source: mainline/kernel/generic/src/mm/as.c@ 9dae191e

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 9dae191e was d99c1d2, checked in by Martin Decky <martin@…>, 15 years ago

use [u]int{8|16|32|64}_t type definitions as detected by the autotool
replace direct usage of arch/types.h with typedefs.h

  • Property mode set to 100644
File size: 50.6 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int);
115static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117static void sh_info_remove_reference(share_info_t *);
118
119static int as_constructor(void *obj, int flags)
120{
121 as_t *as = (as_t *) obj;
122 int rc;
123
124 link_initialize(&as->inactive_as_with_asid_link);
125 mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
127 rc = as_constructor_arch(as, flags);
128
129 return rc;
130}
131
132static int as_destructor(void *obj)
133{
134 as_t *as = (as_t *) obj;
135
136 return as_destructor_arch(as);
137}
138
139/** Initialize address space subsystem. */
140void as_init(void)
141{
142 as_arch_init();
143
144 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
147 AS_KERNEL = as_create(FLAG_AS_KERNEL);
148 if (!AS_KERNEL)
149 panic("Cannot create kernel address space.");
150
151 /* Make sure the kernel address space
152 * reference count never drops to zero.
153 */
154 atomic_set(&AS_KERNEL->refcount, 1);
155}
156
157/** Create address space.
158 *
159 * @param flags Flags that influence the way in wich the address space
160 * is created.
161 */
162as_t *as_create(int flags)
163{
164 as_t *as;
165
166 as = (as_t *) slab_alloc(as_slab, 0);
167 (void) as_create_arch(as, 0);
168
169 btree_create(&as->as_area_btree);
170
171 if (flags & FLAG_AS_KERNEL)
172 as->asid = ASID_KERNEL;
173 else
174 as->asid = ASID_INVALID;
175
176 atomic_set(&as->refcount, 0);
177 as->cpu_refcount = 0;
178#ifdef AS_PAGE_TABLE
179 as->genarch.page_table = page_table_create(flags);
180#else
181 page_table_create(flags);
182#endif
183
184 return as;
185}
186
187/** Destroy adress space.
188 *
189 * When there are no tasks referencing this address space (i.e. its refcount is
190 * zero), the address space can be destroyed.
191 *
192 * We know that we don't hold any spinlock.
193 *
194 * @param as Address space to be destroyed.
195 */
196void as_destroy(as_t *as)
197{
198 ipl_t ipl;
199 bool cond;
200 DEADLOCK_PROBE_INIT(p_asidlock);
201
202 ASSERT(atomic_get(&as->refcount) == 0);
203
204 /*
205 * Since there is no reference to this area,
206 * it is safe not to lock its mutex.
207 */
208
209 /*
210 * We need to avoid deadlock between TLB shootdown and asidlock.
211 * We therefore try to take asid conditionally and if we don't succeed,
212 * we enable interrupts and try again. This is done while preemption is
213 * disabled to prevent nested context switches. We also depend on the
214 * fact that so far no spinlocks are held.
215 */
216 preemption_disable();
217 ipl = interrupts_read();
218retry:
219 interrupts_disable();
220 if (!spinlock_trylock(&asidlock)) {
221 interrupts_enable();
222 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
223 goto retry;
224 }
225 preemption_enable(); /* Interrupts disabled, enable preemption */
226 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
227 if (as != AS && as->cpu_refcount == 0)
228 list_remove(&as->inactive_as_with_asid_link);
229 asid_put(as->asid);
230 }
231 spinlock_unlock(&asidlock);
232
233 /*
234 * Destroy address space areas of the address space.
235 * The B+tree must be walked carefully because it is
236 * also being destroyed.
237 */
238 for (cond = true; cond; ) {
239 btree_node_t *node;
240
241 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
242 node = list_get_instance(as->as_area_btree.leaf_head.next,
243 btree_node_t, leaf_link);
244
245 if ((cond = node->keys)) {
246 as_area_destroy(as, node->key[0]);
247 }
248 }
249
250 btree_destroy(&as->as_area_btree);
251#ifdef AS_PAGE_TABLE
252 page_table_destroy(as->genarch.page_table);
253#else
254 page_table_destroy(NULL);
255#endif
256
257 interrupts_restore(ipl);
258
259 slab_free(as_slab, as);
260}
261
262/** Create address space area of common attributes.
263 *
264 * The created address space area is added to the target address space.
265 *
266 * @param as Target address space.
267 * @param flags Flags of the area memory.
268 * @param size Size of area.
269 * @param base Base address of area.
270 * @param attrs Attributes of the area.
271 * @param backend Address space area backend. NULL if no backend is used.
272 * @param backend_data NULL or a pointer to an array holding two void *.
273 *
274 * @return Address space area on success or NULL on failure.
275 */
276as_area_t *
277as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
278 mem_backend_t *backend, mem_backend_data_t *backend_data)
279{
280 ipl_t ipl;
281 as_area_t *a;
282
283 if (base % PAGE_SIZE)
284 return NULL;
285
286 if (!size)
287 return NULL;
288
289 /* Writeable executable areas are not supported. */
290 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
291 return NULL;
292
293 ipl = interrupts_disable();
294 mutex_lock(&as->lock);
295
296 if (!check_area_conflicts(as, base, size, NULL)) {
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299 return NULL;
300 }
301
302 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
303
304 mutex_initialize(&a->lock, MUTEX_PASSIVE);
305
306 a->as = as;
307 a->flags = flags;
308 a->attributes = attrs;
309 a->pages = SIZE2FRAMES(size);
310 a->base = base;
311 a->sh_info = NULL;
312 a->backend = backend;
313 if (backend_data)
314 a->backend_data = *backend_data;
315 else
316 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
317
318 btree_create(&a->used_space);
319
320 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
321
322 mutex_unlock(&as->lock);
323 interrupts_restore(ipl);
324
325 return a;
326}
327
328/** Find address space area and change it.
329 *
330 * @param as Address space.
331 * @param address Virtual address belonging to the area to be changed.
332 * Must be page-aligned.
333 * @param size New size of the virtual memory block starting at
334 * address.
335 * @param flags Flags influencing the remap operation. Currently unused.
336 *
337 * @return Zero on success or a value from @ref errno.h otherwise.
338 */
339int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
340{
341 as_area_t *area;
342 ipl_t ipl;
343 size_t pages;
344
345 ipl = interrupts_disable();
346 mutex_lock(&as->lock);
347
348 /*
349 * Locate the area.
350 */
351 area = find_area_and_lock(as, address);
352 if (!area) {
353 mutex_unlock(&as->lock);
354 interrupts_restore(ipl);
355 return ENOENT;
356 }
357
358 if (area->backend == &phys_backend) {
359 /*
360 * Remapping of address space areas associated
361 * with memory mapped devices is not supported.
362 */
363 mutex_unlock(&area->lock);
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOTSUP;
367 }
368 if (area->sh_info) {
369 /*
370 * Remapping of shared address space areas
371 * is not supported.
