source: mainline/kernel/generic/src/mm/as.c@ 80bcaed

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 80bcaed was 80bcaed, checked in by Jakub Jermar <jakub@…>, 18 years ago

Merge as_t structure into one and leave the differring parts in as_genarch_t.

Indentation and formatting changes in header files.

  • Property mode set to 100644
File size: 44.6 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <syscall/copy.h>
78#include <arch/interrupt.h>
79
80#ifdef CONFIG_VIRT_IDX_DCACHE
81#include <arch/mm/cache.h>
82#endif /* CONFIG_VIRT_IDX_DCACHE */
83
84/**
85 * Each architecture decides what functions will be used to carry out
86 * address space operations such as creating or locking page tables.
87 */
88as_operations_t *as_operations = NULL;
89
90/**
91 * Slab for as_t objects.
92 */
93static slab_cache_t *as_slab;
94
95/**
96 * This lock protects inactive_as_with_asid_head list. It must be acquired
97 * before as_t mutex.
98 */
99SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
100
101/**
102 * This list contains address spaces that are not active on any
103 * processor and that have valid ASID.
104 */
105LIST_INITIALIZE(inactive_as_with_asid_head);
106
107/** Kernel address space. */
108as_t *AS_KERNEL = NULL;
109
110static int area_flags_to_page_flags(int aflags);
111static as_area_t *find_area_and_lock(as_t *as, uintptr_t va);
112static bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
113 as_area_t *avoid_area);
114static void sh_info_remove_reference(share_info_t *sh_info);
115
116static int as_constructor(void *obj, int flags)
117{
118 as_t *as = (as_t *) obj;
119 int rc;
120
121 link_initialize(&as->inactive_as_with_asid_link);
122 mutex_initialize(&as->lock);
123
124 rc = as_constructor_arch(as, flags);
125
126 return rc;
127}
128
129static int as_destructor(void *obj)
130{
131 as_t *as = (as_t *) obj;
132
133 return as_destructor_arch(as);
134}
135
136/** Initialize address space subsystem. */
137void as_init(void)
138{
139 as_arch_init();
140
141 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
142 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
143
144 AS_KERNEL = as_create(FLAG_AS_KERNEL);
145 if (!AS_KERNEL)
146 panic("can't create kernel address space\n");
147
148}
149
150/** Create address space.
151 *
152 * @param flags Flags that influence way in wich the address space is created.
153 */
154as_t *as_create(int flags)
155{
156 as_t *as;
157
158 as = (as_t *) slab_alloc(as_slab, 0);
159 (void) as_create_arch(as, 0);
160
161 btree_create(&as->as_area_btree);
162
163 if (flags & FLAG_AS_KERNEL)
164 as->asid = ASID_KERNEL;
165 else
166 as->asid = ASID_INVALID;
167
168 as->refcount = 0;
169 as->cpu_refcount = 0;
170#ifdef AS_PAGE_TABLE
171 as->genarch.page_table = page_table_create(flags);
172#else
173 page_table_create(flags);
174#endif
175
176 return as;
177}
178
179/** Destroy adress space.
180 *
181 * When there are no tasks referencing this address space (i.e. its refcount is
182 * zero), the address space can be destroyed.
183 */
184void as_destroy(as_t *as)
185{
186 ipl_t ipl;
187 bool cond;
188
189 ASSERT(as->refcount == 0);
190
191 /*
192 * Since there is no reference to this area,
193 * it is safe not to lock its mutex.
194 */
195 ipl = interrupts_disable();
196 spinlock_lock(&inactive_as_with_asid_lock);
197 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
198 if (as != AS && as->cpu_refcount == 0)
199 list_remove(&as->inactive_as_with_asid_link);
200 asid_put(as->asid);
201 }
202 spinlock_unlock(&inactive_as_with_asid_lock);
203
204 /*
205 * Destroy address space areas of the address space.
206 * The B+tree must be walked carefully because it is
207 * also being destroyed.
208 */
209 for (cond = true; cond; ) {
210 btree_node_t *node;
211
212 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
213 node = list_get_instance(as->as_area_btree.leaf_head.next,
214 btree_node_t, leaf_link);
215
216 if ((cond = node->keys)) {
217 as_area_destroy(as, node->key[0]);
218 }
219 }
220
221 btree_destroy(&as->as_area_btree);
222#ifdef AS_PAGE_TABLE
223 page_table_destroy(as->genarch.page_table);
224#else
225 page_table_destroy(NULL);
226#endif
227
228 interrupts_restore(ipl);
229
230 slab_free(as_slab, as);
231}
232
233/** Create address space area of common attributes.
234 *
235 * The created address space area is added to the target address space.
236 *
237 * @param as Target address space.
238 * @param flags Flags of the area memory.
239 * @param size Size of area.
240 * @param base Base address of area.
241 * @param attrs Attributes of the area.
242 * @param backend Address space area backend. NULL if no backend is used.
243 * @param backend_data NULL or a pointer to an array holding two void *.
244 *
245 * @return Address space area on success or NULL on failure.
246 */
247as_area_t *
248as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
249 mem_backend_t *backend, mem_backend_data_t *backend_data)
250{
251 ipl_t ipl;
252 as_area_t *a;
253
254 if (base % PAGE_SIZE)
255 return NULL;
256
257 if (!size)
258 return NULL;
259
260 /* Writeable executable areas are not supported. */
261 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
262 return NULL;
263
264 ipl = interrupts_disable();
265 mutex_lock(&as->lock);
266
267 if (!check_area_conflicts(as, base, size, NULL)) {
268 mutex_unlock(&as->lock);
269 interrupts_restore(ipl);
270 return NULL;
271 }
272
273 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
274
275 mutex_initialize(&a->lock);
276
277 a->as = as;
278 a->flags = flags;
279 a->attributes = attrs;
280 a->pages = SIZE2FRAMES(size);
281 a->base = base;
282 a->sh_info = NULL;
283 a->backend = backend;
284 if (backend_data)
285 a->backend_data = *backend_data;
286 else
287 memsetb((uintptr_t) &a->backend_data, sizeof(a->backend_data),
288 0);
289
290 btree_create(&a->used_space);
291
292 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
293
294 mutex_unlock(&as->lock);
295 interrupts_restore(ipl);
296
297 return a;
298}
299
300/** Find address space area and change it.
