source: mainline/kernel/generic/src/mm/as.c@ 09ab0a9a

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 09ab0a9a was 09ab0a9a, checked in by Jiri Svoboda <jiri@…>, 7 years ago

Fix vertical spacing with new Ccheck revision.

  • Property mode set to 100644
File size: 57.0 KB
Line 
1/*
2 * Copyright (c) 2010 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <assert.h>
70#include <print.h>
71#include <mem.h>
72#include <macros.h>
73#include <bitops.h>
74#include <arch.h>
75#include <errno.h>
76#include <config.h>
77#include <align.h>
78#include <typedefs.h>
79#include <syscall/copy.h>
80#include <arch/interrupt.h>
81#include <interrupt.h>
82
83/**
84 * Each architecture decides what functions will be used to carry out
85 * address space operations such as creating or locking page tables.
86 */
87as_operations_t *as_operations = NULL;
88
89/** Slab for as_t objects.
90 *
91 */
92static slab_cache_t *as_cache;
93
94/** ASID subsystem lock.
95 *
96 * This lock protects:
97 * - inactive_as_with_asid_list
98 * - as->asid for each as of the as_t type
99 * - asids_allocated counter
100 *
101 */
102SPINLOCK_INITIALIZE(asidlock);
103
104/**
105 * Inactive address spaces (on all processors)
106 * that have valid ASID.
107 */
108LIST_INITIALIZE(inactive_as_with_asid_list);
109
110/** Kernel address space. */
111as_t *AS_KERNEL = NULL;
112
113NO_TRACE static errno_t as_constructor(void *obj, unsigned int flags)
114{
115 as_t *as = (as_t *) obj;
116
117 link_initialize(&as->inactive_as_with_asid_link);
118 mutex_initialize(&as->lock, MUTEX_PASSIVE);
119
120 return as_constructor_arch(as, flags);
121}
122
123NO_TRACE static size_t as_destructor(void *obj)
124{
125 return as_destructor_arch((as_t *) obj);
126}
127
128/** Initialize address space subsystem. */
129void as_init(void)
130{
131 as_arch_init();
132
133 as_cache = slab_cache_create("as_t", sizeof(as_t), 0,
134 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
135
136 AS_KERNEL = as_create(FLAG_AS_KERNEL);
137 if (!AS_KERNEL)
138 panic("Cannot create kernel address space.");
139
140 /*
141 * Make sure the kernel address space
142 * reference count never drops to zero.
143 */
144 as_hold(AS_KERNEL);
145}
146
147/** Create address space.
148 *
149 * @param flags Flags that influence the way in wich the address
150 * space is created.
151 *
152 */
153as_t *as_create(unsigned int flags)
154{
155 as_t *as = (as_t *) slab_alloc(as_cache, 0);
156 (void) as_create_arch(as, 0);
157
158 btree_create(&as->as_area_btree);
159
160 if (flags & FLAG_AS_KERNEL)
161 as->asid = ASID_KERNEL;
162 else
163 as->asid = ASID_INVALID;
164
165 refcount_init(&as->refcount);
166 as->cpu_refcount = 0;
167
168#ifdef AS_PAGE_TABLE
169 as->genarch.page_table = page_table_create(flags);
170#else
171 page_table_create(flags);
172#endif
173
174 return as;
175}
176
177/** Destroy adress space.
178 *
179 * When there are no tasks referencing this address space (i.e. its refcount is
180 * zero), the address space can be destroyed.
181 *
182 * We know that we don't hold any spinlock.
183 *
184 * @param as Address space to be destroyed.
185 *
186 */
187void as_destroy(as_t *as)
188{
189 DEADLOCK_PROBE_INIT(p_asidlock);
190
191 assert(as != AS);
192 assert(refcount_unique(&as->refcount));
193
194 /*
195 * Since there is no reference to this address space, it is safe not to
196 * lock its mutex.
197 */
198
199 /*
200 * We need to avoid deadlock between TLB shootdown and asidlock.
201 * We therefore try to take asid conditionally and if we don't succeed,
202 * we enable interrupts and try again. This is done while preemption is
203 * disabled to prevent nested context switches. We also depend on the
204 * fact that so far no spinlocks are held.
205 */
206 preemption_disable();
207 ipl_t ipl = interrupts_read();
208
209retry:
210 interrupts_disable();
211 if (!spinlock_trylock(&asidlock)) {
212 interrupts_enable();
213 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
214 goto retry;
215 }
216
217 /* Interrupts disabled, enable preemption */
218 preemption_enable();
219
220 if ((as->asid != ASID_INVALID) && (as != AS_KERNEL)) {
221 if (as->cpu_refcount == 0)
222 list_remove(&as->inactive_as_with_asid_link);
223
224 asid_put(as->asid);
225 }
226
227 spinlock_unlock(&asidlock);
228 interrupts_restore(ipl);
229
230 /*
231 * Destroy address space areas of the address space.
232 * The B+tree must be walked carefully because it is
233 * also being destroyed.
234 */
235 bool cond = true;
236 while (cond) {
237 assert(!list_empty(&as->as_area_btree.leaf_list));
238
239 btree_node_t *node =
240 list_get_instance(list_first(&as->as_area_btree.leaf_list),
241 btree_node_t, leaf_link);
242
243 if ((cond = node->keys))
244 as_area_destroy(as, node->key[0]);
245 }
246
247 btree_destroy(&as->as_area_btree);
248
249#ifdef AS_PAGE_TABLE
250 page_table_destroy(as->genarch.page_table);
251#else
252 page_table_destroy(NULL);
253#endif
254
255 slab_free(as_cache, as);
256}
257
258/** Hold a reference to an address space.
259 *
260 * Holding a reference to an address space prevents destruction
261 * of that address space.
262 *
263 * @param as Address space to be held.
264 *
265 */
266NO_TRACE void as_hold(as_t *as)
267{
268 refcount_up(&as->refcount);
269}
270
271/** Release a reference to an address space.