372 */
373 mutex_unlock(&area->lock);
374 mutex_unlock(&as->lock);
375 interrupts_restore(ipl);
376 return ENOTSUP;
377 }
378
379 pages = SIZE2FRAMES((address - area->base) + size);
380 if (!pages) {
381 /*
382 * Zero size address space areas are not allowed.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return EPERM;
388 }
389
390 if (pages < area->pages) {
391 bool cond;
392 uintptr_t start_free = area->base + pages * PAGE_SIZE;
393
394 /*
395 * Shrinking the area.
396 * No need to check for overlaps.
397 */
398
399 /*
400 * Start TLB shootdown sequence.
401 */
402 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
403 pages * PAGE_SIZE, area->pages - pages);
404
405 /*
406 * Remove frames belonging to used space starting from
407 * the highest addresses downwards until an overlap with
408 * the resized address space area is found. Note that this
409 * is also the right way to remove part of the used_space
410 * B+tree leaf list.
411 */
412 for (cond = true; cond;) {
413 btree_node_t *node;
414
415 ASSERT(!list_empty(&area->used_space.leaf_head));
416 node =
417 list_get_instance(area->used_space.leaf_head.prev,
418 btree_node_t, leaf_link);
419 if ((cond = (bool) node->keys)) {
420 uintptr_t b = node->key[node->keys - 1];
421 size_t c =
422 (size_t) node->value[node->keys - 1];
423 unsigned int i = 0;
424
425 if (overlaps(b, c * PAGE_SIZE, area->base,
426 pages * PAGE_SIZE)) {
427
428 if (b + c * PAGE_SIZE <= start_free) {
429 /*
430 * The whole interval fits
431 * completely in the resized
432 * address space area.
433 */
434 break;
435 }
436
437 /*
438 * Part of the interval corresponding
439 * to b and c overlaps with the resized
440 * address space area.
441 */
442
443 cond = false; /* we are almost done */
444 i = (start_free - b) >> PAGE_WIDTH;
445 if (!used_space_remove(area, start_free,
446 c - i))
447 panic("Cannot remove used "
448 "space.");
449 } else {
450 /*
451 * The interval of used space can be
452 * completely removed.
453 */
454 if (!used_space_remove(area, b, c))
455 panic("Cannot remove used "
456 "space.");
457 }
458
459 for (; i < c; i++) {
460 pte_t *pte;
461
462 page_table_lock(as, false);
463 pte = page_mapping_find(as, b +
464 i * PAGE_SIZE);
465 ASSERT(pte && PTE_VALID(pte) &&
466 PTE_PRESENT(pte));
467 if (area->backend &&
468 area->backend->frame_free) {
469 area->backend->frame_free(area,
470 b + i * PAGE_SIZE,
471 PTE_GET_FRAME(pte));
472 }
473 page_mapping_remove(as, b +
474 i * PAGE_SIZE);
475 page_table_unlock(as, false);
476 }
477 }
478 }
479
480 /*
481 * Finish TLB shootdown sequence.
482 */
483
484 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
485 area->pages - pages);
486 /*
487 * Invalidate software translation caches (e.g. TSB on sparc64).
488 */
489 as_invalidate_translation_cache(as, area->base +
490 pages * PAGE_SIZE, area->pages - pages);
491 tlb_shootdown_finalize();
492
493 } else {
494 /*
495 * Growing the area.
496 * Check for overlaps with other address space areas.
497 */
498 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
499 area)) {
500 mutex_unlock(&area->lock);
501 mutex_unlock(&as->lock);
502 interrupts_restore(ipl);
503 return EADDRNOTAVAIL;
504 }
505 }
506
507 area->pages = pages;
508
509 mutex_unlock(&area->lock);
510 mutex_unlock(&as->lock);
511 interrupts_restore(ipl);
512
513 return 0;
514}
515
516/** Destroy address space area.
517 *
518 * @param as Address space.
519 * @param address Address within the area to be deleted.
520 *
521 * @return Zero on success or a value from @ref errno.h on failure.
522 */
523int as_area_destroy(as_t *as, uintptr_t address)
524{
525 as_area_t *area;
526 uintptr_t base;
527 link_t *cur;
528 ipl_t ipl;
529
530 ipl = interrupts_disable();
531 mutex_lock(&as->lock);
532
533 area = find_area_and_lock(as, address);
534 if (!area) {
535 mutex_unlock(&as->lock);
536 interrupts_restore(ipl);
537 return ENOENT;
538 }
539
540 base = area->base;
541
542 /*
543 * Start TLB shootdown sequence.
544 */
545 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
546
547 /*
548 * Visit only the pages mapped by used_space B+tree.
549 */
550 for (cur = area->used_space.leaf_head.next;
551 cur != &area->used_space.leaf_head; cur = cur->next) {
552 btree_node_t *node;
553 unsigned int i;
554
555 node = list_get_instance(cur, btree_node_t, leaf_link);
556 for (i = 0; i < node->keys; i++) {
557 uintptr_t b = node->key[i];
558 size_t j;
559 pte_t *pte;
560
561 for (j = 0; j < (size_t) node->value[i]; j++) {
562 page_table_lock(as, false);
563 pte = page_mapping_find(as, b + j * PAGE_SIZE);
564 ASSERT(pte && PTE_VALID(pte) &&
565 PTE_PRESENT(pte));
566 if (area->backend &&
567 area->backend->frame_free) {
568 area->backend->frame_free(area, b +
569 j * PAGE_SIZE, PTE_GET_FRAME(pte));
570 }
571 page_mapping_remove(as, b + j * PAGE_SIZE);
572 page_table_unlock(as, false);
573 }
574 }
575 }
576
577 /*
578 * Finish TLB shootdown sequence.
579 */
580
581 tlb_invalidate_pages(as->asid, area->base, area->pages);
582 /*
583 * Invalidate potential software translation caches (e.g. TSB on
584 * sparc64).
585 */
586 as_invalidate_translation_cache(as, area->base, area->pages);
587 tlb_shootdown_finalize();
588
589 btree_destroy(&area->used_space);
590
591 area->attributes |= AS_AREA_ATTR_PARTIAL;
592
593 if (area->sh_info)
594 sh_info_remove_reference(area->sh_info);
595
596 mutex_unlock(&area->lock);
597
598 /*
599 * Remove the empty area from address space.
600 */
601 btree_remove(&as->as_area_btree, base, NULL);
602
603 free(area);
604
605 mutex_unlock(&as->lock);
606 interrupts_restore(ipl);
607 return 0;
608}
609
610/** Share address space area with another or the same address space.
611 *
612 * Address space area mapping is shared with a new address space area.
613 * If the source address space area has not been shared so far,
614 * a new sh_info is created. The new address space area simply gets the
615 * sh_info of the source area. The process of duplicating the
616 * mapping is done through the backend share function.
617 *
618 * @param src_as Pointer to source address space.
619 * @param src_base Base address of the source address space area.