301 *
302 * @param as Address space.
303 * @param address Virtual address belonging to the area to be changed. Must be
304 * page-aligned.
305 * @param size New size of the virtual memory block starting at address.
306 * @param flags Flags influencing the remap operation. Currently unused.
307 *
308 * @return Zero on success or a value from @ref errno.h otherwise.
309 */
310int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
311{
312 as_area_t *area;
313 ipl_t ipl;
314 size_t pages;
315
316 ipl = interrupts_disable();
317 mutex_lock(&as->lock);
318
319 /*
320 * Locate the area.
321 */
322 area = find_area_and_lock(as, address);
323 if (!area) {
324 mutex_unlock(&as->lock);
325 interrupts_restore(ipl);
326 return ENOENT;
327 }
328
329 if (area->backend == &phys_backend) {
330 /*
331 * Remapping of address space areas associated
332 * with memory mapped devices is not supported.
333 */
334 mutex_unlock(&area->lock);
335 mutex_unlock(&as->lock);
336 interrupts_restore(ipl);
337 return ENOTSUP;
338 }
339 if (area->sh_info) {
340 /*
341 * Remapping of shared address space areas
342 * is not supported.
343 */
344 mutex_unlock(&area->lock);
345 mutex_unlock(&as->lock);
346 interrupts_restore(ipl);
347 return ENOTSUP;
348 }
349
350 pages = SIZE2FRAMES((address - area->base) + size);
351 if (!pages) {
352 /*
353 * Zero size address space areas are not allowed.
354 */
355 mutex_unlock(&area->lock);
356 mutex_unlock(&as->lock);
357 interrupts_restore(ipl);
358 return EPERM;
359 }
360
361 if (pages < area->pages) {
362 bool cond;
363 uintptr_t start_free = area->base + pages*PAGE_SIZE;
364
365 /*
366 * Shrinking the area.
367 * No need to check for overlaps.
368 */
369
370 /*
371 * Start TLB shootdown sequence.
372 */
373 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base +
374 pages * PAGE_SIZE, area->pages - pages);
375
376 /*
377 * Remove frames belonging to used space starting from
378 * the highest addresses downwards until an overlap with
379 * the resized address space area is found. Note that this
380 * is also the right way to remove part of the used_space
381 * B+tree leaf list.
382 */
383 for (cond = true; cond;) {
384 btree_node_t *node;
385
386 ASSERT(!list_empty(&area->used_space.leaf_head));
387 node =
388 list_get_instance(area->used_space.leaf_head.prev,
389 btree_node_t, leaf_link);
390 if ((cond = (bool) node->keys)) {
391 uintptr_t b = node->key[node->keys - 1];
392 count_t c =
393 (count_t) node->value[node->keys - 1];
394 int i = 0;
395
396 if (overlaps(b, c * PAGE_SIZE, area->base,
397 pages*PAGE_SIZE)) {
398
399 if (b + c * PAGE_SIZE <= start_free) {
400 /*
401 * The whole interval fits
402 * completely in the resized
403 * address space area.
404 */
405 break;
406 }
407
408 /*
409 * Part of the interval corresponding
410 * to b and c overlaps with the resized
411 * address space area.
412 */
413
414 cond = false; /* we are almost done */
415 i = (start_free - b) >> PAGE_WIDTH;
416 if (!used_space_remove(area, start_free,
417 c - i))
418 panic("Could not remove used "
419 "space.\n");
420 } else {
421 /*
422 * The interval of used space can be
423 * completely removed.
424 */
425 if (!used_space_remove(area, b, c))
426 panic("Could not remove used "
427 "space.\n");
428 }
429
430 for (; i < c; i++) {
431 pte_t *pte;
432
433 page_table_lock(as, false);
434 pte = page_mapping_find(as, b +
435 i * PAGE_SIZE);
436 ASSERT(pte && PTE_VALID(pte) &&
437 PTE_PRESENT(pte));
438 if (area->backend &&
439 area->backend->frame_free) {
440 area->backend->frame_free(area,
441 b + i * PAGE_SIZE,
442 PTE_GET_FRAME(pte));
443 }
444 page_mapping_remove(as, b +
445 i * PAGE_SIZE);
446 page_table_unlock(as, false);
447 }
448 }
449 }
450
451 /*
452 * Finish TLB shootdown sequence.
453 */
454 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
455 area->pages - pages);
456 tlb_shootdown_finalize();
457
458 /*
459 * Invalidate software translation caches (e.g. TSB on sparc64).
460 */
461 as_invalidate_translation_cache(as, area->base +
462 pages * PAGE_SIZE, area->pages - pages);
463 } else {
464 /*
465 * Growing the area.
466 * Check for overlaps with other address space areas.
467 */
468 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
469 area)) {
470 mutex_unlock(&area->lock);
471 mutex_unlock(&as->lock);
472 interrupts_restore(ipl);
473 return EADDRNOTAVAIL;
474 }
475 }
476
477 area->pages = pages;
478
479 mutex_unlock(&area->lock);
480 mutex_unlock(&as->lock);
481 interrupts_restore(ipl);
482
483 return 0;
484}
485
486/** Destroy address space area.
487 *
488 * @param as Address space.
489 * @param address Address withing the area to be deleted.
490 *
491 * @return Zero on success or a value from @ref errno.h on failure.
492 */
493int as_area_destroy(as_t *as, uintptr_t address)
494{
495 as_area_t *area;
496 uintptr_t base;
497 link_t *cur;
498 ipl_t ipl;
499
500 ipl = interrupts_disable();
501 mutex_lock(&as->lock);
502
503 area = find_area_and_lock(as, address);
504 if (!area) {
505 mutex_unlock(&as->lock);
506 interrupts_restore(ipl);
507 return ENOENT;
508 }
509
510 base = area->base;
511
512 /*
513 * Start TLB shootdown sequence.
514 */
515 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
516
517 /*
518 * Visit only the pages mapped by used_space B+tree.