272 *
273 * The last one to release a reference to an address space
274 * destroys the address space.
275 *
276 * @param as Address space to be released.
277 *
278 */
279NO_TRACE void as_release(as_t *as)
280{
281 if (refcount_down(&as->refcount))
282 as_destroy(as);
283}
284
285/** Check area conflicts with other areas.
286 *
287 * @param as Address space.
288 * @param addr Starting virtual address of the area being tested.
289 * @param count Number of pages in the area being tested.
290 * @param guarded True if the area being tested is protected by guard pages.
291 * @param avoid Do not touch this area.
292 *
293 * @return True if there is no conflict, false otherwise.
294 *
295 */
296NO_TRACE static bool check_area_conflicts(as_t *as, uintptr_t addr,
297 size_t count, bool guarded, as_area_t *avoid)
298{
299 assert((addr % PAGE_SIZE) == 0);
300 assert(mutex_locked(&as->lock));
301
302 /*
303 * If the addition of the supposed area address and size overflows,
304 * report conflict.
305 */
306 if (overflows_into_positive(addr, P2SZ(count)))
307 return false;
308
309 /*
310 * We don't want any area to have conflicts with NULL page.
311 */
312 if (overlaps(addr, P2SZ(count), (uintptr_t) NULL, PAGE_SIZE))
313 return false;
314
315 /*
316 * The leaf node is found in O(log n), where n is proportional to
317 * the number of address space areas belonging to as.
318 * The check for conflicts is then attempted on the rightmost
319 * record in the left neighbour, the leftmost record in the right
320 * neighbour and all records in the leaf node itself.
321 */
322 btree_node_t *leaf;
323 as_area_t *area =
324 (as_area_t *) btree_search(&as->as_area_btree, addr, &leaf);
325 if (area) {
326 if (area != avoid)
327 return false;
328 }
329
330 /* First, check the two border cases. */
331 btree_node_t *node =
332 btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
333 if (node) {
334 area = (as_area_t *) node->value[node->keys - 1];
335
336 if (area != avoid) {
337 mutex_lock(&area->lock);
338
339 /*
340 * If at least one of the two areas are protected
341 * by the AS_AREA_GUARD flag then we must be sure
342 * that they are separated by at least one unmapped
343 * page.
344 */
345 int const gp = (guarded ||
346 (area->flags & AS_AREA_GUARD)) ? 1 : 0;
347
348 /*
349 * The area comes from the left neighbour node, which
350 * means that there already are some areas in the leaf
351 * node, which in turn means that adding gp is safe and
352 * will not cause an integer overflow.
353 */
354 if (overlaps(addr, P2SZ(count), area->base,
355 P2SZ(area->pages + gp))) {
356 mutex_unlock(&area->lock);
357 return false;
358 }
359
360 mutex_unlock(&area->lock);
361 }
362 }
363
364 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
365 if (node) {
366 area = (as_area_t *) node->value[0];
367
368 if (area != avoid) {
369 int gp;
370
371 mutex_lock(&area->lock);
372
373 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
374 if (gp && overflows(addr, P2SZ(count))) {
375 /*
376 * Guard page not needed if the supposed area
377 * is adjacent to the end of the address space.
378 * We already know that the following test is
379 * going to fail...
380 */
381 gp--;
382 }
383
384 if (overlaps(addr, P2SZ(count + gp), area->base,
385 P2SZ(area->pages))) {
386 mutex_unlock(&area->lock);
387 return false;
388 }
389
390 mutex_unlock(&area->lock);
391 }
392 }
393
394 /* Second, check the leaf node. */
395 btree_key_t i;
396 for (i = 0; i < leaf->keys; i++) {
397 area = (as_area_t *) leaf->value[i];
398 int agp;
399 int gp;
400
401 if (area == avoid)
402 continue;
403
404 mutex_lock(&area->lock);
405
406 gp = (guarded || (area->flags & AS_AREA_GUARD)) ? 1 : 0;
407 agp = gp;
408
409 /*
410 * Sanitize the two possible unsigned integer overflows.
411 */
412 if (gp && overflows(addr, P2SZ(count)))
413 gp--;
414 if (agp && overflows(area->base, P2SZ(area->pages)))
415 agp--;
416
417 if (overlaps(addr, P2SZ(count + gp), area->base,
418 P2SZ(area->pages + agp))) {
419 mutex_unlock(&area->lock);
420 return false;
421 }
422
423 mutex_unlock(&area->lock);
424 }
425
426 /*
427 * So far, the area does not conflict with other areas.
428 * Check if it is contained in the user address space.
429 */
430 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
431 return iswithin(USER_ADDRESS_SPACE_START,
432 (USER_ADDRESS_SPACE_END - USER_ADDRESS_SPACE_START) + 1,
433 addr, P2SZ(count));
434 }
435
436 return true;
437}
438
439/** Return pointer to unmapped address space area
440 *
441 * The address space must be already locked when calling
442 * this function.
443 *
444 * @param as Address space.
445 * @param bound Lowest address bound.
446 * @param size Requested size of the allocation.
447 * @param guarded True if the allocation must be protected by guard pages.
448 *
449 * @return Address of the beginning of unmapped address space area.
450 * @return -1 if no suitable address space area was found.
451 *
452 */
453NO_TRACE static uintptr_t as_get_unmapped_area(as_t *as, uintptr_t bound,
454 size_t size, bool guarded)
455{
456 assert(mutex_locked(&as->lock));
457
458 if (size == 0)
459 return (uintptr_t) -1;
460
461 /*
462 * Make sure we allocate from page-aligned
463 * address. Check for possible overflow in
464 * each step.
465 */
466
467 size_t pages = SIZE2FRAMES(size);
468
469 /*
470 * Find the lowest unmapped address aligned on the size
471 * boundary, not smaller than bound and of the required size.
