348
1349 if ((area->base <= va) && (va < area->base + area->pages * PAGE_SIZE))
1350 return area;
1351
1352 mutex_unlock(&area->lock);
1353 }
1354
1355 /*
1356 * Second, locate the left neighbour and test its last record.
1357 * Because of its position in the B+tree, it must have base < va.
1358 *
1359 */
1360 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1361 if (lnode) {
1362 area = (as_area_t *) lnode->value[lnode->keys - 1];
1363
1364 mutex_lock(&area->lock);
1365
1366 if (va < area->base + area->pages * PAGE_SIZE)
1367 return area;
1368
1369 mutex_unlock(&area->lock);
1370 }
1371
1372 return NULL;
1373}
1374
1375/** Check area conflicts with other areas.
1376 *
1377 * @param as Address space.
1378 * @param va Starting virtual address of the area being tested.
1379 * @param size Size of the area being tested.
1380 * @param avoid_area Do not touch this area.
1381 *
1382 * @return True if there is no conflict, false otherwise.
1383 *
1384 */
1385bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1386 as_area_t *avoid_area)
1387{
1388 ASSERT(interrupts_disabled());
1389 ASSERT(mutex_locked(&as->lock));
1390
1391 /*
1392 * We don't want any area to have conflicts with NULL page.
1393 *
1394 */
1395 if (overlaps(va, size, NULL, PAGE_SIZE))
1396 return false;
1397
1398 /*
1399 * The leaf node is found in O(log n), where n is proportional to
1400 * the number of address space areas belonging to as.
1401 * The check for conflicts is then attempted on the rightmost
1402 * record in the left neighbour, the leftmost record in the right
1403 * neighbour and all records in the leaf node itself.
1404 *
1405 */
1406 btree_node_t *leaf;
1407 as_area_t *area =
1408 (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1409 if (area) {
1410 if (area != avoid_area)
1411 return false;
1412 }
1413
1414 /* First, check the two border cases. */
1415 btree_node_t *node =
1416 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1417 if (node) {
1418 area = (as_area_t *) node->value[node->keys - 1];
1419
1420 mutex_lock(&area->lock);
1421
1422 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) {
1423 mutex_unlock(&area->lock);
1424 return false;
1425 }
1426
1427 mutex_unlock(&area->lock);
1428 }
1429
1430 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1431 if (node) {
1432 area = (as_area_t *) node->value[0];
1433
1434 mutex_lock(&area->lock);
1435
1436 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) {
1437 mutex_unlock(&area->lock);
1438 return false;
1439 }
1440
1441 mutex_unlock(&area->lock);
1442 }
1443
1444 /* Second, check the leaf node. */
1445 btree_key_t i;
1446 for (i = 0; i < leaf->keys; i++) {
1447 area = (as_area_t *) leaf->value[i];
1448
1449 if (area == avoid_area)
1450 continue;
1451
1452 mutex_lock(&area->lock);
1453
1454 if (overlaps(va, size, area->base, area->pages * PAGE_SIZE)) {
1455 mutex_unlock(&area->lock);
1456 return false;
1457 }
1458
1459 mutex_unlock(&area->lock);
1460 }
1461
1462 /*
1463 * So far, the area does not conflict with other areas.
1464 * Check if it doesn't conflict with kernel address space.
1465 *
1466 */
1467 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1468 return !overlaps(va, size,
1469 KERNEL_ADDRESS_SPACE_START,
1470 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1471 }
1472
1473 return true;
1474}
1475
1476/** Return size of the address space area with given base.
1477 *
1478 * @param base Arbitrary address inside the address space area.
1479 *
1480 * @return Size of the address space area in bytes or zero if it
1481 * does not exist.
1482 *
1483 */
1484size_t as_area_get_size(uintptr_t base)
1485{
1486 size_t size;
1487
1488 ipl_t ipl = interrupts_disable();
1489 page_table_lock(AS, true);
1490 as_area_t *src_area = find_area_and_lock(AS, base);
1491
1492 if (src_area) {
1493 size = src_area->pages * PAGE_SIZE;
1494 mutex_unlock(&src_area->lock);
1495 } else
1496 size = 0;
1497
1498 page_table_unlock(AS, true);
1499 interrupts_restore(ipl);
1500 return size;
1501}
1502
1503/** Mark portion of address space area as used.