620 * @param acc_size Expected size of the source area.
621 * @param dst_as Pointer to destination address space.
622 * @param dst_base Target base address.
623 * @param dst_flags_mask Destination address space area flags mask.
624 *
625 * @return Zero on success or ENOENT if there is no such task or if
626 * there is no such address space area, EPERM if there was
627 * a problem in accepting the area or ENOMEM if there was a
628 * problem in allocating destination address space area.
629 * ENOTSUP is returned if the address space area backend
630 * does not support sharing.
631 */
632int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
633 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
634{
635 ipl_t ipl;
636 int src_flags;
637 size_t src_size;
638 as_area_t *src_area, *dst_area;
639 share_info_t *sh_info;
640 mem_backend_t *src_backend;
641 mem_backend_data_t src_backend_data;
642
643 ipl = interrupts_disable();
644 mutex_lock(&src_as->lock);
645 src_area = find_area_and_lock(src_as, src_base);
646 if (!src_area) {
647 /*
648 * Could not find the source address space area.
649 */
650 mutex_unlock(&src_as->lock);
651 interrupts_restore(ipl);
652 return ENOENT;
653 }
654
655 if (!src_area->backend || !src_area->backend->share) {
656 /*
657 * There is no backend or the backend does not
658 * know how to share the area.
659 */
660 mutex_unlock(&src_area->lock);
661 mutex_unlock(&src_as->lock);
662 interrupts_restore(ipl);
663 return ENOTSUP;
664 }
665
666 src_size = src_area->pages * PAGE_SIZE;
667 src_flags = src_area->flags;
668 src_backend = src_area->backend;
669 src_backend_data = src_area->backend_data;
670
671 /* Share the cacheable flag from the original mapping */
672 if (src_flags & AS_AREA_CACHEABLE)
673 dst_flags_mask |= AS_AREA_CACHEABLE;
674
675 if (src_size != acc_size ||
676 (src_flags & dst_flags_mask) != dst_flags_mask) {
677 mutex_unlock(&src_area->lock);
678 mutex_unlock(&src_as->lock);
679 interrupts_restore(ipl);
680 return EPERM;
681 }
682
683 /*
684 * Now we are committed to sharing the area.
685 * First, prepare the area for sharing.
686 * Then it will be safe to unlock it.
687 */
688 sh_info = src_area->sh_info;
689 if (!sh_info) {
690 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
691 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
692 sh_info->refcount = 2;
693 btree_create(&sh_info->pagemap);
694 src_area->sh_info = sh_info;
695 /*
696 * Call the backend to setup sharing.
697 */
698 src_area->backend->share(src_area);
699 } else {
700 mutex_lock(&sh_info->lock);
701 sh_info->refcount++;
702 mutex_unlock(&sh_info->lock);
703 }
704
705 mutex_unlock(&src_area->lock);
706 mutex_unlock(&src_as->lock);
707
708 /*
709 * Create copy of the source address space area.
710 * The destination area is created with AS_AREA_ATTR_PARTIAL
711 * attribute set which prevents race condition with
712 * preliminary as_page_fault() calls.
713 * The flags of the source area are masked against dst_flags_mask
714 * to support sharing in less privileged mode.
715 */
716 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
717 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
718 if (!dst_area) {
719 /*
720 * Destination address space area could not be created.
721 */
722 sh_info_remove_reference(sh_info);
723
724 interrupts_restore(ipl);
725 return ENOMEM;
726 }
727
728 /*
729 * Now the destination address space area has been
730 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
731 * attribute and set the sh_info.
732 */
733 mutex_lock(&dst_as->lock);
734 mutex_lock(&dst_area->lock);
735 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
736 dst_area->sh_info = sh_info;
737 mutex_unlock(&dst_area->lock);
738 mutex_unlock(&dst_as->lock);
739
740 interrupts_restore(ipl);
741
742 return 0;
743}
744
745/** Check access mode for address space area.
746 *
747 * The address space area must be locked prior to this call.
748 *
749 * @param area Address space area.
750 * @param access Access mode.
751 *
752 * @return False if access violates area's permissions, true
753 * otherwise.
754 */
755bool as_area_check_access(as_area_t *area, pf_access_t access)
756{
757 int flagmap[] = {
758 [PF_ACCESS_READ] = AS_AREA_READ,
759 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
760 [PF_ACCESS_EXEC] = AS_AREA_EXEC
761 };
762
763 if (!(area->flags & flagmap[access]))
764 return false;
765
766 return true;
767}
768
769/** Change adress space area flags.
770 *
771 * The idea is to have the same data, but with a different access mode.
772 * This is needed e.g. for writing code into memory and then executing it.
773 * In order for this to work properly, this may copy the data
774 * into private anonymous memory (unless it's already there).
775 *
776 * @param as Address space.
777 * @param flags Flags of the area memory.
778 * @param address Address within the area to be changed.
779 *
780 * @return Zero on success or a value from @ref errno.h on failure.
781 *
782 */
783int as_area_change_flags(as_t *as, int flags, uintptr_t address)
784{
785 as_area_t *area;
786 link_t *cur;
787 ipl_t ipl;
788 int page_flags;
789 uintptr_t *old_frame;
790 size_t frame_idx;
791 size_t used_pages;
792
793 /* Flags for the new memory mapping */
794 page_flags = area_flags_to_page_flags(flags);
795
796 ipl = interrupts_disable();
797 mutex_lock(&as->lock);
798
799 area = find_area_and_lock(as, address);
800 if (!area) {
801 mutex_unlock(&as->lock);
802 interrupts_restore(ipl);
803 return ENOENT;
804 }
805
806 if ((area->sh_info) || (area->backend != &anon_backend)) {
807 /* Copying shared areas not supported yet */
808 /* Copying non-anonymous memory not supported yet */
809 mutex_unlock(&area->lock);
810 mutex_unlock(&as->lock);
811 interrupts_restore(ipl);
812 return ENOTSUP;
813 }
814
815 /*
816 * Compute total number of used pages in the used_space B+tree
817 */
818 used_pages = 0;
819
820 for (cur = area->used_space.leaf_head.next;
821 cur != &area->used_space.leaf_head; cur = cur->next) {
822 btree_node_t *node;
823 unsigned int i;
824
825 node = list_get_instance(cur, btree_node_t, leaf_link);
826 for (i = 0; i < node->keys; i++) {
827 used_pages += (size_t) node->value[i];
828 }
829 }
830
831 /* An array for storing frame numbers */
832 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
833
834 /*
835 * Start TLB shootdown sequence.
836 */
837 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
838
839 /*
840 * Remove used pages from page tables and remember their frame
841 * numbers.