472 */
473
474 /* First check the bound address itself */
475 uintptr_t addr = ALIGN_UP(bound, PAGE_SIZE);
476 if (addr >= bound) {
477 if (guarded) {
478 /*
479 * Leave an unmapped page between the lower
480 * bound and the area's start address.
481 */
482 addr += P2SZ(1);
483 }
484
485 if (check_area_conflicts(as, addr, pages, guarded, NULL))
486 return addr;
487 }
488
489 /* Eventually check the addresses behind each area */
490 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t, node) {
491
492 for (btree_key_t i = 0; i < node->keys; i++) {
493 as_area_t *area = (as_area_t *) node->value[i];
494
495 mutex_lock(&area->lock);
496
497 addr =
498 ALIGN_UP(area->base + P2SZ(area->pages), PAGE_SIZE);
499
500 if (guarded || area->flags & AS_AREA_GUARD) {
501 /*
502 * We must leave an unmapped page
503 * between the two areas.
504 */
505 addr += P2SZ(1);
506 }
507
508 bool avail =
509 ((addr >= bound) && (addr >= area->base) &&
510 (check_area_conflicts(as, addr, pages, guarded, area)));
511
512 mutex_unlock(&area->lock);
513
514 if (avail)
515 return addr;
516 }
517 }
518
519 /* No suitable address space area found */
520 return (uintptr_t) -1;
521}
522
523/** Remove reference to address space area share info.
524 *
525 * If the reference count drops to 0, the sh_info is deallocated.
526 *
527 * @param sh_info Pointer to address space area share info.
528 *
529 */
530NO_TRACE static void sh_info_remove_reference(share_info_t *sh_info)
531{
532 bool dealloc = false;
533
534 mutex_lock(&sh_info->lock);
535 assert(sh_info->refcount);
536
537 if (--sh_info->refcount == 0) {
538 dealloc = true;
539
540 /*
541 * Now walk carefully the pagemap B+tree and free/remove
542 * reference from all frames found there.
543 */
544 list_foreach(sh_info->pagemap.leaf_list, leaf_link,
545 btree_node_t, node) {
546 btree_key_t i;
547
548 for (i = 0; i < node->keys; i++)
549 frame_free((uintptr_t) node->value[i], 1);
550 }
551
552 }
553 mutex_unlock(&sh_info->lock);
554
555 if (dealloc) {
556 if (sh_info->backend && sh_info->backend->destroy_shared_data) {
557 sh_info->backend->destroy_shared_data(
558 sh_info->backend_shared_data);
559 }
560 btree_destroy(&sh_info->pagemap);
561 free(sh_info);
562 }
563}
564
565/** Create address space area of common attributes.
566 *
567 * The created address space area is added to the target address space.
568 *
569 * @param as Target address space.
570 * @param flags Flags of the area memory.
571 * @param size Size of area.
572 * @param attrs Attributes of the area.
573 * @param backend Address space area backend. NULL if no backend is used.
574 * @param backend_data NULL or a pointer to custom backend data.
575 * @param base Starting virtual address of the area.
576 * If set to AS_AREA_ANY, a suitable mappable area is
577 * found.
578 * @param bound Lowest address bound if base is set to AS_AREA_ANY.
579 * Otherwise ignored.
580 *
581 * @return Address space area on success or NULL on failure.
582 *
583 */
584as_area_t *as_area_create(as_t *as, unsigned int flags, size_t size,
585 unsigned int attrs, mem_backend_t *backend,
586 mem_backend_data_t *backend_data, uintptr_t *base, uintptr_t bound)
587{
588 if ((*base != (uintptr_t) AS_AREA_ANY) && !IS_ALIGNED(*base, PAGE_SIZE))
589 return NULL;
590
591 if (size == 0)
592 return NULL;
593
594 size_t pages = SIZE2FRAMES(size);
595
596 /* Writeable executable areas are not supported. */
597 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
598 return NULL;
599
600 bool const guarded = flags & AS_AREA_GUARD;
601
602 mutex_lock(&as->lock);
603
604 if (*base == (uintptr_t) AS_AREA_ANY) {
605 *base = as_get_unmapped_area(as, bound, size, guarded);
606 if (*base == (uintptr_t) -1) {
607 mutex_unlock(&as->lock);
608 return NULL;
609 }
610 }
611
612 if (overflows_into_positive(*base, size)) {
613 mutex_unlock(&as->lock);
614 return NULL;
615 }
616
617 if (!check_area_conflicts(as, *base, pages, guarded, NULL)) {
618 mutex_unlock(&as->lock);
619 return NULL;
620 }
621
622 as_area_t *area = (as_area_t *) malloc(sizeof(as_area_t));
623 if (!area) {
624 mutex_unlock(&as->lock);
625 return NULL;
626 }
627
628 mutex_initialize(&area->lock, MUTEX_PASSIVE);
629
630 area->as = as;
631 area->flags = flags;
632 area->attributes = attrs;
633 area->pages = pages;
634 area->resident = 0;
635 area->base = *base;
636 area->backend = backend;
637 area->sh_info = NULL;
638
639 if (backend_data)
640 area->backend_data = *backend_data;
641 else
642 memsetb(&area->backend_data, sizeof(area->backend_data), 0);
643
644 share_info_t *si = NULL;
645
646 /*
647 * Create the sharing info structure.
648 * We do this in advance for every new area, even if it is not going
649 * to be shared.