1504 *
1505 * The address space area must be already locked.
1506 *
1507 * @param area Address space area.
1508 * @param page First page to be marked.
1509 * @param count Number of page to be marked.
1510 *
1511 * @return Zero on failure and non-zero on success.
1512 *
1513 */
1514int used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1515{
1516 ASSERT(mutex_locked(&area->lock));
1517 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1518 ASSERT(count);
1519
1520 btree_node_t *leaf;
1521 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1522 if (pages) {
1523 /*
1524 * We hit the beginning of some used space.
1525 *
1526 */
1527 return 0;
1528 }
1529
1530 if (!leaf->keys) {
1531 btree_insert(&area->used_space, page, (void *) count, leaf);
1532 return 1;
1533 }
1534
1535 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1536 if (node) {
1537 uintptr_t left_pg = node->key[node->keys - 1];
1538 uintptr_t right_pg = leaf->key[0];
1539 size_t left_cnt = (size_t) node->value[node->keys - 1];
1540 size_t right_cnt = (size_t) leaf->value[0];
1541
1542 /*
1543 * Examine the possibility that the interval fits
1544 * somewhere between the rightmost interval of
1545 * the left neigbour and the first interval of the leaf.
1546 *
1547 */
1548
1549 if (page >= right_pg) {
1550 /* Do nothing. */
1551 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1552 left_cnt * PAGE_SIZE)) {
1553 /* The interval intersects with the left interval. */
1554 return 0;
1555 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1556 right_cnt * PAGE_SIZE)) {
1557 /* The interval intersects with the right interval. */
1558 return 0;
1559 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1560 (page + count * PAGE_SIZE == right_pg)) {
1561 /*
1562 * The interval can be added by merging the two already
1563 * present intervals.
1564 *
1565 */
1566 node->value[node->keys - 1] += count + right_cnt;
1567 btree_remove(&area->used_space, right_pg, leaf);
1568 return 1;
1569 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1570 /*
1571 * The interval can be added by simply growing the left
1572 * interval.
1573 *
1574 */
1575 node->value[node->keys - 1] += count;
1576 return 1;
1577 } else if (page + count * PAGE_SIZE == right_pg) {
1578 /*
1579 * The interval can be addded by simply moving base of
1580 * the right interval down and increasing its size
1581 * accordingly.
1582 *
1583 */
1584 leaf->value[0] += count;
1585 leaf->key[0] = page;
1586 return 1;
1587 } else {
1588 /*
1589 * The interval is between both neigbouring intervals,
1590 * but cannot be merged with any of them.
1591 *
1592 */
1593 btree_insert(&area->used_space, page, (void *) count,
1594 leaf);
1595 return 1;
1596 }
1597 } else if (page < leaf->key[0]) {
1598 uintptr_t right_pg = leaf->key[0];
1599 size_t right_cnt = (size_t) leaf->value[0];
1600
1601 /*
1602 * Investigate the border case in which the left neighbour does
1603 * not exist but the interval fits from the left.
1604 *
1605 */
1606
1607 if (overlaps(page, count * PAGE_SIZE, right_pg,
1608 right_cnt * PAGE_SIZE)) {
1609 /* The interval intersects with the right interval. */
1610 return 0;
1611 } else if (page + count * PAGE_SIZE == right_pg) {
1612 /*
1613 * The interval can be added by moving the base of the
1614 * right interval down and increasing its size
1615 * accordingly.
1616 *
1617 */
1618 leaf->key[0] = page;
1619 leaf->value[0] += count;
1620 return 1;
1621 } else {
1622 /*
1623 * The interval doesn't adjoin with the right interval.
1624 * It must be added individually.