519 */
520 for (cur = area->used_space.leaf_head.next;
521 cur != &area->used_space.leaf_head; cur = cur->next) {
522 btree_node_t *node;
523 int i;
524
525 node = list_get_instance(cur, btree_node_t, leaf_link);
526 for (i = 0; i < node->keys; i++) {
527 uintptr_t b = node->key[i];
528 count_t j;
529 pte_t *pte;
530
531 for (j = 0; j < (count_t) node->value[i]; j++) {
532 page_table_lock(as, false);
533 pte = page_mapping_find(as, b + j * PAGE_SIZE);
534 ASSERT(pte && PTE_VALID(pte) &&
535 PTE_PRESENT(pte));
536 if (area->backend &&
537 area->backend->frame_free) {
538 area->backend->frame_free(area, b +
539 j * PAGE_SIZE, PTE_GET_FRAME(pte));
540 }
541 page_mapping_remove(as, b + j * PAGE_SIZE);
542 page_table_unlock(as, false);
543 }
544 }
545 }
546
547 /*
548 * Finish TLB shootdown sequence.
549 */
550 tlb_invalidate_pages(as->asid, area->base, area->pages);
551 tlb_shootdown_finalize();
552
553 /*
554 * Invalidate potential software translation caches (e.g. TSB on
555 * sparc64).
556 */
557 as_invalidate_translation_cache(as, area->base, area->pages);
558
559 btree_destroy(&area->used_space);
560
561 area->attributes |= AS_AREA_ATTR_PARTIAL;
562
563 if (area->sh_info)
564 sh_info_remove_reference(area->sh_info);
565
566 mutex_unlock(&area->lock);
567
568 /*
569 * Remove the empty area from address space.
570 */
571 btree_remove(&as->as_area_btree, base, NULL);
572
573 free(area);
574
575 mutex_unlock(&as->lock);
576 interrupts_restore(ipl);
577 return 0;
578}
579
580/** Share address space area with another or the same address space.
581 *
582 * Address space area mapping is shared with a new address space area.
583 * If the source address space area has not been shared so far,
584 * a new sh_info is created. The new address space area simply gets the
585 * sh_info of the source area. The process of duplicating the
586 * mapping is done through the backend share function.
587 *
588 * @param src_as Pointer to source address space.
589 * @param src_base Base address of the source address space area.
590 * @param acc_size Expected size of the source area.
591 * @param dst_as Pointer to destination address space.
592 * @param dst_base Target base address.
593 * @param dst_flags_mask Destination address space area flags mask.
594 *
595 * @return Zero on success or ENOENT if there is no such task or if there is no
596 * such address space area, EPERM if there was a problem in accepting the area
597 * or ENOMEM if there was a problem in allocating destination address space
598 * area. ENOTSUP is returned if the address space area backend does not support
599 * sharing or if the kernel detects an attempt to create an illegal address
600 * alias.
601 */
602int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
603 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
604{
605 ipl_t ipl;
606 int src_flags;
607 size_t src_size;
608 as_area_t *src_area, *dst_area;
609 share_info_t *sh_info;
610 mem_backend_t *src_backend;
611 mem_backend_data_t src_backend_data;
612
613 ipl = interrupts_disable();
614 mutex_lock(&src_as->lock);
615 src_area = find_area_and_lock(src_as, src_base);
616 if (!src_area) {
617 /*
618 * Could not find the source address space area.
619 */
620 mutex_unlock(&src_as->lock);
621 interrupts_restore(ipl);
622 return ENOENT;
623 }
624
625 if (!src_area->backend || !src_area->backend->share) {
626 /*
627 * There is no backend or the backend does not
628 * know how to share the area.
629 */
630 mutex_unlock(&src_area->lock);
631 mutex_unlock(&src_as->lock);
632 interrupts_restore(ipl);
633 return ENOTSUP;
634 }
635
636 src_size = src_area->pages * PAGE_SIZE;
637 src_flags = src_area->flags;
638 src_backend = src_area->backend;
639 src_backend_data = src_area->backend_data;
640
641 /* Share the cacheable flag from the original mapping */
642 if (src_flags & AS_AREA_CACHEABLE)
643 dst_flags_mask |= AS_AREA_CACHEABLE;
644
645 if (src_size != acc_size ||
646 (src_flags & dst_flags_mask) != dst_flags_mask) {
647 mutex_unlock(&src_area->lock);
648 mutex_unlock(&src_as->lock);
649 interrupts_restore(ipl);
650 return EPERM;
651 }
652
653#ifdef CONFIG_VIRT_IDX_DCACHE
654 if (!(dst_flags_mask & AS_AREA_EXEC)) {
655 if (PAGE_COLOR(src_area->base) != PAGE_COLOR(dst_base)) {
656 /*
657 * Refuse to create an illegal address alias.
658 */
659 mutex_unlock(&src_area->lock);
660 mutex_unlock(&src_as->lock);
661 interrupts_restore(ipl);
662 return ENOTSUP;
663 }
664 }
665#endif /* CONFIG_VIRT_IDX_DCACHE */
666
667 /*
668 * Now we are committed to sharing the area.
669 * First, prepare the area for sharing.
670 * Then it will be safe to unlock it.
671 */
672 sh_info = src_area->sh_info;
673 if (!sh_info) {
674 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
675 mutex_initialize(&sh_info->lock);
676 sh_info->refcount = 2;
677 btree_create(&sh_info->pagemap);
678 src_area->sh_info = sh_info;
679 } else {
680 mutex_lock(&sh_info->lock);
681 sh_info->refcount++;
682 mutex_unlock(&sh_info->lock);
683 }
684
685 src_area->backend->share(src_area);
686
687 mutex_unlock(&src_area->lock);
688 mutex_unlock(&src_as->lock);
689
690 /*
691 * Create copy of the source address space area.
692 * The destination area is created with AS_AREA_ATTR_PARTIAL
693 * attribute set which prevents race condition with
694 * preliminary as_page_fault() calls.
695 * The flags of the source area are masked against dst_flags_mask
696 * to support sharing in less privileged mode.
697 */
698 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
699 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
700 if (!dst_area) {
701 /*
702 * Destination address space area could not be created.
703 */
704 sh_info_remove_reference(sh_info);
705
706 interrupts_restore(ipl);
707 return ENOMEM;
708 }
709
710 /*
711 * Now the destination address space area has been
712 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
713 * attribute and set the sh_info.