650 */
651 if (!(attrs & AS_AREA_ATTR_PARTIAL)) {
652 si = (share_info_t *) malloc(sizeof(share_info_t));
653 if (!si) {
654 free(area);
655 mutex_unlock(&as->lock);
656 return NULL;
657 }
658 mutex_initialize(&si->lock, MUTEX_PASSIVE);
659 si->refcount = 1;
660 si->shared = false;
661 si->backend_shared_data = NULL;
662 si->backend = backend;
663 btree_create(&si->pagemap);
664
665 area->sh_info = si;
666
667 if (area->backend && area->backend->create_shared_data) {
668 if (!area->backend->create_shared_data(area)) {
669 free(area);
670 mutex_unlock(&as->lock);
671 sh_info_remove_reference(si);
672 return NULL;
673 }
674 }
675 }
676
677 if (area->backend && area->backend->create) {
678 if (!area->backend->create(area)) {
679 free(area);
680 mutex_unlock(&as->lock);
681 if (!(attrs & AS_AREA_ATTR_PARTIAL))
682 sh_info_remove_reference(si);
683 return NULL;
684 }
685 }
686
687 btree_create(&area->used_space);
688 btree_insert(&as->as_area_btree, *base, (void *) area,
689 NULL);
690
691 mutex_unlock(&as->lock);
692
693 return area;
694}
695
696/** Find address space area and lock it.
697 *
698 * @param as Address space.
699 * @param va Virtual address.
700 *
701 * @return Locked address space area containing va on success or
702 * NULL on failure.
703 *
704 */
705NO_TRACE static as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
706{
707 assert(mutex_locked(&as->lock));
708
709 btree_node_t *leaf;
710 as_area_t *area = (as_area_t *) btree_search(&as->as_area_btree, va,
711 &leaf);
712 if (area) {
713 /* va is the base address of an address space area */
714 mutex_lock(&area->lock);
715 return area;
716 }
717
718 /*
719 * Search the leaf node and the rightmost record of its left neighbour
720 * to find out whether this is a miss or va belongs to an address
721 * space area found there.
722 */
723
724 /* First, search the leaf node itself. */
725 btree_key_t i;
726
727 for (i = 0; i < leaf->keys; i++) {
728 area = (as_area_t *) leaf->value[i];
729
730 mutex_lock(&area->lock);
731
732 if ((area->base <= va) &&
733 (va <= area->base + (P2SZ(area->pages) - 1)))
734 return area;
735
736 mutex_unlock(&area->lock);
737 }
738
739 /*
740 * Second, locate the left neighbour and test its last record.
741 * Because of its position in the B+tree, it must have base < va.
742 */
743 btree_node_t *lnode = btree_leaf_node_left_neighbour(&as->as_area_btree,
744 leaf);
745 if (lnode) {
746 area = (as_area_t *) lnode->value[lnode->keys - 1];
747
748 mutex_lock(&area->lock);
749
750 if (va <= area->base + (P2SZ(area->pages) - 1))
751 return area;
752
753 mutex_unlock(&area->lock);
754 }
755
756 return NULL;
757}
758
759/** Find address space area and change it.
760 *
761 * @param as Address space.
762 * @param address Virtual address belonging to the area to be changed.
763 * Must be page-aligned.
764 * @param size New size of the virtual memory block starting at
765 * address.
766 * @param flags Flags influencing the remap operation. Currently unused.
767 *
768 * @return Zero on success or a value from @ref errno.h otherwise.
769 *
770 */
771errno_t as_area_resize(as_t *as, uintptr_t address, size_t size, unsigned int flags)
772{
773 if (!IS_ALIGNED(address, PAGE_SIZE))
774 return EINVAL;
775
776 mutex_lock(&as->lock);
777
778 /*
779 * Locate the area.
780 */
781 as_area_t *area = find_area_and_lock(as, address);
782 if (!area) {
783 mutex_unlock(&as->lock);
784 return ENOENT;
785 }
786
787 if (!area->backend->is_resizable(area)) {
788 /*
789 * The backend does not support resizing for this area.
790 */
791 mutex_unlock(&area->lock);
792 mutex_unlock(&as->lock);
793 return ENOTSUP;
794 }
795
796 mutex_lock(&area->sh_info->lock);
797 if (area->sh_info->shared) {
798 /*
799 * Remapping of shared address space areas
800 * is not supported.
801 */
802 mutex_unlock(&area->sh_info->lock);
803 mutex_unlock(&area->lock);
804 mutex_unlock(&as->lock);
805 return ENOTSUP;
806 }
807 mutex_unlock(&area->sh_info->lock);
808
809 size_t pages = SIZE2FRAMES((address - area->base) + size);
810 if (!pages) {
811 /*
812 * Zero size address space areas are not allowed.
813 */
814 mutex_unlock(&area->lock);
815 mutex_unlock(&as->lock);
816 return EPERM;
817 }
818
819 if (pages < area->pages) {
820 uintptr_t start_free = area->base + P2SZ(pages);
821
822 /*
823 * Shrinking the area.
824 * No need to check for overlaps.
825 */
826
827 page_table_lock(as, false);
828
829 /*
830 * Remove frames belonging to used space starting from
831 * the highest addresses downwards until an overlap with
832 * the resized address space area is found. Note that this
833 * is also the right way to remove part of the used_space
834 * B+tree leaf list.
835 */
836 bool cond = true;
837 while (cond) {
838 assert(!list_empty(&area->used_space.leaf_list));
839
840 btree_node_t *node =
841 list_get_instance(list_last(&area->used_space.leaf_list),
842 btree_node_t, leaf_link);
843
844 if ((cond = (node->keys != 0))) {
845 uintptr_t ptr = node->key[node->keys - 1];
846 size_t node_size =
847 (size_t) node->value[node->keys - 1];
848 size_t i = 0;
849
850 if (overlaps(ptr, P2SZ(node_size), area->base,
851 P2SZ(pages))) {
852
853 if (ptr + P2SZ(node_size) <= start_free) {
854 /*
855 * The whole interval fits
856 * completely in the resized
857 * address space area.
858 */
859 break;
860 }
861
862 /*
863 * Part of the interval corresponding
864 * to b and c overlaps with the resized
865 * address space area.
866 */
867
868 /* We are almost done */
869 cond = false;
870 i = (start_free - ptr) >> PAGE_WIDTH;
871 if (!used_space_remove(area, start_free,
872 node_size - i))
873 panic("Cannot remove used space.");
874 } else {
875 /*
876 * The interval of used space can be
877 * completely removed.