1625 *
1626 */
1627 btree_insert(&area->used_space, page, (void *) count,
1628 leaf);
1629 return 1;
1630 }
1631 }
1632
1633 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1634 if (node) {
1635 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1636 uintptr_t right_pg = node->key[0];
1637 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1638 size_t right_cnt = (size_t) node->value[0];
1639
1640 /*
1641 * Examine the possibility that the interval fits
1642 * somewhere between the leftmost interval of
1643 * the right neigbour and the last interval of the leaf.
1644 *
1645 */
1646
1647 if (page < left_pg) {
1648 /* Do nothing. */
1649 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1650 left_cnt * PAGE_SIZE)) {
1651 /* The interval intersects with the left interval. */
1652 return 0;
1653 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1654 right_cnt * PAGE_SIZE)) {
1655 /* The interval intersects with the right interval. */
1656 return 0;
1657 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1658 (page + count * PAGE_SIZE == right_pg)) {
1659 /*
1660 * The interval can be added by merging the two already
1661 * present intervals.
1662 *
1663 */
1664 leaf->value[leaf->keys - 1] += count + right_cnt;
1665 btree_remove(&area->used_space, right_pg, node);
1666 return 1;
1667 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1668 /*
1669 * The interval can be added by simply growing the left
1670 * interval.
1671 *
1672 */
1673 leaf->value[leaf->keys - 1] += count;
1674 return 1;
1675 } else if (page + count * PAGE_SIZE == right_pg) {
1676 /*
1677 * The interval can be addded by simply moving base of
1678 * the right interval down and increasing its size
1679 * accordingly.
1680 *
1681 */
1682 node->value[0] += count;
1683 node->key[0] = page;
1684 return 1;
1685 } else {
1686 /*
1687 * The interval is between both neigbouring intervals,
1688 * but cannot be merged with any of them.
1689 *
1690 */
1691 btree_insert(&area->used_space, page, (void *) count,
1692 leaf);
1693 return 1;
1694 }
1695 } else if (page >= leaf->key[leaf->keys - 1]) {
1696 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1697 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1698
1699 /*
1700 * Investigate the border case in which the right neighbour
1701 * does not exist but the interval fits from the right.
1702 *
1703 */
1704
1705 if (overlaps(page, count * PAGE_SIZE, left_pg,
1706 left_cnt * PAGE_SIZE)) {
1707 /* The interval intersects with the left interval. */
1708 return 0;
1709 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1710 /*
1711 * The interval can be added by growing the left
1712 * interval.
1713 *
1714 */
1715 leaf->value[leaf->keys - 1] += count;
1716 return 1;
1717 } else {
1718 /*
1719 * The interval doesn't adjoin with the left interval.
1720 * It must be added individually.
1721 *
1722 */
1723 btree_insert(&area->used_space, page, (void *) count,
1724 leaf);
1725 return 1;
1726 }
1727 }
1728
1729 /*
1730 * Note that if the algorithm made it thus far, the interval can fit
1731 * only between two other intervals of the leaf. The two border cases
1732 * were already resolved.
1733 *
1734 */
1735 btree_key_t i;
1736 for (i = 1; i < leaf->keys; i++) {
1737 if (page < leaf->key[i]) {
1738 uintptr_t left_pg = leaf->key[i - 1];
1739 uintptr_t right_pg = leaf->key[i];
1740 size_t left_cnt = (size_t) leaf->value[i - 1];
1741 size_t right_cnt = (size_t) leaf->value[i];
1742
1743 /*
1744 * The interval fits between left_pg and right_pg.
1745 *
1746 */
1747
1748 if (overlaps(page, count * PAGE_SIZE, left_pg,
1749 left_cnt * PAGE_SIZE)) {
1750 /*
1751 * The interval intersects with the left
1752 * interval.
1753 *
1754 */
1755 return 0;
1756 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1757 right_cnt * PAGE_SIZE)) {
1758 /*
1759 * The interval intersects with the right
1760 * interval.
1761 *
1762 */
1763 return 0;
1764 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1765 (page + count * PAGE_SIZE == right_pg)) {
1766 /*
1767 * The interval can be added by merging the two
1768 * already present intervals.