714 */
715 mutex_lock(&dst_as->lock);
716 mutex_lock(&dst_area->lock);
717 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
718 dst_area->sh_info = sh_info;
719 mutex_unlock(&dst_area->lock);
720 mutex_unlock(&dst_as->lock);
721
722 interrupts_restore(ipl);
723
724 return 0;
725}
726
727/** Check access mode for address space area.
728 *
729 * The address space area must be locked prior to this call.
730 *
731 * @param area Address space area.
732 * @param access Access mode.
733 *
734 * @return False if access violates area's permissions, true otherwise.
735 */
736bool as_area_check_access(as_area_t *area, pf_access_t access)
737{
738 int flagmap[] = {
739 [PF_ACCESS_READ] = AS_AREA_READ,
740 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
741 [PF_ACCESS_EXEC] = AS_AREA_EXEC
742 };
743
744 if (!(area->flags & flagmap[access]))
745 return false;
746
747 return true;
748}
749
750/** Handle page fault within the current address space.
751 *
752 * This is the high-level page fault handler. It decides
753 * whether the page fault can be resolved by any backend
754 * and if so, it invokes the backend to resolve the page
755 * fault.
756 *
757 * Interrupts are assumed disabled.
758 *
759 * @param page Faulting page.
760 * @param access Access mode that caused the fault (i.e. read/write/exec).
761 * @param istate Pointer to interrupted state.
762 *
763 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
764 * fault was caused by copy_to_uspace() or copy_from_uspace().
765 */
766int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
767{
768 pte_t *pte;
769 as_area_t *area;
770
771 if (!THREAD)
772 return AS_PF_FAULT;
773
774 ASSERT(AS);
775
776 mutex_lock(&AS->lock);
777 area = find_area_and_lock(AS, page);
778 if (!area) {
779 /*
780 * No area contained mapping for 'page'.
781 * Signal page fault to low-level handler.
782 */
783 mutex_unlock(&AS->lock);
784 goto page_fault;
785 }
786
787 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
788 /*
789 * The address space area is not fully initialized.
790 * Avoid possible race by returning error.
791 */
792 mutex_unlock(&area->lock);
793 mutex_unlock(&AS->lock);
794 goto page_fault;
795 }
796
797 if (!area->backend || !area->backend->page_fault) {
798 /*
799 * The address space area is not backed by any backend
800 * or the backend cannot handle page faults.
801 */
802 mutex_unlock(&area->lock);
803 mutex_unlock(&AS->lock);
804 goto page_fault;
805 }
806
807 page_table_lock(AS, false);
808
809 /*
810 * To avoid race condition between two page faults
811 * on the same address, we need to make sure
812 * the mapping has not been already inserted.
813 */
814 if ((pte = page_mapping_find(AS, page))) {
815 if (PTE_PRESENT(pte)) {
816 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
817 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
818 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
819 page_table_unlock(AS, false);
820 mutex_unlock(&area->lock);
821 mutex_unlock(&AS->lock);
822 return AS_PF_OK;
823 }
824 }
825 }
826
827 /*
828 * Resort to the backend page fault handler.
829 */
830 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
831 page_table_unlock(AS, false);
832 mutex_unlock(&area->lock);
833 mutex_unlock(&AS->lock);
834 goto page_fault;
835 }
836
837 page_table_unlock(AS, false);
838 mutex_unlock(&area->lock);
839 mutex_unlock(&AS->lock);
840 return AS_PF_OK;
841
842page_fault:
843 if (THREAD->in_copy_from_uspace) {
844 THREAD->in_copy_from_uspace = false;
845 istate_set_retaddr(istate,
846 (uintptr_t) &memcpy_from_uspace_failover_address);
847 } else if (THREAD->in_copy_to_uspace) {
848 THREAD->in_copy_to_uspace = false;
849 istate_set_retaddr(istate,
850 (uintptr_t) &memcpy_to_uspace_failover_address);
851 } else {
852 return AS_PF_FAULT;
853 }
854
855 return AS_PF_DEFER;
856}
857
858/** Switch address spaces.
859 *
860 * Note that this function cannot sleep as it is essentially a part of
861 * scheduling. Sleeping here would lead to deadlock on wakeup.
862 *
863 * @param old Old address space or NULL.
864 * @param new New address space.
865 */
866void as_switch(as_t *old_as, as_t *new_as)
867{
868 ipl_t ipl;
869 bool needs_asid = false;
870
871 ipl = interrupts_disable();
872 spinlock_lock(&inactive_as_with_asid_lock);
873
874 /*
875 * First, take care of the old address space.
876 */
877 if (old_as) {
878 mutex_lock_active(&old_as->lock);
879 ASSERT(old_as->cpu_refcount);
880 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
881 /*
882 * The old address space is no longer active on
883 * any processor. It can be appended to the
884 * list of inactive address spaces with assigned
885 * ASID.
886 */
887 ASSERT(old_as->asid != ASID_INVALID);
888 list_append(&old_as->inactive_as_with_asid_link,
889 &inactive_as_with_asid_head);
890 }
891 mutex_unlock(&old_as->lock);
892
893 /*
894 * Perform architecture-specific tasks when the address space
895 * is being removed from the CPU.
896 */
897 as_deinstall_arch(old_as);
898 }
899
900 /*
901 * Second, prepare the new address space.
902 */
903 mutex_lock_active(&new_as->lock);
904 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
905 if (new_as->asid != ASID_INVALID) {
906 list_remove(&new_as->inactive_as_with_asid_link);
907 } else {
908 /*
909 * Defer call to asid_get() until new_as->lock is released.
910 */
911 needs_asid = true;
912 }
913 }
914#ifdef AS_PAGE_TABLE
915 SET_PTL0_ADDRESS(new_as->genarch.page_table);
916#endif
917 mutex_unlock(&new_as->lock);
918
919 if (needs_asid) {
920 /*
921 * Allocation of new ASID was deferred
922 * until now in order to avoid deadlock.
923 */
924 asid_t asid;
925
926 asid = asid_get();
927 mutex_lock_active(&new_as->lock);
928 new_as->asid = asid;
929 mutex_unlock(&new_as->lock);
930 }
931 spinlock_unlock(&inactive_as_with_asid_lock);
932 interrupts_restore(ipl);
933
934 /*
935 * Perform architecture-specific steps.