878 */
879 if (!used_space_remove(area, ptr, node_size))
880 panic("Cannot remove used space.");
881 }
882
883 /*
884 * Start TLB shootdown sequence.
885 *
886 * The sequence is rather short and can be
887 * repeated multiple times. The reason is that
888 * we don't want to have used_space_remove()
889 * inside the sequence as it may use a blocking
890 * memory allocation for its B+tree. Blocking
891 * while holding the tlblock spinlock is
892 * forbidden and would hit a kernel assertion.
893 */
894
895 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES,
896 as->asid, area->base + P2SZ(pages),
897 area->pages - pages);
898
899 for (; i < node_size; i++) {
900 pte_t pte;
901 bool found = page_mapping_find(as,
902 ptr + P2SZ(i), false, &pte);
903
904 assert(found);
905 assert(PTE_VALID(&pte));
906 assert(PTE_PRESENT(&pte));
907
908 if ((area->backend) &&
909 (area->backend->frame_free)) {
910 area->backend->frame_free(area,
911 ptr + P2SZ(i),
912 PTE_GET_FRAME(&pte));
913 }
914
915 page_mapping_remove(as, ptr + P2SZ(i));
916 }
917
918 /*
919 * Finish TLB shootdown sequence.
920 */
921
922 tlb_invalidate_pages(as->asid,
923 area->base + P2SZ(pages),
924 area->pages - pages);
925
926 /*
927 * Invalidate software translation caches
928 * (e.g. TSB on sparc64, PHT on ppc32).
929 */
930 as_invalidate_translation_cache(as,
931 area->base + P2SZ(pages),
932 area->pages - pages);
933 tlb_shootdown_finalize(ipl);
934 }
935 }
936 page_table_unlock(as, false);
937 } else {
938 /*
939 * Growing the area.
940 */
941
942 if (overflows_into_positive(address, P2SZ(pages)))
943 return EINVAL;
944
945 /*
946 * Check for overlaps with other address space areas.
947 */
948 bool const guarded = area->flags & AS_AREA_GUARD;
949 if (!check_area_conflicts(as, address, pages, guarded, area)) {
950 mutex_unlock(&area->lock);
951 mutex_unlock(&as->lock);
952 return EADDRNOTAVAIL;
953 }
954 }
955
956 if (area->backend && area->backend->resize) {
957 if (!area->backend->resize(area, pages)) {
958 mutex_unlock(&area->lock);
959 mutex_unlock(&as->lock);
960 return ENOMEM;
961 }
962 }
963
964 area->pages = pages;
965
966 mutex_unlock(&area->lock);
967 mutex_unlock(&as->lock);
968
969 return 0;
970}
971
972/** Destroy address space area.
973 *
974 * @param as Address space.
975 * @param address Address within the area to be deleted.
976 *
977 * @return Zero on success or a value from @ref errno.h on failure.
978 *
979 */
980errno_t as_area_destroy(as_t *as, uintptr_t address)
981{
982 mutex_lock(&as->lock);
983
984 as_area_t *area = find_area_and_lock(as, address);
985 if (!area) {
986 mutex_unlock(&as->lock);
987 return ENOENT;
988 }
989
990 if (area->backend && area->backend->destroy)
991 area->backend->destroy(area);
992
993 uintptr_t base = area->base;
994
995 page_table_lock(as, false);
996
997 /*
998 * Start TLB shootdown sequence.
999 */
1000 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1001 area->pages);
1002
1003 /*
1004 * Visit only the pages mapped by used_space B+tree.
1005 */
1006 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1007 node) {
1008 btree_key_t i;
1009
1010 for (i = 0; i < node->keys; i++) {
1011 uintptr_t ptr = node->key[i];
1012 size_t size;
1013
1014 for (size = 0; size < (size_t) node->value[i]; size++) {
1015 pte_t pte;
1016 bool found = page_mapping_find(as,
1017 ptr + P2SZ(size), false, &pte);
1018
1019 assert(found);
1020 assert(PTE_VALID(&pte));
1021 assert(PTE_PRESENT(&pte));
1022
1023 if ((area->backend) &&
1024 (area->backend->frame_free)) {
1025 area->backend->frame_free(area,
1026 ptr + P2SZ(size),
1027 PTE_GET_FRAME(&pte));
1028 }
1029
1030 page_mapping_remove(as, ptr + P2SZ(size));
1031 }
1032 }
1033 }
1034
1035 /*
1036 * Finish TLB shootdown sequence.
1037 */
1038
1039 tlb_invalidate_pages(as->asid, area->base, area->pages);
1040
1041 /*
1042 * Invalidate potential software translation caches
1043 * (e.g. TSB on sparc64, PHT on ppc32).
1044 */
1045 as_invalidate_translation_cache(as, area->base, area->pages);
1046 tlb_shootdown_finalize(ipl);
1047
1048 page_table_unlock(as, false);
1049
1050 btree_destroy(&area->used_space);
1051
1052 area->attributes |= AS_AREA_ATTR_PARTIAL;
1053
1054 sh_info_remove_reference(area->sh_info);
1055
1056 mutex_unlock(&area->lock);
1057
1058 /*
1059 * Remove the empty area from address space.
1060 */
1061 btree_remove(&as->as_area_btree, base, NULL);
1062
1063 free(area);
1064
1065 mutex_unlock(&as->lock);
1066 return 0;
1067}
1068
1069/** Share address space area with another or the same address space.
1070 *
1071 * Address space area mapping is shared with a new address space area.
1072 * If the source address space area has not been shared so far,
1073 * a new sh_info is created. The new address space area simply gets the
1074 * sh_info of the source area. The process of duplicating the
1075 * mapping is done through the backend share function.
1076 *
1077 * @param src_as Pointer to source address space.
1078 * @param src_base Base address of the source address space area.
1079 * @param acc_size Expected size of the source area.
1080 * @param dst_as Pointer to destination address space.
1081 * @param dst_flags_mask Destination address space area flags mask.