842 */
843 frame_idx = 0;
844
845 for (cur = area->used_space.leaf_head.next;
846 cur != &area->used_space.leaf_head; cur = cur->next) {
847 btree_node_t *node;
848 unsigned int i;
849
850 node = list_get_instance(cur, btree_node_t, leaf_link);
851 for (i = 0; i < node->keys; i++) {
852 uintptr_t b = node->key[i];
853 size_t j;
854 pte_t *pte;
855
856 for (j = 0; j < (size_t) node->value[i]; j++) {
857 page_table_lock(as, false);
858 pte = page_mapping_find(as, b + j * PAGE_SIZE);
859 ASSERT(pte && PTE_VALID(pte) &&
860 PTE_PRESENT(pte));
861 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
862
863 /* Remove old mapping */
864 page_mapping_remove(as, b + j * PAGE_SIZE);
865 page_table_unlock(as, false);
866 }
867 }
868 }
869
870 /*
871 * Finish TLB shootdown sequence.
872 */
873
874 tlb_invalidate_pages(as->asid, area->base, area->pages);
875
876 /*
877 * Invalidate potential software translation caches (e.g. TSB on
878 * sparc64).
879 */
880 as_invalidate_translation_cache(as, area->base, area->pages);
881 tlb_shootdown_finalize();
882
883 /*
884 * Set the new flags.
885 */
886 area->flags = flags;
887
888 /*
889 * Map pages back in with new flags. This step is kept separate
890 * so that the memory area could not be accesed with both the old and
891 * the new flags at once.
892 */
893 frame_idx = 0;
894
895 for (cur = area->used_space.leaf_head.next;
896 cur != &area->used_space.leaf_head; cur = cur->next) {
897 btree_node_t *node;
898 unsigned int i;
899
900 node = list_get_instance(cur, btree_node_t, leaf_link);
901 for (i = 0; i < node->keys; i++) {
902 uintptr_t b = node->key[i];
903 size_t j;
904
905 for (j = 0; j < (size_t) node->value[i]; j++) {
906 page_table_lock(as, false);
907
908 /* Insert the new mapping */
909 page_mapping_insert(as, b + j * PAGE_SIZE,
910 old_frame[frame_idx++], page_flags);
911
912 page_table_unlock(as, false);
913 }
914 }
915 }
916
917 free(old_frame);
918
919 mutex_unlock(&area->lock);
920 mutex_unlock(&as->lock);
921 interrupts_restore(ipl);
922
923 return 0;
924}
925
926
927/** Handle page fault within the current address space.
928 *
929 * This is the high-level page fault handler. It decides whether the page fault
930 * can be resolved by any backend and if so, it invokes the backend to resolve
931 * the page fault.
932 *
933 * Interrupts are assumed disabled.
934 *
935 * @param page Faulting page.
936 * @param access Access mode that caused the page fault (i.e.
937 * read/write/exec).
938 * @param istate Pointer to the interrupted state.
939 *
940 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or
941 * AS_PF_DEFER if the fault was caused by copy_to_uspace()
942 * or copy_from_uspace().
943 */
944int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
945{
946 pte_t *pte;
947 as_area_t *area;
948
949 if (!THREAD)
950 return AS_PF_FAULT;
951
952 if (!AS)
953 return AS_PF_FAULT;
954
955 mutex_lock(&AS->lock);
956 area = find_area_and_lock(AS, page);
957 if (!area) {
958 /*
959 * No area contained mapping for 'page'.
960 * Signal page fault to low-level handler.
961 */
962 mutex_unlock(&AS->lock);
963 goto page_fault;
964 }
965
966 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
967 /*
968 * The address space area is not fully initialized.
969 * Avoid possible race by returning error.
970 */
971 mutex_unlock(&area->lock);
972 mutex_unlock(&AS->lock);
973 goto page_fault;
974 }
975
976 if (!area->backend || !area->backend->page_fault) {
977 /*
978 * The address space area is not backed by any backend
979 * or the backend cannot handle page faults.
980 */
981 mutex_unlock(&area->lock);
982 mutex_unlock(&AS->lock);
983 goto page_fault;
984 }
985
986 page_table_lock(AS, false);
987
988 /*
989 * To avoid race condition between two page faults on the same address,
990 * we need to make sure the mapping has not been already inserted.
991 */
992 if ((pte = page_mapping_find(AS, page))) {
993 if (PTE_PRESENT(pte)) {
994 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
995 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
996 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
997 page_table_unlock(AS, false);
998 mutex_unlock(&area->lock);
999 mutex_unlock(&AS->lock);
1000 return AS_PF_OK;
1001 }
1002 }
1003 }
1004
1005 /*
1006 * Resort to the backend page fault handler.
1007 */
1008 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1009 page_table_unlock(AS, false);
1010 mutex_unlock(&area->lock);
1011 mutex_unlock(&AS->lock);
1012 goto page_fault;
1013 }
1014
1015 page_table_unlock(AS, false);
1016 mutex_unlock(&area->lock);
1017 mutex_unlock(&AS->lock);
1018 return AS_PF_OK;
1019
1020page_fault:
1021 if (THREAD->in_copy_from_uspace) {
1022 THREAD->in_copy_from_uspace = false;
1023 istate_set_retaddr(istate,
1024 (uintptr_t) &memcpy_from_uspace_failover_address);
1025 } else if (THREAD->in_copy_to_uspace) {
1026 THREAD->in_copy_to_uspace = false;
1027 istate_set_retaddr(istate,
1028 (uintptr_t) &memcpy_to_uspace_failover_address);
1029 } else {
1030 return AS_PF_FAULT;
1031 }
1032
1033 return AS_PF_DEFER;
1034}
1035
1036/** Switch address spaces.
1037 *
1038 * Note that this function cannot sleep as it is essentially a part of
1039 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1040 * thing which is forbidden in this context is locking the address space.
1041 *
1042 * When this function is enetered, no spinlocks may be held.
1043 *
1044 * @param old Old address space or NULL.
1045 * @param new New address space.
1046 */
1047void as_switch(as_t *old_as, as_t *new_as)
1048{
1049 DEADLOCK_PROBE_INIT(p_asidlock);
1050 preemption_disable();
1051retry:
1052 (void) interrupts_disable();
1053 if (!spinlock_trylock(&asidlock)) {
1054 /*
1055 * Avoid deadlock with TLB shootdown.
1056 * We can enable interrupts here because
1057 * preemption is disabled. We should not be
1058 * holding any other lock.
1059 */
1060 (void) interrupts_enable();
1061 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1062 goto retry;
1063 }
1064 preemption_enable();
1065
1066 /*
1067 * First, take care of the old address space.
1068 */
1069 if (old_as) {
1070 ASSERT(old_as->cpu_refcount);
1071 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1072 /*
1073 * The old address space is no longer active on
1074 * any processor. It can be appended to the
1075 * list of inactive address spaces with assigned
1076 * ASID.
1077 */
1078 ASSERT(old_as->asid != ASID_INVALID);
1079 list_append(&old_as->inactive_as_with_asid_link,
1080 &inactive_as_with_asid_head);
1081 }
1082
1083 /*
1084 * Perform architecture-specific tasks when the address space
1085 * is being removed from the CPU.