1769 *
1770 */
1771 leaf->value[i - 1] += count + right_cnt;
1772 btree_remove(&area->used_space, right_pg, leaf);
1773 return 1;
1774 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1775 /*
1776 * The interval can be added by simply growing
1777 * the left interval.
1778 *
1779 */
1780 leaf->value[i - 1] += count;
1781 return 1;
1782 } else if (page + count * PAGE_SIZE == right_pg) {
1783 /*
1784 * The interval can be addded by simply moving
1785 * base of the right interval down and
1786 * increasing its size accordingly.
1787 *
1788 */
1789 leaf->value[i] += count;
1790 leaf->key[i] = page;
1791 return 1;
1792 } else {
1793 /*
1794 * The interval is between both neigbouring
1795 * intervals, but cannot be merged with any of
1796 * them.
1797 *
1798 */
1799 btree_insert(&area->used_space, page,
1800 (void *) count, leaf);
1801 return 1;
1802 }
1803 }
1804 }
1805
1806 panic("Inconsistency detected while adding %" PRIs " pages of used "
1807 "space at %p.", count, page);
1808}
1809
1810/** Mark portion of address space area as unused.
1811 *
1812 * The address space area must be already locked.
1813 *
1814 * @param area Address space area.
1815 * @param page First page to be marked.
1816 * @param count Number of page to be marked.
1817 *
1818 * @return Zero on failure and non-zero on success.
1819 *
1820 */
1821int used_space_remove(as_area_t *area, uintptr_t page, size_t count)
1822{
1823 ASSERT(mutex_locked(&area->lock));
1824 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1825 ASSERT(count);
1826
1827 btree_node_t *leaf;
1828 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1829 if (pages) {
1830 /*
1831 * We are lucky, page is the beginning of some interval.
1832 *
1833 */
1834 if (count > pages) {
1835 return 0;
1836 } else if (count == pages) {
1837 btree_remove(&area->used_space, page, leaf);
1838 return 1;
1839 } else {
1840 /*
1841 * Find the respective interval.
1842 * Decrease its size and relocate its start address.
1843 *
1844 */
1845 btree_key_t i;
1846 for (i = 0; i < leaf->keys; i++) {
1847 if (leaf->key[i] == page) {
1848 leaf->key[i] += count * PAGE_SIZE;
1849 leaf->value[i] -= count;
1850 return 1;
1851 }
1852 }
1853 goto error;
1854 }
1855 }
1856
1857 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1858 if ((node) && (page < leaf->key[0])) {
1859 uintptr_t left_pg = node->key[node->keys - 1];
1860 size_t left_cnt = (size_t) node->value[node->keys - 1];
1861
1862 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1863 count * PAGE_SIZE)) {
1864 if (page + count * PAGE_SIZE ==
1865 left_pg + left_cnt * PAGE_SIZE) {
1866 /*
1867 * The interval is contained in the rightmost
1868 * interval of the left neighbour and can be
1869 * removed by updating the size of the bigger
1870 * interval.
1871 *
1872 */
1873 node->value[node->keys - 1] -= count;
1874 return 1;
1875 } else if (page + count * PAGE_SIZE <
1876 left_pg + left_cnt*PAGE_SIZE) {
1877 /*
1878 * The interval is contained in the rightmost
1879 * interval of the left neighbour but its
1880 * removal requires both updating the size of
1881 * the original interval and also inserting a
1882 * new interval.
1883 *
1884 */
1885 size_t new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1886 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1887 node->value[node->keys - 1] -= count + new_cnt;
1888 btree_insert(&area->used_space, page +
1889 count * PAGE_SIZE, (void *) new_cnt, leaf);
1890 return 1;
1891 }
1892 }
1893 return 0;
1894 } else if (page < leaf->key[0])
1895 return 0;
1896
1897 if (page > leaf->key[leaf->keys - 1]) {
1898 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1899 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1900
1901 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1902 count * PAGE_SIZE)) {
1903 if (page + count * PAGE_SIZE ==
1904 left_pg + left_cnt * PAGE_SIZE) {
1905 /*
1906 * The interval is contained in the rightmost
1907 * interval of the leaf and can be removed by
1908 * updating the size of the bigger interval.