1082 * @param dst_base Target base address. If set to -1,
1083 * a suitable mappable area is found.
1084 * @param bound Lowest address bound if dst_base is set to -1.
1085 * Otherwise ignored.
1086 *
1087 * @return Zero on success.
1088 * @return ENOENT if there is no such task or such address space.
1089 * @return EPERM if there was a problem in accepting the area.
1090 * @return ENOMEM if there was a problem in allocating destination
1091 * address space area.
1092 * @return ENOTSUP if the address space area backend does not support
1093 * sharing.
1094 *
1095 */
1096errno_t as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
1097 as_t *dst_as, unsigned int dst_flags_mask, uintptr_t *dst_base,
1098 uintptr_t bound)
1099{
1100 mutex_lock(&src_as->lock);
1101 as_area_t *src_area = find_area_and_lock(src_as, src_base);
1102 if (!src_area) {
1103 /*
1104 * Could not find the source address space area.
1105 */
1106 mutex_unlock(&src_as->lock);
1107 return ENOENT;
1108 }
1109
1110 if (!src_area->backend->is_shareable(src_area)) {
1111 /*
1112 * The backend does not permit sharing of this area.
1113 */
1114 mutex_unlock(&src_area->lock);
1115 mutex_unlock(&src_as->lock);
1116 return ENOTSUP;
1117 }
1118
1119 size_t src_size = P2SZ(src_area->pages);
1120 unsigned int src_flags = src_area->flags;
1121 mem_backend_t *src_backend = src_area->backend;
1122 mem_backend_data_t src_backend_data = src_area->backend_data;
1123
1124 /* Share the cacheable flag from the original mapping */
1125 if (src_flags & AS_AREA_CACHEABLE)
1126 dst_flags_mask |= AS_AREA_CACHEABLE;
1127
1128 if ((src_size != acc_size) ||
1129 ((src_flags & dst_flags_mask) != dst_flags_mask)) {
1130 mutex_unlock(&src_area->lock);
1131 mutex_unlock(&src_as->lock);
1132 return EPERM;
1133 }
1134
1135 /*
1136 * Now we are committed to sharing the area.
1137 * First, prepare the area for sharing.
1138 * Then it will be safe to unlock it.
1139 */
1140 share_info_t *sh_info = src_area->sh_info;
1141
1142 mutex_lock(&sh_info->lock);
1143 sh_info->refcount++;
1144 bool shared = sh_info->shared;
1145 sh_info->shared = true;
1146 mutex_unlock(&sh_info->lock);
1147
1148 if (!shared) {
1149 /*
1150 * Call the backend to setup sharing.
1151 * This only happens once for each sh_info.
1152 */
1153 src_area->backend->share(src_area);
1154 }
1155
1156 mutex_unlock(&src_area->lock);
1157 mutex_unlock(&src_as->lock);
1158
1159 /*
1160 * Create copy of the source address space area.
1161 * The destination area is created with AS_AREA_ATTR_PARTIAL
1162 * attribute set which prevents race condition with
1163 * preliminary as_page_fault() calls.
1164 * The flags of the source area are masked against dst_flags_mask
1165 * to support sharing in less privileged mode.
1166 */
1167 as_area_t *dst_area = as_area_create(dst_as, dst_flags_mask,
1168 src_size, AS_AREA_ATTR_PARTIAL, src_backend,
1169 &src_backend_data, dst_base, bound);
1170 if (!dst_area) {
1171 /*
1172 * Destination address space area could not be created.
1173 */
1174 sh_info_remove_reference(sh_info);
1175
1176 return ENOMEM;
1177 }
1178
1179 /*
1180 * Now the destination address space area has been
1181 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
1182 * attribute and set the sh_info.
1183 */
1184 mutex_lock(&dst_as->lock);
1185 mutex_lock(&dst_area->lock);
1186 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
1187 dst_area->sh_info = sh_info;
1188 mutex_unlock(&dst_area->lock);
1189 mutex_unlock(&dst_as->lock);
1190
1191 return 0;
1192}
1193
1194/** Check access mode for address space area.
1195 *
1196 * @param area Address space area.
1197 * @param access Access mode.
1198 *
1199 * @return False if access violates area's permissions, true
1200 * otherwise.
1201 *
1202 */
1203NO_TRACE bool as_area_check_access(as_area_t *area, pf_access_t access)
1204{
1205 assert(mutex_locked(&area->lock));
1206
1207 int flagmap[] = {
1208 [PF_ACCESS_READ] = AS_AREA_READ,
1209 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
1210 [PF_ACCESS_EXEC] = AS_AREA_EXEC
1211 };
1212
1213 if (!(area->flags & flagmap[access]))
1214 return false;
1215
1216 return true;
1217}
1218
1219/** Convert address space area flags to page flags.
1220 *
1221 * @param aflags Flags of some address space area.
1222 *
1223 * @return Flags to be passed to page_mapping_insert().
1224 *
1225 */
1226NO_TRACE static unsigned int area_flags_to_page_flags(unsigned int aflags)
1227{
1228 unsigned int flags = PAGE_USER | PAGE_PRESENT;
1229
1230 if (aflags & AS_AREA_READ)
1231 flags |= PAGE_READ;
1232
1233 if (aflags & AS_AREA_WRITE)
1234 flags |= PAGE_WRITE;
1235
1236 if (aflags & AS_AREA_EXEC)
1237 flags |= PAGE_EXEC;
1238
1239 if (aflags & AS_AREA_CACHEABLE)
1240 flags |= PAGE_CACHEABLE;
1241
1242 return flags;
1243}
1244
1245/** Change adress space area flags.
1246 *
1247 * The idea is to have the same data, but with a different access mode.
1248 * This is needed e.g. for writing code into memory and then executing it.
1249 * In order for this to work properly, this may copy the data
1250 * into private anonymous memory (unless it's already there).
1251 *
1252 * @param as Address space.
1253 * @param flags Flags of the area memory.