1086 */
1087 as_deinstall_arch(old_as);
1088 }
1089
1090 /*
1091 * Second, prepare the new address space.
1092 */
1093 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1094 if (new_as->asid != ASID_INVALID)
1095 list_remove(&new_as->inactive_as_with_asid_link);
1096 else
1097 new_as->asid = asid_get();
1098 }
1099#ifdef AS_PAGE_TABLE
1100 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1101#endif
1102
1103 /*
1104 * Perform architecture-specific steps.
1105 * (e.g. write ASID to hardware register etc.)
1106 */
1107 as_install_arch(new_as);
1108
1109 spinlock_unlock(&asidlock);
1110
1111 AS = new_as;
1112}
1113
1114/** Convert address space area flags to page flags.
1115 *
1116 * @param aflags Flags of some address space area.
1117 *
1118 * @return Flags to be passed to page_mapping_insert().
1119 */
1120int area_flags_to_page_flags(int aflags)
1121{
1122 int flags;
1123
1124 flags = PAGE_USER | PAGE_PRESENT;
1125
1126 if (aflags & AS_AREA_READ)
1127 flags |= PAGE_READ;
1128
1129 if (aflags & AS_AREA_WRITE)
1130 flags |= PAGE_WRITE;
1131
1132 if (aflags & AS_AREA_EXEC)
1133 flags |= PAGE_EXEC;
1134
1135 if (aflags & AS_AREA_CACHEABLE)
1136 flags |= PAGE_CACHEABLE;
1137
1138 return flags;
1139}
1140
1141/** Compute flags for virtual address translation subsytem.
1142 *
1143 * The address space area must be locked.
1144 * Interrupts must be disabled.
1145 *
1146 * @param a Address space area.
1147 *
1148 * @return Flags to be used in page_mapping_insert().
1149 */
1150int as_area_get_flags(as_area_t *a)
1151{
1152 return area_flags_to_page_flags(a->flags);
1153}
1154
1155/** Create page table.
1156 *
1157 * Depending on architecture, create either address space private or global page
1158 * table.
1159 *
1160 * @param flags Flags saying whether the page table is for the kernel
1161 * address space.
1162 *
1163 * @return First entry of the page table.
1164 */
1165pte_t *page_table_create(int flags)
1166{
1167 ASSERT(as_operations);
1168 ASSERT(as_operations->page_table_create);
1169
1170 return as_operations->page_table_create(flags);
1171}
1172
1173/** Destroy page table.
1174 *
1175 * Destroy page table in architecture specific way.
1176 *
1177 * @param page_table Physical address of PTL0.
1178 */
1179void page_table_destroy(pte_t *page_table)
1180{
1181 ASSERT(as_operations);
1182 ASSERT(as_operations->page_table_destroy);
1183
1184 as_operations->page_table_destroy(page_table);
1185}
1186
1187/** Lock page table.
1188 *
1189 * This function should be called before any page_mapping_insert(),
1190 * page_mapping_remove() and page_mapping_find().
1191 *
1192 * Locking order is such that address space areas must be locked
1193 * prior to this call. Address space can be locked prior to this
1194 * call in which case the lock argument is false.
1195 *
1196 * @param as Address space.
1197 * @param lock If false, do not attempt to lock as->lock.
1198 */
1199void page_table_lock(as_t *as, bool lock)
1200{
1201 ASSERT(as_operations);
1202 ASSERT(as_operations->page_table_lock);
1203
1204 as_operations->page_table_lock(as, lock);
1205}
1206
1207/** Unlock page table.
1208 *
1209 * @param as Address space.
1210 * @param unlock If false, do not attempt to unlock as->lock.
1211 */
1212void page_table_unlock(as_t *as, bool unlock)
1213{
1214 ASSERT(as_operations);
1215 ASSERT(as_operations->page_table_unlock);
1216
1217 as_operations->page_table_unlock(as, unlock);
1218}
1219
1220
1221/** Find address space area and lock it.
1222 *
1223 * The address space must be locked and interrupts must be disabled.
1224 *
1225 * @param as Address space.
1226 * @param va Virtual address.
1227 *
1228 * @return Locked address space area containing va on success or
1229 * NULL on failure.
1230 */
1231as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1232{
1233 as_area_t *a;
1234 btree_node_t *leaf, *lnode;
1235 unsigned int i;
1236
1237 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1238 if (a) {
1239 /* va is the base address of an address space area */
1240 mutex_lock(&a->lock);
1241 return a;
1242 }
1243
1244 /*
1245 * Search the leaf node and the righmost record of its left neighbour
1246 * to find out whether this is a miss or va belongs to an address
1247 * space area found there.
1248 */
1249
1250 /* First, search the leaf node itself. */
1251 for (i = 0; i < leaf->keys; i++) {
1252 a = (as_area_t *) leaf->value[i];
1253 mutex_lock(&a->lock);
1254 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1255 return a;
1256 }
1257 mutex_unlock(&a->lock);
1258 }
1259
1260 /*
1261 * Second, locate the left neighbour and test its last record.
1262 * Because of its position in the B+tree, it must have base < va.
1263 */
1264 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1265 if (lnode) {
1266 a = (as_area_t *) lnode->value[lnode->keys - 1];
1267 mutex_lock(&a->lock);
1268 if (va < a->base + a->pages * PAGE_SIZE) {
1269 return a;
1270 }
1271 mutex_unlock(&a->lock);
1272 }
1273
1274 return NULL;
1275}
1276
1277/** Check area conflicts with other areas.
1278 *
1279 * The address space must be locked and interrupts must be disabled.
1280 *
1281 * @param as Address space.
1282 * @param va Starting virtual address of the area being tested.
1283 * @param size Size of the area being tested.
1284 * @param avoid_area Do not touch this area.
1285 *
1286 * @return True if there is no conflict, false otherwise.
1287 */
1288bool
1289check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1290{
1291 as_area_t *a;
1292 btree_node_t *leaf, *node;
1293 unsigned int i;
1294
1295 /*
1296 * We don't want any area to have conflicts with NULL page.
1297 */
1298 if (overlaps(va, size, NULL, PAGE_SIZE))
1299 return false;
1300
1301 /*
1302 * The leaf node is found in O(log n), where n is proportional to
1303 * the number of address space areas belonging to as.
1304 * The check for conflicts is then attempted on the rightmost
1305 * record in the left neighbour, the leftmost record in the right
1306 * neighbour and all records in the leaf node itself.