1909 *
1910 */
1911 leaf->value[leaf->keys - 1] -= count;
1912 return 1;
1913 } else if (page + count * PAGE_SIZE < left_pg +
1914 left_cnt * PAGE_SIZE) {
1915 /*
1916 * The interval is contained in the rightmost
1917 * interval of the leaf but its removal
1918 * requires both updating the size of the
1919 * original interval and also inserting a new
1920 * interval.
1921 *
1922 */
1923 size_t new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1924 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1925 leaf->value[leaf->keys - 1] -= count + new_cnt;
1926 btree_insert(&area->used_space, page +
1927 count * PAGE_SIZE, (void *) new_cnt, leaf);
1928 return 1;
1929 }
1930 }
1931 return 0;
1932 }
1933
1934 /*
1935 * The border cases have been already resolved.
1936 * Now the interval can be only between intervals of the leaf.
1937 */
1938 btree_key_t i;
1939 for (i = 1; i < leaf->keys - 1; i++) {
1940 if (page < leaf->key[i]) {
1941 uintptr_t left_pg = leaf->key[i - 1];
1942 size_t left_cnt = (size_t) leaf->value[i - 1];
1943
1944 /*
1945 * Now the interval is between intervals corresponding
1946 * to (i - 1) and i.
1947 */
1948 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1949 count * PAGE_SIZE)) {
1950 if (page + count * PAGE_SIZE ==
1951 left_pg + left_cnt*PAGE_SIZE) {
1952 /*
1953 * The interval is contained in the
1954 * interval (i - 1) of the leaf and can
1955 * be removed by updating the size of
1956 * the bigger interval.
1957 *
1958 */
1959 leaf->value[i - 1] -= count;
1960 return 1;
1961 } else if (page + count * PAGE_SIZE <
1962 left_pg + left_cnt * PAGE_SIZE) {
1963 /*
1964 * The interval is contained in the
1965 * interval (i - 1) of the leaf but its
1966 * removal requires both updating the
1967 * size of the original interval and
1968 * also inserting a new interval.
1969 */
1970 size_t new_cnt = ((left_pg +
1971 left_cnt * PAGE_SIZE) -
1972 (page + count * PAGE_SIZE)) >>
1973 PAGE_WIDTH;
1974 leaf->value[i - 1] -= count + new_cnt;
1975 btree_insert(&area->used_space, page +
1976 count * PAGE_SIZE, (void *) new_cnt,
1977 leaf);
1978 return 1;
1979 }
1980 }
1981 return 0;
1982 }
1983 }
1984
1985error:
1986 panic("Inconsistency detected while removing %" PRIs " pages of used "
1987 "space from %p.", count, page);
1988}
1989
1990/** Remove reference to address space area share info.
1991 *
1992 * If the reference count drops to 0, the sh_info is deallocated.
1993 *
1994 * @param sh_info Pointer to address space area share info.
1995 *
1996 */
1997void sh_info_remove_reference(share_info_t *sh_info)
1998{
1999 bool dealloc = false;
2000
2001 mutex_lock(&sh_info->lock);
2002 ASSERT(sh_info->refcount);
2003
2004 if (--sh_info->refcount == 0) {
2005 dealloc = true;
2006 link_t *cur;
2007
2008 /*
2009 * Now walk carefully the pagemap B+tree and free/remove
2010 * reference from all frames found there.
2011 */
2012 for (cur = sh_info->pagemap.leaf_head.next;
2013 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
2014 btree_node_t *node
2015 = list_get_instance(cur, btree_node_t, leaf_link);
2016 btree_key_t i;
2017
2018 for (i = 0; i < node->keys; i++)
2019 frame_free((uintptr_t) node->value[i]);
2020 }
2021
2022 }
2023 mutex_unlock(&sh_info->lock);
2024
2025 if (dealloc) {
2026 btree_destroy(&sh_info->pagemap);
2027 free(sh_info);
2028 }
2029}
2030
2031/*
2032 * Address space related syscalls.