936 * (e.g. write ASID to hardware register etc.)
937 */
938 as_install_arch(new_as);
939
940 AS = new_as;
941}
942
943/** Convert address space area flags to page flags.
944 *
945 * @param aflags Flags of some address space area.
946 *
947 * @return Flags to be passed to page_mapping_insert().
948 */
949int area_flags_to_page_flags(int aflags)
950{
951 int flags;
952
953 flags = PAGE_USER | PAGE_PRESENT;
954
955 if (aflags & AS_AREA_READ)
956 flags |= PAGE_READ;
957
958 if (aflags & AS_AREA_WRITE)
959 flags |= PAGE_WRITE;
960
961 if (aflags & AS_AREA_EXEC)
962 flags |= PAGE_EXEC;
963
964 if (aflags & AS_AREA_CACHEABLE)
965 flags |= PAGE_CACHEABLE;
966
967 return flags;
968}
969
970/** Compute flags for virtual address translation subsytem.
971 *
972 * The address space area must be locked.
973 * Interrupts must be disabled.
974 *
975 * @param a Address space area.
976 *
977 * @return Flags to be used in page_mapping_insert().
978 */
979int as_area_get_flags(as_area_t *a)
980{
981 return area_flags_to_page_flags(a->flags);
982}
983
984/** Create page table.
985 *
986 * Depending on architecture, create either address space
987 * private or global page table.
988 *
989 * @param flags Flags saying whether the page table is for kernel address space.
990 *
991 * @return First entry of the page table.
992 */
993pte_t *page_table_create(int flags)
994{
995 ASSERT(as_operations);
996 ASSERT(as_operations->page_table_create);
997
998 return as_operations->page_table_create(flags);
999}
1000
1001/** Destroy page table.
1002 *
1003 * Destroy page table in architecture specific way.
1004 *
1005 * @param page_table Physical address of PTL0.
1006 */
1007void page_table_destroy(pte_t *page_table)
1008{
1009 ASSERT(as_operations);
1010 ASSERT(as_operations->page_table_destroy);
1011
1012 as_operations->page_table_destroy(page_table);
1013}
1014
1015/** Lock page table.
1016 *
1017 * This function should be called before any page_mapping_insert(),
1018 * page_mapping_remove() and page_mapping_find().
1019 *
1020 * Locking order is such that address space areas must be locked
1021 * prior to this call. Address space can be locked prior to this
1022 * call in which case the lock argument is false.
1023 *
1024 * @param as Address space.
1025 * @param lock If false, do not attempt to lock as->lock.
1026 */
1027void page_table_lock(as_t *as, bool lock)
1028{
1029 ASSERT(as_operations);
1030 ASSERT(as_operations->page_table_lock);
1031
1032 as_operations->page_table_lock(as, lock);
1033}
1034
1035/** Unlock page table.
1036 *
1037 * @param as Address space.
1038 * @param unlock If false, do not attempt to unlock as->lock.
1039 */
1040void page_table_unlock(as_t *as, bool unlock)
1041{
1042 ASSERT(as_operations);
1043 ASSERT(as_operations->page_table_unlock);
1044
1045 as_operations->page_table_unlock(as, unlock);
1046}
1047
1048
1049/** Find address space area and lock it.
1050 *
1051 * The address space must be locked and interrupts must be disabled.
1052 *
1053 * @param as Address space.
1054 * @param va Virtual address.
1055 *
1056 * @return Locked address space area containing va on success or NULL on
1057 * failure.
1058 */
1059as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1060{
1061 as_area_t *a;
1062 btree_node_t *leaf, *lnode;
1063 int i;
1064
1065 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1066 if (a) {
1067 /* va is the base address of an address space area */
1068 mutex_lock(&a->lock);
1069 return a;
1070 }
1071
1072 /*
1073 * Search the leaf node and the righmost record of its left neighbour
1074 * to find out whether this is a miss or va belongs to an address
1075 * space area found there.
1076 */
1077
1078 /* First, search the leaf node itself. */
1079 for (i = 0; i < leaf->keys; i++) {
1080 a = (as_area_t *) leaf->value[i];
1081 mutex_lock(&a->lock);
1082 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1083 return a;
1084 }
1085 mutex_unlock(&a->lock);
1086 }
1087
1088 /*
1089 * Second, locate the left neighbour and test its last record.
1090 * Because of its position in the B+tree, it must have base < va.
1091 */
1092 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1093 if (lnode) {
1094 a = (as_area_t *) lnode->value[lnode->keys - 1];
1095 mutex_lock(&a->lock);
1096 if (va < a->base + a->pages * PAGE_SIZE) {
1097 return a;
1098 }
1099 mutex_unlock(&a->lock);
1100 }
1101
1102 return NULL;
1103}
1104
1105/** Check area conflicts with other areas.
1106 *
1107 * The address space must be locked and interrupts must be disabled.
1108 *
1109 * @param as Address space.
1110 * @param va Starting virtual address of the area being tested.
1111 * @param size Size of the area being tested.
1112 * @param avoid_area Do not touch this area.
1113 *
1114 * @return True if there is no conflict, false otherwise.
1115 */
1116bool check_area_conflicts(as_t *as, uintptr_t va, size_t size,
1117 as_area_t *avoid_area)
1118{
1119 as_area_t *a;
1120 btree_node_t *leaf, *node;
1121 int i;
1122
1123 /*
1124 * We don't want any area to have conflicts with NULL page.
1125 */
1126 if (overlaps(va, size, NULL, PAGE_SIZE))
1127 return false;
1128
1129 /*
1130 * The leaf node is found in O(log n), where n is proportional to
1131 * the number of address space areas belonging to as.
1132 * The check for conflicts is then attempted on the rightmost
1133 * record in the left neighbour, the leftmost record in the right
1134 * neighbour and all records in the leaf node itself.