1307 */
1308
1309 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1310 if (a != avoid_area)
1311 return false;
1312 }
1313
1314 /* First, check the two border cases. */
1315 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1316 a = (as_area_t *) node->value[node->keys - 1];
1317 mutex_lock(&a->lock);
1318 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1319 mutex_unlock(&a->lock);
1320 return false;
1321 }
1322 mutex_unlock(&a->lock);
1323 }
1324 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1325 if (node) {
1326 a = (as_area_t *) node->value[0];
1327 mutex_lock(&a->lock);
1328 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1329 mutex_unlock(&a->lock);
1330 return false;
1331 }
1332 mutex_unlock(&a->lock);
1333 }
1334
1335 /* Second, check the leaf node. */
1336 for (i = 0; i < leaf->keys; i++) {
1337 a = (as_area_t *) leaf->value[i];
1338
1339 if (a == avoid_area)
1340 continue;
1341
1342 mutex_lock(&a->lock);
1343 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1344 mutex_unlock(&a->lock);
1345 return false;
1346 }
1347 mutex_unlock(&a->lock);
1348 }
1349
1350 /*
1351 * So far, the area does not conflict with other areas.
1352 * Check if it doesn't conflict with kernel address space.
1353 */
1354 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1355 return !overlaps(va, size,
1356 KERNEL_ADDRESS_SPACE_START,
1357 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1358 }
1359
1360 return true;
1361}
1362
1363/** Return size of the address space area with given base.
1364 *
1365 * @param base Arbitrary address insede the address space area.
1366 *
1367 * @return Size of the address space area in bytes or zero if it
1368 * does not exist.
1369 */
1370size_t as_area_get_size(uintptr_t base)
1371{
1372 ipl_t ipl;
1373 as_area_t *src_area;
1374 size_t size;
1375
1376 ipl = interrupts_disable();
1377 src_area = find_area_and_lock(AS, base);
1378 if (src_area) {
1379 size = src_area->pages * PAGE_SIZE;
1380 mutex_unlock(&src_area->lock);
1381 } else {
1382 size = 0;
1383 }
1384 interrupts_restore(ipl);
1385 return size;
1386}
1387
1388/** Mark portion of address space area as used.
1389 *
1390 * The address space area must be already locked.
1391 *
1392 * @param a Address space area.
1393 * @param page First page to be marked.
1394 * @param count Number of page to be marked.
1395 *
1396 * @return Zero on failure and non-zero on success.
1397 */
1398int used_space_insert(as_area_t *a, uintptr_t page, size_t count)
1399{
1400 btree_node_t *leaf, *node;
1401 size_t pages;
1402 unsigned int i;
1403
1404 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1405 ASSERT(count);
1406
1407 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1408 if (pages) {
1409 /*
1410 * We hit the beginning of some used space.
1411 */
1412 return 0;
1413 }
1414
1415 if (!leaf->keys) {
1416 btree_insert(&a->used_space, page, (void *) count, leaf);
1417 return 1;
1418 }
1419
1420 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1421 if (node) {
1422 uintptr_t left_pg = node->key[node->keys - 1];
1423 uintptr_t right_pg = leaf->key[0];
1424 size_t left_cnt = (size_t) node->value[node->keys - 1];
1425 size_t right_cnt = (size_t) leaf->value[0];
1426
1427 /*
1428 * Examine the possibility that the interval fits
1429 * somewhere between the rightmost interval of
1430 * the left neigbour and the first interval of the leaf.
1431 */
1432
1433 if (page >= right_pg) {
1434 /* Do nothing. */
1435 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1436 left_cnt * PAGE_SIZE)) {
1437 /* The interval intersects with the left interval. */
1438 return 0;
1439 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1440 right_cnt * PAGE_SIZE)) {
1441 /* The interval intersects with the right interval. */
1442 return 0;
1443 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1444 (page + count * PAGE_SIZE == right_pg)) {
1445 /*
1446 * The interval can be added by merging the two already
1447 * present intervals.
1448 */
1449 node->value[node->keys - 1] += count + right_cnt;
1450 btree_remove(&a->used_space, right_pg, leaf);
1451 return 1;
1452 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1453 /*
1454 * The interval can be added by simply growing the left
1455 * interval.
1456 */
1457 node->value[node->keys - 1] += count;
1458 return 1;
1459 } else if (page + count * PAGE_SIZE == right_pg) {
1460 /*
1461 * The interval can be addded by simply moving base of
1462 * the right interval down and increasing its size
1463 * accordingly.
1464 */
1465 leaf->value[0] += count;
1466 leaf->key[0] = page;
1467 return 1;
1468 } else {
1469 /*
1470 * The interval is between both neigbouring intervals,
1471 * but cannot be merged with any of them.
1472 */
1473 btree_insert(&a->used_space, page, (void *) count,
1474 leaf);
1475 return 1;
1476 }
1477 } else if (page < leaf->key[0]) {
1478 uintptr_t right_pg = leaf->key[0];
1479 size_t right_cnt = (size_t) leaf->value[0];
1480
1481 /*
1482 * Investigate the border case in which the left neighbour does
1483 * not exist but the interval fits from the left.
1484 */
1485
1486 if (overlaps(page, count * PAGE_SIZE, right_pg,
1487 right_cnt * PAGE_SIZE)) {
1488 /* The interval intersects with the right interval. */
1489 return 0;
1490 } else if (page + count * PAGE_SIZE == right_pg) {
1491 /*
1492 * The interval can be added by moving the base of the
1493 * right interval down and increasing its size
1494 * accordingly.
1495 */
1496 leaf->key[0] = page;
1497 leaf->value[0] += count;
1498 return 1;
1499 } else {
1500 /*
1501 * The interval doesn't adjoin with the right interval.
1502 * It must be added individually.
1503 */
1504 btree_insert(&a->used_space, page, (void *) count,
1505 leaf);
1506 return 1;
1507 }
1508 }
1509
1510 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1511 if (node) {
1512 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1513 uintptr_t right_pg = node->key[0];
1514 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1515 size_t right_cnt = (size_t) node->value[0];
1516
1517 /*
1518 * Examine the possibility that the interval fits
1519 * somewhere between the leftmost interval of
1520 * the right neigbour and the last interval of the leaf.
1521 */
1522
1523 if (page < left_pg) {
1524 /* Do nothing. */
1525 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1526 left_cnt * PAGE_SIZE)) {
1527 /* The interval intersects with the left interval. */
1528 return 0;
1529 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1530 right_cnt * PAGE_SIZE)) {
1531 /* The interval intersects with the right interval. */
1532 return 0;
1533 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1534 (page + count * PAGE_SIZE == right_pg)) {
1535 /*
1536 * The interval can be added by merging the two already
1537 * present intervals.
1538 * */
1539 leaf->value[leaf->keys - 1] += count + right_cnt;
1540 btree_remove(&a->used_space, right_pg, node);
1541 return 1;
1542 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1543 /*
1544 * The interval can be added by simply growing the left
1545 * interval.
1546 * */
1547 leaf->value[leaf->keys - 1] += count;
1548 return 1;
1549 } else if (page + count * PAGE_SIZE == right_pg) {
1550 /*
1551 * The interval can be addded by simply moving base of
1552 * the right interval down and increasing its size
1553 * accordingly.
1554 */
1555 node->value[0] += count;
1556 node->key[0] = page;
1557 return 1;
1558 } else {
1559 /*
1560 * The interval is between both neigbouring intervals,
1561 * but cannot be merged with any of them.