2033 */
2034
2035/** Wrapper for as_area_create(). */
2036unative_t sys_as_area_create(uintptr_t address, size_t size, unsigned int flags)
2037{
2038 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
2039 AS_AREA_ATTR_NONE, &anon_backend, NULL))
2040 return (unative_t) address;
2041 else
2042 return (unative_t) -1;
2043}
2044
2045/** Wrapper for as_area_resize(). */
2046unative_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2047{
2048 return (unative_t) as_area_resize(AS, address, size, 0);
2049}
2050
2051/** Wrapper for as_area_change_flags(). */
2052unative_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2053{
2054 return (unative_t) as_area_change_flags(AS, flags, address);
2055}
2056
2057/** Wrapper for as_area_destroy(). */
2058unative_t sys_as_area_destroy(uintptr_t address)
2059{
2060 return (unative_t) as_area_destroy(AS, address);
2061}
2062
2063/** Get list of adress space areas.
2064 *
2065 * @param as Address space.
2066 * @param obuf Place to save pointer to returned buffer.
2067 * @param osize Place to save size of returned buffer.
2068 *
2069 */
2070void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2071{
2072 ipl_t ipl = interrupts_disable();
2073 mutex_lock(&as->lock);
2074
2075 /* First pass, count number of areas. */
2076
2077 size_t area_cnt = 0;
2078 link_t *cur;
2079
2080 for (cur = as->as_area_btree.leaf_head.next;
2081 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2082 btree_node_t *node =
2083 list_get_instance(cur, btree_node_t, leaf_link);
2084 area_cnt += node->keys;
2085 }
2086
2087 size_t isize = area_cnt * sizeof(as_area_info_t);
2088 as_area_info_t *info = malloc(isize, 0);
2089
2090 /* Second pass, record data. */
2091
2092 size_t area_idx = 0;
2093
2094 for (cur = as->as_area_btree.leaf_head.next;
2095 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2096 btree_node_t *node =
2097 list_get_instance(cur, btree_node_t, leaf_link);
2098 btree_key_t i;
2099
2100 for (i = 0; i < node->keys; i++) {
2101 as_area_t *area = node->value[i];
2102
2103 ASSERT(area_idx < area_cnt);
2104 mutex_lock(&area->lock);
2105
2106 info[area_idx].start_addr = area->base;
2107 info[area_idx].size = FRAMES2SIZE(area->pages);
2108 info[area_idx].flags = area->flags;
2109 ++area_idx;
2110
2111 mutex_unlock(&area->lock);
2112 }
2113 }
2114
2115 mutex_unlock(&as->lock);
2116 interrupts_restore(ipl);
2117
2118 *obuf = info;
2119 *osize = isize;
2120}
2121
2122/** Print out information about address space.
2123 *
2124 * @param as Address space.
2125 *
2126 */
2127void as_print(as_t *as)
2128{
2129 ipl_t ipl = interrupts_disable();
2130 mutex_lock(&as->lock);
2131
2132 /* print out info about address space areas */
2133 link_t *cur;
2134 for (cur = as->as_area_btree.leaf_head.next;
2135 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2136 btree_node_t *node
2137 = list_get_instance(cur, btree_node_t, leaf_link);
2138 btree_key_t i;
2139
2140 for (i = 0; i < node->keys; i++) {
2141 as_area_t *area = node->value[i];
2142
2143 mutex_lock(&area->lock);
2144 printf("as_area: %p, base=%p, pages=%" PRIs
2145 " (%p - %p)\n", area, area->base, area->pages,
2146 area->base, area->base + FRAMES2SIZE(area->pages));
2147 mutex_unlock(&area->lock);
2148 }
2149 }
2150
2151 mutex_unlock(&as->lock);
2152 interrupts_restore(ipl);
2153}
2154
2155/** @}
2156 */
Note: See TracBrowser for help on using the repository browser.