1254 * @param address Address within the area to be changed.
1255 *
1256 * @return Zero on success or a value from @ref errno.h on failure.
1257 *
1258 */
1259errno_t as_area_change_flags(as_t *as, unsigned int flags, uintptr_t address)
1260{
1261 /* Flags for the new memory mapping */
1262 unsigned int page_flags = area_flags_to_page_flags(flags);
1263
1264 mutex_lock(&as->lock);
1265
1266 as_area_t *area = find_area_and_lock(as, address);
1267 if (!area) {
1268 mutex_unlock(&as->lock);
1269 return ENOENT;
1270 }
1271
1272 if (area->backend != &anon_backend) {
1273 /* Copying non-anonymous memory not supported yet */
1274 mutex_unlock(&area->lock);
1275 mutex_unlock(&as->lock);
1276 return ENOTSUP;
1277 }
1278
1279 mutex_lock(&area->sh_info->lock);
1280 if (area->sh_info->shared) {
1281 /* Copying shared areas not supported yet */
1282 mutex_unlock(&area->sh_info->lock);
1283 mutex_unlock(&area->lock);
1284 mutex_unlock(&as->lock);
1285 return ENOTSUP;
1286 }
1287 mutex_unlock(&area->sh_info->lock);
1288
1289 /*
1290 * Compute total number of used pages in the used_space B+tree
1291 */
1292 size_t used_pages = 0;
1293
1294 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1295 node) {
1296 btree_key_t i;
1297
1298 for (i = 0; i < node->keys; i++)
1299 used_pages += (size_t) node->value[i];
1300 }
1301
1302 /* An array for storing frame numbers */
1303 uintptr_t *old_frame = malloc(used_pages * sizeof(uintptr_t));
1304 if (!old_frame) {
1305 mutex_unlock(&area->lock);
1306 mutex_unlock(&as->lock);
1307 return ENOMEM;
1308 }
1309
1310 page_table_lock(as, false);
1311
1312 /*
1313 * Start TLB shootdown sequence.
1314 */
1315 ipl_t ipl = tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base,
1316 area->pages);
1317
1318 /*
1319 * Remove used pages from page tables and remember their frame
1320 * numbers.
1321 */
1322 size_t frame_idx = 0;
1323
1324 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1325 node) {
1326 btree_key_t i;
1327
1328 for (i = 0; i < node->keys; i++) {
1329 uintptr_t ptr = node->key[i];
1330 size_t size;
1331
1332 for (size = 0; size < (size_t) node->value[i]; size++) {
1333 pte_t pte;
1334 bool found = page_mapping_find(as,
1335 ptr + P2SZ(size), false, &pte);
1336
1337 assert(found);
1338 assert(PTE_VALID(&pte));
1339 assert(PTE_PRESENT(&pte));
1340
1341 old_frame[frame_idx++] = PTE_GET_FRAME(&pte);
1342
1343 /* Remove old mapping */
1344 page_mapping_remove(as, ptr + P2SZ(size));
1345 }
1346 }
1347 }
1348
1349 /*
1350 * Finish TLB shootdown sequence.
1351 */
1352
1353 tlb_invalidate_pages(as->asid, area->base, area->pages);
1354
1355 /*
1356 * Invalidate potential software translation caches
1357 * (e.g. TSB on sparc64, PHT on ppc32).
1358 */
1359 as_invalidate_translation_cache(as, area->base, area->pages);
1360 tlb_shootdown_finalize(ipl);
1361
1362 page_table_unlock(as, false);
1363
1364 /*
1365 * Set the new flags.
1366 */
1367 area->flags = flags;
1368
1369 /*
1370 * Map pages back in with new flags. This step is kept separate
1371 * so that the memory area could not be accesed with both the old and
1372 * the new flags at once.
1373 */
1374 frame_idx = 0;
1375
1376 list_foreach(area->used_space.leaf_list, leaf_link, btree_node_t,
1377 node) {
1378 btree_key_t i;
1379
1380 for (i = 0; i < node->keys; i++) {
1381 uintptr_t ptr = node->key[i];
1382 size_t size;
1383
1384 for (size = 0; size < (size_t) node->value[i]; size++) {
1385 page_table_lock(as, false);
1386
1387 /* Insert the new mapping */
1388 page_mapping_insert(as, ptr + P2SZ(size),
1389 old_frame[frame_idx++], page_flags);
1390
1391 page_table_unlock(as, false);
1392 }
1393 }
1394 }
1395
1396 free(old_frame);
1397
1398 mutex_unlock(&area->lock);
1399 mutex_unlock(&as->lock);
1400
1401 return 0;
1402}
1403
1404/** Handle page fault within the current address space.
1405 *
1406 * This is the high-level page fault handler. It decides whether the page fault
1407 * can be resolved by any backend and if so, it invokes the backend to resolve
1408 * the page fault.
1409 *
1410 * Interrupts are assumed disabled.
1411 *
1412 * @param address Faulting address.
1413 * @param access Access mode that caused the page fault (i.e.
1414 * read/write/exec).
1415 * @param istate Pointer to the interrupted state.
1416 *
1417 * @return AS_PF_FAULT on page fault.
1418 * @return AS_PF_OK on success.
1419 * @return AS_PF_DEFER if the fault was caused by copy_to_uspace()
1420 * or copy_from_uspace().
1421 *
1422 */
1423int as_page_fault(uintptr_t address, pf_access_t access, istate_t *istate)
1424{
1425 uintptr_t page = ALIGN_DOWN(address, PAGE_SIZE);
1426 int rc = AS_PF_FAULT;
1427
1428 if (!THREAD)
1429 goto page_fault;
1430
1431 if (!AS)
1432 goto page_fault;
1433
1434 mutex_lock(&AS->lock);
1435 as_area_t *area = find_area_and_lock(AS, page);
1436 if (!area) {
1437 /*
1438 * No area contained mapping for 'page'.
1439 * Signal page fault to low-level handler.