1562 */
1563 btree_insert(&a->used_space, page, (void *) count,
1564 leaf);
1565 return 1;
1566 }
1567 } else if (page >= leaf->key[leaf->keys - 1]) {
1568 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1569 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1570
1571 /*
1572 * Investigate the border case in which the right neighbour
1573 * does not exist but the interval fits from the right.
1574 */
1575
1576 if (overlaps(page, count * PAGE_SIZE, left_pg,
1577 left_cnt * PAGE_SIZE)) {
1578 /* The interval intersects with the left interval. */
1579 return 0;
1580 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1581 /*
1582 * The interval can be added by growing the left
1583 * interval.
1584 */
1585 leaf->value[leaf->keys - 1] += count;
1586 return 1;
1587 } else {
1588 /*
1589 * The interval doesn't adjoin with the left interval.
1590 * It must be added individually.
1591 */
1592 btree_insert(&a->used_space, page, (void *) count,
1593 leaf);
1594 return 1;
1595 }
1596 }
1597
1598 /*
1599 * Note that if the algorithm made it thus far, the interval can fit
1600 * only between two other intervals of the leaf. The two border cases
1601 * were already resolved.
1602 */
1603 for (i = 1; i < leaf->keys; i++) {
1604 if (page < leaf->key[i]) {
1605 uintptr_t left_pg = leaf->key[i - 1];
1606 uintptr_t right_pg = leaf->key[i];
1607 size_t left_cnt = (size_t) leaf->value[i - 1];
1608 size_t right_cnt = (size_t) leaf->value[i];
1609
1610 /*
1611 * The interval fits between left_pg and right_pg.
1612 */
1613
1614 if (overlaps(page, count * PAGE_SIZE, left_pg,
1615 left_cnt * PAGE_SIZE)) {
1616 /*
1617 * The interval intersects with the left
1618 * interval.
1619 */
1620 return 0;
1621 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1622 right_cnt * PAGE_SIZE)) {
1623 /*
1624 * The interval intersects with the right
1625 * interval.
1626 */
1627 return 0;
1628 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1629 (page + count * PAGE_SIZE == right_pg)) {
1630 /*
1631 * The interval can be added by merging the two
1632 * already present intervals.
1633 */
1634 leaf->value[i - 1] += count + right_cnt;
1635 btree_remove(&a->used_space, right_pg, leaf);
1636 return 1;
1637 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1638 /*
1639 * The interval can be added by simply growing
1640 * the left interval.
1641 */
1642 leaf->value[i - 1] += count;
1643 return 1;
1644 } else if (page + count * PAGE_SIZE == right_pg) {
1645 /*
1646 * The interval can be addded by simply moving
1647 * base of the right interval down and
1648 * increasing its size accordingly.
1649 */
1650 leaf->value[i] += count;
1651 leaf->key[i] = page;
1652 return 1;
1653 } else {
1654 /*
1655 * The interval is between both neigbouring
1656 * intervals, but cannot be merged with any of
1657 * them.
1658 */
1659 btree_insert(&a->used_space, page,
1660 (void *) count, leaf);
1661 return 1;
1662 }
1663 }
1664 }
1665
1666 panic("Inconsistency detected while adding %" PRIs " pages of used "
1667 "space at %p.", count, page);
1668}
1669
1670/** Mark portion of address space area as unused.
1671 *
1672 * The address space area must be already locked.
1673 *
1674 * @param a Address space area.
1675 * @param page First page to be marked.
1676 * @param count Number of page to be marked.
1677 *
1678 * @return Zero on failure and non-zero on success.
1679 */
1680int used_space_remove(as_area_t *a, uintptr_t page, size_t count)
1681{
1682 btree_node_t *leaf, *node;
1683 size_t pages;
1684 unsigned int i;
1685
1686 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1687 ASSERT(count);
1688
1689 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1690 if (pages) {
1691 /*
1692 * We are lucky, page is the beginning of some interval.
1693 */
1694 if (count > pages) {
1695 return 0;
1696 } else if (count == pages) {
1697 btree_remove(&a->used_space, page, leaf);
1698 return 1;
1699 } else {
1700 /*
1701 * Find the respective interval.
1702 * Decrease its size and relocate its start address.
1703 */
1704 for (i = 0; i < leaf->keys; i++) {
1705 if (leaf->key[i] == page) {
1706 leaf->key[i] += count * PAGE_SIZE;
1707 leaf->value[i] -= count;
1708 return 1;
1709 }
1710 }
1711 goto error;
1712 }
1713 }
1714
1715 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1716 if (node && page < leaf->key[0]) {
1717 uintptr_t left_pg = node->key[node->keys - 1];
1718 size_t left_cnt = (size_t) node->value[node->keys - 1];
1719
1720 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1721 count * PAGE_SIZE)) {
1722 if (page + count * PAGE_SIZE ==
1723 left_pg + left_cnt * PAGE_SIZE) {
1724 /*
1725 * The interval is contained in the rightmost
1726 * interval of the left neighbour and can be
1727 * removed by updating the size of the bigger
1728 * interval.
1729 */
1730 node->value[node->keys - 1] -= count;
1731 return 1;
1732 } else if (page + count * PAGE_SIZE <
1733 left_pg + left_cnt*PAGE_SIZE) {
1734 size_t new_cnt;
1735
1736 /*
1737 * The interval is contained in the rightmost
1738 * interval of the left neighbour but its
1739 * removal requires both updating the size of
1740 * the original interval and also inserting a
1741 * new interval.
1742 */
1743 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1744 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1745 node->value[node->keys - 1] -= count + new_cnt;
1746 btree_insert(&a->used_space, page +
1747 count * PAGE_SIZE, (void *) new_cnt, leaf);
1748 return 1;
1749 }
1750 }
1751 return 0;
1752 } else if (page < leaf->key[0]) {
1753 return 0;
1754 }
1755
1756 if (page > leaf->key[leaf->keys - 1]) {
1757 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1758 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1759
1760 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1761 count * PAGE_SIZE)) {
1762 if (page + count * PAGE_SIZE ==
1763 left_pg + left_cnt * PAGE_SIZE) {
1764 /*
1765 * The interval is contained in the rightmost
1766 * interval of the leaf and can be removed by
1767 * updating the size of the bigger interval.
1768 */
1769 leaf->value[leaf->keys - 1] -= count;
1770 return 1;
1771 } else if (page + count * PAGE_SIZE < left_pg +
1772 left_cnt * PAGE_SIZE) {
1773 size_t new_cnt;
1774
1775 /*
1776 * The interval is contained in the rightmost
1777 * interval of the leaf but its removal
1778 * requires both updating the size of the
1779 * original interval and also inserting a new
1780 * interval.
1781 */
1782 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1783 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1784 leaf->value[leaf->keys - 1] -= count + new_cnt;
1785 btree_insert(&a->used_space, page +
1786 count * PAGE_SIZE, (void *) new_cnt, leaf);
1787 return 1;
1788 }
1789 }
1790 return 0;
1791 }
1792
1793 /*
1794 * The border cases have been already resolved.