1135 */
1136
1137 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1138 if (a != avoid_area)
1139 return false;
1140 }
1141
1142 /* First, check the two border cases. */
1143 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1144 a = (as_area_t *) node->value[node->keys - 1];
1145 mutex_lock(&a->lock);
1146 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1147 mutex_unlock(&a->lock);
1148 return false;
1149 }
1150 mutex_unlock(&a->lock);
1151 }
1152 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1153 if (node) {
1154 a = (as_area_t *) node->value[0];
1155 mutex_lock(&a->lock);
1156 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1157 mutex_unlock(&a->lock);
1158 return false;
1159 }
1160 mutex_unlock(&a->lock);
1161 }
1162
1163 /* Second, check the leaf node. */
1164 for (i = 0; i < leaf->keys; i++) {
1165 a = (as_area_t *) leaf->value[i];
1166
1167 if (a == avoid_area)
1168 continue;
1169
1170 mutex_lock(&a->lock);
1171 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1172 mutex_unlock(&a->lock);
1173 return false;
1174 }
1175 mutex_unlock(&a->lock);
1176 }
1177
1178 /*
1179 * So far, the area does not conflict with other areas.
1180 * Check if it doesn't conflict with kernel address space.
1181 */
1182 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1183 return !overlaps(va, size,
1184 KERNEL_ADDRESS_SPACE_START,
1185 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1186 }
1187
1188 return true;
1189}
1190
1191/** Return size of the address space area with given base. */
1192size_t as_get_size(uintptr_t base)
1193{
1194 ipl_t ipl;
1195 as_area_t *src_area;
1196 size_t size;
1197
1198 ipl = interrupts_disable();
1199 src_area = find_area_and_lock(AS, base);
1200 if (src_area){
1201 size = src_area->pages * PAGE_SIZE;
1202 mutex_unlock(&src_area->lock);
1203 } else {
1204 size = 0;
1205 }
1206 interrupts_restore(ipl);
1207 return size;
1208}
1209
1210/** Mark portion of address space area as used.
1211 *
1212 * The address space area must be already locked.
1213 *
1214 * @param a Address space area.
1215 * @param page First page to be marked.
1216 * @param count Number of page to be marked.
1217 *
1218 * @return 0 on failure and 1 on success.
1219 */
1220int used_space_insert(as_area_t *a, uintptr_t page, count_t count)
1221{
1222 btree_node_t *leaf, *node;
1223 count_t pages;
1224 int i;
1225
1226 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1227 ASSERT(count);
1228
1229 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1230 if (pages) {
1231 /*
1232 * We hit the beginning of some used space.
1233 */
1234 return 0;
1235 }
1236
1237 if (!leaf->keys) {
1238 btree_insert(&a->used_space, page, (void *) count, leaf);
1239 return 1;
1240 }
1241
1242 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1243 if (node) {
1244 uintptr_t left_pg = node->key[node->keys - 1];
1245 uintptr_t right_pg = leaf->key[0];
1246 count_t left_cnt = (count_t) node->value[node->keys - 1];
1247 count_t right_cnt = (count_t) leaf->value[0];
1248
1249 /*
1250 * Examine the possibility that the interval fits
1251 * somewhere between the rightmost interval of
1252 * the left neigbour and the first interval of the leaf.
1253 */
1254
1255 if (page >= right_pg) {
1256 /* Do nothing. */
1257 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1258 left_cnt * PAGE_SIZE)) {
1259 /* The interval intersects with the left interval. */
1260 return 0;
1261 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1262 right_cnt * PAGE_SIZE)) {
1263 /* The interval intersects with the right interval. */
1264 return 0;
1265 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1266 (page + count * PAGE_SIZE == right_pg)) {
1267 /*
1268 * The interval can be added by merging the two already
1269 * present intervals.
1270 */
1271 node->value[node->keys - 1] += count + right_cnt;
1272 btree_remove(&a->used_space, right_pg, leaf);
1273 return 1;
1274 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1275 /*
1276 * The interval can be added by simply growing the left
1277 * interval.
1278 */
1279 node->value[node->keys - 1] += count;
1280 return 1;
1281 } else if (page + count * PAGE_SIZE == right_pg) {
1282 /*
1283 * The interval can be addded by simply moving base of
1284 * the right interval down and increasing its size
1285 * accordingly.
1286 */
1287 leaf->value[0] += count;
1288 leaf->key[0] = page;
1289 return 1;
1290 } else {
1291 /*
1292 * The interval is between both neigbouring intervals,
1293 * but cannot be merged with any of them.
1294 */
1295 btree_insert(&a->used_space, page, (void *) count,
1296 leaf);
1297 return 1;
1298 }
1299 } else if (page < leaf->key[0]) {
1300 uintptr_t right_pg = leaf->key[0];
1301 count_t right_cnt = (count_t) leaf->value[0];
1302
1303 /*
1304 * Investigate the border case in which the left neighbour does
1305 * not exist but the interval fits from the left.
1306 */
1307
1308 if (overlaps(page, count * PAGE_SIZE, right_pg,
1309 right_cnt * PAGE_SIZE)) {
1310 /* The interval intersects with the right interval. */
1311 return 0;
1312 } else if (page + count * PAGE_SIZE == right_pg) {
1313 /*
1314 * The interval can be added by moving the base of the
1315 * right interval down and increasing its size
1316 * accordingly.
1317 */
1318 leaf->key[0] = page;
1319 leaf->value[0] += count;
1320 return 1;
1321 } else {
1322 /*
1323 * The interval doesn't adjoin with the right interval.
1324 * It must be added individually.
1325 */
1326 btree_insert(&a->used_space, page, (void *) count,
1327 leaf);
1328 return 1;
1329 }
1330 }
1331
1332 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1333 if (node) {
1334 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1335 uintptr_t right_pg = node->key[0];
1336 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1337 count_t right_cnt = (count_t) node->value[0];
1338
1339 /*
1340 * Examine the possibility that the interval fits
1341 * somewhere between the leftmost interval of
1342 * the right neigbour and the last interval of the leaf.
1343 */
1344
1345 if (page < left_pg) {
1346 /* Do nothing. */
1347 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1348 left_cnt * PAGE_SIZE)) {
1349 /* The interval intersects with the left interval. */
1350 return 0;
1351 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1352 right_cnt * PAGE_SIZE)) {
1353 /* The interval intersects with the right interval. */
1354 return 0;
1355 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1356 (page + count * PAGE_SIZE == right_pg)) {
1357 /*
1358 * The interval can be added by merging the two already
1359 * present intervals.
1360 * */
1361 leaf->value[leaf->keys - 1] += count + right_cnt;
1362 btree_remove(&a->used_space, right_pg, node);
1363 return 1;
1364 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1365 /*
1366 * The interval can be added by simply growing the left
1367 * interval.