1795 * Now the interval can be only between intervals of the leaf.
1796 */
1797 for (i = 1; i < leaf->keys - 1; i++) {
1798 if (page < leaf->key[i]) {
1799 uintptr_t left_pg = leaf->key[i - 1];
1800 size_t left_cnt = (size_t) leaf->value[i - 1];
1801
1802 /*
1803 * Now the interval is between intervals corresponding
1804 * to (i - 1) and i.
1805 */
1806 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1807 count * PAGE_SIZE)) {
1808 if (page + count * PAGE_SIZE ==
1809 left_pg + left_cnt*PAGE_SIZE) {
1810 /*
1811 * The interval is contained in the
1812 * interval (i - 1) of the leaf and can
1813 * be removed by updating the size of
1814 * the bigger interval.
1815 */
1816 leaf->value[i - 1] -= count;
1817 return 1;
1818 } else if (page + count * PAGE_SIZE <
1819 left_pg + left_cnt * PAGE_SIZE) {
1820 size_t new_cnt;
1821
1822 /*
1823 * The interval is contained in the
1824 * interval (i - 1) of the leaf but its
1825 * removal requires both updating the
1826 * size of the original interval and
1827 * also inserting a new interval.
1828 */
1829 new_cnt = ((left_pg +
1830 left_cnt * PAGE_SIZE) -
1831 (page + count * PAGE_SIZE)) >>
1832 PAGE_WIDTH;
1833 leaf->value[i - 1] -= count + new_cnt;
1834 btree_insert(&a->used_space, page +
1835 count * PAGE_SIZE, (void *) new_cnt,
1836 leaf);
1837 return 1;
1838 }
1839 }
1840 return 0;
1841 }
1842 }
1843
1844error:
1845 panic("Inconsistency detected while removing %" PRIs " pages of used "
1846 "space from %p.", count, page);
1847}
1848
1849/** Remove reference to address space area share info.
1850 *
1851 * If the reference count drops to 0, the sh_info is deallocated.
1852 *
1853 * @param sh_info Pointer to address space area share info.
1854 */
1855void sh_info_remove_reference(share_info_t *sh_info)
1856{
1857 bool dealloc = false;
1858
1859 mutex_lock(&sh_info->lock);
1860 ASSERT(sh_info->refcount);
1861 if (--sh_info->refcount == 0) {
1862 dealloc = true;
1863 link_t *cur;
1864
1865 /*
1866 * Now walk carefully the pagemap B+tree and free/remove
1867 * reference from all frames found there.
1868 */
1869 for (cur = sh_info->pagemap.leaf_head.next;
1870 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1871 btree_node_t *node;
1872 unsigned int i;
1873
1874 node = list_get_instance(cur, btree_node_t, leaf_link);
1875 for (i = 0; i < node->keys; i++)
1876 frame_free((uintptr_t) node->value[i]);
1877 }
1878
1879 }
1880 mutex_unlock(&sh_info->lock);
1881
1882 if (dealloc) {
1883 btree_destroy(&sh_info->pagemap);
1884 free(sh_info);
1885 }
1886}
1887
1888/*
1889 * Address space related syscalls.
1890 */
1891
1892/** Wrapper for as_area_create(). */
1893unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1894{
1895 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1896 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1897 return (unative_t) address;
1898 else
1899 return (unative_t) -1;
1900}
1901
1902/** Wrapper for as_area_resize(). */
1903unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1904{
1905 return (unative_t) as_area_resize(AS, address, size, 0);
1906}
1907
1908/** Wrapper for as_area_change_flags(). */
1909unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1910{
1911 return (unative_t) as_area_change_flags(AS, flags, address);
1912}
1913
1914/** Wrapper for as_area_destroy(). */
1915unative_t sys_as_area_destroy(uintptr_t address)
1916{
1917 return (unative_t) as_area_destroy(AS, address);
1918}
1919
1920/** Get list of adress space areas.
1921 *
1922 * @param as Address space.
1923 * @param obuf Place to save pointer to returned buffer.
1924 * @param osize Place to save size of returned buffer.
1925 */
1926void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
1927{
1928 ipl_t ipl;
1929 size_t area_cnt, area_idx, i;
1930 link_t *cur;
1931
1932 as_area_info_t *info;
1933 size_t isize;
1934
1935 ipl = interrupts_disable();
1936 mutex_lock(&as->lock);
1937
1938 /* First pass, count number of areas. */
1939
1940 area_cnt = 0;
1941
1942 for (cur = as->as_area_btree.leaf_head.next;
1943 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1944 btree_node_t *node;
1945
1946 node = list_get_instance(cur, btree_node_t, leaf_link);
1947 area_cnt += node->keys;
1948 }
1949
1950 isize = area_cnt * sizeof(as_area_info_t);
1951 info = malloc(isize, 0);
1952
1953 /* Second pass, record data. */
1954
1955 area_idx = 0;
1956
1957 for (cur = as->as_area_btree.leaf_head.next;
1958 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1959 btree_node_t *node;
1960
1961 node = list_get_instance(cur, btree_node_t, leaf_link);
1962
1963 for (i = 0; i < node->keys; i++) {
1964 as_area_t *area = node->value[i];
1965
1966 ASSERT(area_idx < area_cnt);
1967 mutex_lock(&area->lock);
1968
1969 info[area_idx].start_addr = area->base;
1970 info[area_idx].size = FRAMES2SIZE(area->pages);
1971 info[area_idx].flags = area->flags;
1972 ++area_idx;
1973
1974 mutex_unlock(&area->lock);
1975 }
1976 }
1977
1978 mutex_unlock(&as->lock);
1979 interrupts_restore(ipl);
1980
1981 *obuf = info;
1982 *osize = isize;
1983}
1984
1985
1986/** Print out information about address space.
1987 *
1988 * @param as Address space.
1989 */
1990void as_print(as_t *as)
1991{
1992 ipl_t ipl;
1993
1994 ipl = interrupts_disable();
1995 mutex_lock(&as->lock);
1996
1997 /* print out info about address space areas */
1998 link_t *cur;
1999 for (cur = as->as_area_btree.leaf_head.next;
2000 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2001 btree_node_t *node;
2002
2003 node = list_get_instance(cur, btree_node_t, leaf_link);
2004
2005 unsigned int i;
2006 for (i = 0; i < node->keys; i++) {
2007 as_area_t *area = node->value[i];
2008
2009 mutex_lock(&area->lock);
2010 printf("as_area: %p, base=%p, pages=%" PRIs
2011 " (%p - %p)\n", area, area->base, area->pages,
2012 area->base, area->base + FRAMES2SIZE(area->pages));
2013 mutex_unlock(&area->lock);
2014 }
2015 }
2016
2017 mutex_unlock(&as->lock);
2018 interrupts_restore(ipl);
2019}
2020
2021/** @}
2022 */
Note: See TracBrowser for help on using the repository browser.