1368 * */
1369 leaf->value[leaf->keys - 1] += count;
1370 return 1;
1371 } else if (page + count * PAGE_SIZE == right_pg) {
1372 /*
1373 * The interval can be addded by simply moving base of
1374 * the right interval down and increasing its size
1375 * accordingly.
1376 */
1377 node->value[0] += count;
1378 node->key[0] = page;
1379 return 1;
1380 } else {
1381 /*
1382 * The interval is between both neigbouring intervals,
1383 * but cannot be merged with any of them.
1384 */
1385 btree_insert(&a->used_space, page, (void *) count,
1386 leaf);
1387 return 1;
1388 }
1389 } else if (page >= leaf->key[leaf->keys - 1]) {
1390 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1391 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1392
1393 /*
1394 * Investigate the border case in which the right neighbour
1395 * does not exist but the interval fits from the right.
1396 */
1397
1398 if (overlaps(page, count * PAGE_SIZE, left_pg,
1399 left_cnt * PAGE_SIZE)) {
1400 /* The interval intersects with the left interval. */
1401 return 0;
1402 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1403 /*
1404 * The interval can be added by growing the left
1405 * interval.
1406 */
1407 leaf->value[leaf->keys - 1] += count;
1408 return 1;
1409 } else {
1410 /*
1411 * The interval doesn't adjoin with the left interval.
1412 * It must be added individually.
1413 */
1414 btree_insert(&a->used_space, page, (void *) count,
1415 leaf);
1416 return 1;
1417 }
1418 }
1419
1420 /*
1421 * Note that if the algorithm made it thus far, the interval can fit
1422 * only between two other intervals of the leaf. The two border cases
1423 * were already resolved.
1424 */
1425 for (i = 1; i < leaf->keys; i++) {
1426 if (page < leaf->key[i]) {
1427 uintptr_t left_pg = leaf->key[i - 1];
1428 uintptr_t right_pg = leaf->key[i];
1429 count_t left_cnt = (count_t) leaf->value[i - 1];
1430 count_t right_cnt = (count_t) leaf->value[i];
1431
1432 /*
1433 * The interval fits between left_pg and right_pg.
1434 */
1435
1436 if (overlaps(page, count * PAGE_SIZE, left_pg,
1437 left_cnt * PAGE_SIZE)) {
1438 /*
1439 * The interval intersects with the left
1440 * interval.
1441 */
1442 return 0;
1443 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1444 right_cnt * PAGE_SIZE)) {
1445 /*
1446 * The interval intersects with the right
1447 * interval.
1448 */
1449 return 0;
1450 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1451 (page + count * PAGE_SIZE == right_pg)) {
1452 /*
1453 * The interval can be added by merging the two
1454 * already present intervals.
1455 */
1456 leaf->value[i - 1] += count + right_cnt;
1457 btree_remove(&a->used_space, right_pg, leaf);
1458 return 1;
1459 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1460 /*
1461 * The interval can be added by simply growing
1462 * the left interval.
1463 */
1464 leaf->value[i - 1] += count;
1465 return 1;
1466 } else if (page + count * PAGE_SIZE == right_pg) {
1467 /*
1468 * The interval can be addded by simply moving
1469 * base of the right interval down and
1470 * increasing its size accordingly.
1471 */
1472 leaf->value[i] += count;
1473 leaf->key[i] = page;
1474 return 1;
1475 } else {
1476 /*
1477 * The interval is between both neigbouring
1478 * intervals, but cannot be merged with any of
1479 * them.
1480 */
1481 btree_insert(&a->used_space, page,
1482 (void *) count, leaf);
1483 return 1;
1484 }
1485 }
1486 }
1487
1488 panic("Inconsistency detected while adding %d pages of used space at "
1489 "%p.\n", count, page);
1490}
1491
1492/** Mark portion of address space area as unused.
1493 *
1494 * The address space area must be already locked.
1495 *
1496 * @param a Address space area.
1497 * @param page First page to be marked.
1498 * @param count Number of page to be marked.
1499 *
1500 * @return 0 on failure and 1 on success.
1501 */
1502int used_space_remove(as_area_t *a, uintptr_t page, count_t count)
1503{
1504 btree_node_t *leaf, *node;
1505 count_t pages;
1506 int i;
1507
1508 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1509 ASSERT(count);
1510
1511 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1512 if (pages) {
1513 /*
1514 * We are lucky, page is the beginning of some interval.
1515 */
1516 if (count > pages) {
1517 return 0;
1518 } else if (count == pages) {
1519 btree_remove(&a->used_space, page, leaf);
1520 return 1;
1521 } else {
1522 /*
1523 * Find the respective interval.
1524 * Decrease its size and relocate its start address.
1525 */
1526 for (i = 0; i < leaf->keys; i++) {
1527 if (leaf->key[i] == page) {
1528 leaf->key[i] += count * PAGE_SIZE;
1529 leaf->value[i] -= count;
1530 return 1;
1531 }
1532 }
1533 goto error;
1534 }
1535 }
1536
1537 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1538 if (node && page < leaf->key[0]) {
1539 uintptr_t left_pg = node->key[node->keys - 1];
1540 count_t left_cnt = (count_t) node->value[node->keys - 1];
1541
1542 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1543 count * PAGE_SIZE)) {
1544 if (page + count * PAGE_SIZE ==
1545 left_pg + left_cnt * PAGE_SIZE) {
1546 /*
1547 * The interval is contained in the rightmost
1548 * interval of the left neighbour and can be
1549 * removed by updating the size of the bigger
1550 * interval.
1551 */
1552 node->value[node->keys - 1] -= count;
1553 return 1;
1554 } else if (page + count * PAGE_SIZE <
1555 left_pg + left_cnt*PAGE_SIZE) {
1556 count_t new_cnt;
1557
1558 /*
1559 * The interval is contained in the rightmost
1560 * interval of the left neighbour but its
1561 * removal requires both updating the size of
1562 * the original interval and also inserting a
1563 * new interval.
1564 */
1565 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1566 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1567 node->value[node->keys - 1] -= count + new_cnt;
1568 btree_insert(&a->used_space, page +
1569 count * PAGE_SIZE, (void *) new_cnt, leaf);
1570 return 1;
1571 }
1572 }
1573 return 0;
1574 } else if (page < leaf->key[0]) {
1575 return 0;
1576 }
1577
1578 if (page > leaf->key[leaf->keys - 1]) {
1579 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1580 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1581
1582 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1583 count * PAGE_SIZE)) {
1584 if (page + count * PAGE_SIZE ==
1585 left_pg + left_cnt * PAGE_SIZE) {
1586 /*
1587 * The interval is contained in the rightmost
1588 * interval of the leaf and can be removed by
1589 * updating the size of the bigger interval.
1590 */
1591 leaf->value[leaf->keys - 1] -= count;
1592 return 1;
1593 } else if (page + count * PAGE_SIZE < left_pg +
1594 left_cnt * PAGE_SIZE) {
1595 count_t new_cnt;
1596
1597 /*
1598 * The interval is contained in the rightmost
1599 * interval of the leaf but its removal
1600 * requires both updating the size of the
1601 * original interval and also inserting a new
1602 * interval.
1603 */
1604 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1605 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1606 leaf->value[leaf->keys - 1] -= count + new_cnt;
1607 btree_insert(&a->used_space, page +
1608 count * PAGE_SIZE, (void *) new_cnt, leaf);
1609 return 1;
1610 }
1611 }
1612 return 0;
1613 }
1614
1615 /*
1616 * The border cases have been already resolved.
1617 * Now the interval can be only between intervals of the leaf.
1618 */
1619 for (i = 1; i < leaf->keys - 1; i++) {
1620 if (page < leaf->key[i]) {
1621 uintptr_t left_pg = leaf->key[i - 1];
1622 count_t left_cnt = (count_t) leaf->value[i - 1];
1623
1624 /*
1625 * Now the interval is between intervals corresponding
1626 * to (i - 1) and i.
1627 */
1628 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1629 count * PAGE_SIZE)) {
1630 if (page + count * PAGE_SIZE ==
1631 left_pg + left_cnt*PAGE_SIZE) {
1632 /*
1633 * The interval is contained in the
1634 * interval (i - 1) of the leaf and can
1635 * be removed by updating the size of
1636 * the bigger interval.
1637 */
1638 leaf->value[i - 1] -= count;
1639 return 1;
1640 } else if (page + count * PAGE_SIZE <
1641 left_pg + left_cnt * PAGE_SIZE) {
1642 count_t new_cnt;
1643
1644 /*
1645 * The interval is contained in the
1646 * interval (i - 1) of the leaf but its
1647 * removal requires both updating the
1648 * size of the original interval and
1649 * also inserting a new interval.
1650 */
1651 new_cnt = ((left_pg +
1652 left_cnt * PAGE_SIZE) -
1653 (page + count * PAGE_SIZE)) >>
1654 PAGE_WIDTH;
1655 leaf->value[i - 1] -= count + new_cnt;
1656 btree_insert(&a->used_space, page +
1657 count * PAGE_SIZE, (void *) new_cnt,
1658 leaf);
1659 return 1;
1660 }
1661 }
1662 return 0;
1663 }
1664 }
1665
1666error:
1667 panic("Inconsistency detected while removing %d pages of used space "
1668 "from %p.\n", count, page);
1669}
1670
1671/** Remove reference to address space area share info.
1672 *
1673 * If the reference count drops to 0, the sh_info is deallocated.
1674 *
1675 * @param sh_info Pointer to address space area share info.
1676 */
1677void sh_info_remove_reference(share_info_t *sh_info)
1678{
1679 bool dealloc = false;
1680
1681 mutex_lock(&sh_info->lock);
1682 ASSERT(sh_info->refcount);
1683 if (--sh_info->refcount == 0) {
1684 dealloc = true;
1685 link_t *cur;
1686
1687 /*
1688 * Now walk carefully the pagemap B+tree and free/remove
1689 * reference from all frames found there.
1690 */
1691 for (cur = sh_info->pagemap.leaf_head.next;
1692 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1693 btree_node_t *node;
1694 int i;
1695
1696 node = list_get_instance(cur, btree_node_t, leaf_link);
1697 for (i = 0; i < node->keys; i++)
1698 frame_free((uintptr_t) node->value[i]);
1699 }
1700
1701 }
1702 mutex_unlock(&sh_info->lock);
1703
1704 if (dealloc) {
1705 btree_destroy(&sh_info->pagemap);
1706 free(sh_info);
1707 }
1708}
1709
1710/*
1711 * Address space related syscalls.
1712 */
1713
1714/** Wrapper for as_area_create(). */
1715unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1716{
1717 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1718 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1719 return (unative_t) address;
1720 else
1721 return (unative_t) -1;
1722}
1723
1724/** Wrapper for as_area_resize(). */
1725unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1726{
1727 return (unative_t) as_area_resize(AS, address, size, 0);
1728}
1729
1730/** Wrapper for as_area_destroy(). */
1731unative_t sys_as_area_destroy(uintptr_t address)
1732{
1733 return (unative_t) as_area_destroy(AS, address);
1734}
1735
1736/** Print out information about address space.
1737 *
1738 * @param as Address space.
1739 */
1740void as_print(as_t *as)
1741{
1742 ipl_t ipl;
1743
1744 ipl = interrupts_disable();
1745 mutex_lock(&as->lock);
1746
1747 /* print out info about address space areas */
1748 link_t *cur;
1749 for (cur = as->as_area_btree.leaf_head.next;
1750 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1751 btree_node_t *node;
1752
1753 node = list_get_instance(cur, btree_node_t, leaf_link);
1754
1755 int i;
1756 for (i = 0; i < node->keys; i++) {
1757 as_area_t *area = node->value[i];
1758
1759 mutex_lock(&area->lock);
1760 printf("as_area: %p, base=%p, pages=%d (%p - %p)\n",
1761 area, area->base, area->pages, area->base,
1762 area->base + area->pages*PAGE_SIZE);
1763 mutex_unlock(&area->lock);
1764 }
1765 }
1766
1767 mutex_unlock(&as->lock);
1768 interrupts_restore(ipl);
1769}
1770
1771/** @}
1772 */
Note: See TracBrowser for help on using the repository browser.