1440 */
1441 mutex_unlock(&AS->lock);
1442 goto page_fault;
1443 }
1444
1445 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
1446 /*
1447 * The address space area is not fully initialized.
1448 * Avoid possible race by returning error.
1449 */
1450 mutex_unlock(&area->lock);
1451 mutex_unlock(&AS->lock);
1452 goto page_fault;
1453 }
1454
1455 if ((!area->backend) || (!area->backend->page_fault)) {
1456 /*
1457 * The address space area is not backed by any backend
1458 * or the backend cannot handle page faults.
1459 */
1460 mutex_unlock(&area->lock);
1461 mutex_unlock(&AS->lock);
1462 goto page_fault;
1463 }
1464
1465 page_table_lock(AS, false);
1466
1467 /*
1468 * To avoid race condition between two page faults on the same address,
1469 * we need to make sure the mapping has not been already inserted.
1470 */
1471 pte_t pte;
1472 bool found = page_mapping_find(AS, page, false, &pte);
1473 if (found && PTE_PRESENT(&pte)) {
1474 if (((access == PF_ACCESS_READ) && PTE_READABLE(&pte)) ||
1475 (access == PF_ACCESS_WRITE && PTE_WRITABLE(&pte)) ||
1476 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(&pte))) {
1477 page_table_unlock(AS, false);
1478 mutex_unlock(&area->lock);
1479 mutex_unlock(&AS->lock);
1480 return AS_PF_OK;
1481 }
1482 }
1483
1484 /*
1485 * Resort to the backend page fault handler.
1486 */
1487 rc = area->backend->page_fault(area, page, access);
1488 if (rc != AS_PF_OK) {
1489 page_table_unlock(AS, false);
1490 mutex_unlock(&area->lock);
1491 mutex_unlock(&AS->lock);
1492 goto page_fault;
1493 }
1494
1495 page_table_unlock(AS, false);
1496 mutex_unlock(&area->lock);
1497 mutex_unlock(&AS->lock);
1498 return AS_PF_OK;
1499
1500page_fault:
1501 if (THREAD->in_copy_from_uspace) {
1502 THREAD->in_copy_from_uspace = false;
1503 istate_set_retaddr(istate,
1504 (uintptr_t) &memcpy_from_uspace_failover_address);
1505 } else if (THREAD->in_copy_to_uspace) {
1506 THREAD->in_copy_to_uspace = false;
1507 istate_set_retaddr(istate,
1508 (uintptr_t) &memcpy_to_uspace_failover_address);
1509 } else if (rc == AS_PF_SILENT) {
1510 printf("Killing task %" PRIu64 " due to a "
1511 "failed late reservation request.\n", TASK->taskid);
1512 task_kill_self(true);
1513 } else {
1514 fault_if_from_uspace(istate, "Page fault: %p.", (void *) address);
1515 panic_memtrap(istate, access, address, NULL);
1516 }
1517
1518 return AS_PF_DEFER;
1519}
1520
1521/** Switch address spaces.
1522 *
1523 * Note that this function cannot sleep as it is essentially a part of
1524 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1525 * thing which is forbidden in this context is locking the address space.
1526 *
1527 * When this function is entered, no spinlocks may be held.
1528 *
1529 * @param old Old address space or NULL.
1530 * @param new New address space.
1531 *
1532 */
1533void as_switch(as_t *old_as, as_t *new_as)
1534{
1535 DEADLOCK_PROBE_INIT(p_asidlock);
1536 preemption_disable();
1537
1538retry:
1539 (void) interrupts_disable();
1540 if (!spinlock_trylock(&asidlock)) {
1541 /*
1542 * Avoid deadlock with TLB shootdown.
1543 * We can enable interrupts here because
1544 * preemption is disabled. We should not be
1545 * holding any other lock.
1546 */
1547 (void) interrupts_enable();
1548 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1549 goto retry;
1550 }
1551 preemption_enable();
1552
1553 /*
1554 * First, take care of the old address space.
1555 */
1556 if (old_as) {
1557 assert(old_as->cpu_refcount);
1558
1559 if ((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1560 /*
1561 * The old address space is no longer active on
1562 * any processor. It can be appended to the
1563 * list of inactive address spaces with assigned
1564 * ASID.
1565 */
1566 assert(old_as->asid != ASID_INVALID);
1567
1568 list_append(&old_as->inactive_as_with_asid_link,
1569 &inactive_as_with_asid_list);
1570 }
1571
1572 /*
1573 * Perform architecture-specific tasks when the address space
1574 * is being removed from the CPU.
1575 */
1576 as_deinstall_arch(old_as);
1577 }
1578
1579 /*
1580 * Second, prepare the new address space.
1581 */
1582 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1583 if (new_as->asid != ASID_INVALID)
1584 list_remove(&new_as->inactive_as_with_asid_link);
1585 else
1586 new_as->asid = asid_get();
1587 }
1588
1589#ifdef AS_PAGE_TABLE
1590 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1591#endif
1592
1593 /*
1594 * Perform architecture-specific steps.
1595 * (e.g. write ASID to hardware register etc.)
1596 */
1597 as_install_arch(new_as);
1598
1599 spinlock_unlock(&asidlock);
1600
1601 AS = new_as;
1602}
1603
1604/** Compute flags for virtual address translation subsytem.
1605 *
1606 * @param area Address space area.
1607 *
1608 * @return Flags to be used in page_mapping_insert().
1609 *
1610 */
1611NO_TRACE unsigned int as_area_get_flags(as_area_t *area)
1612{
1613 assert(mutex_locked(&area->lock));
1614
1615 return area_flags_to_page_flags(area->flags);
1616}
1617
1618/** Create page table.
1619 *
1620 * Depending on architecture, create either address space private or global page
1621 * table.
1622 *
1623 * @param flags Flags saying whether the page table is for the kernel
1624 * address space.
1625 *
1626 * @return First entry of the page table.
1627 *
1628 */
1629NO_TRACE pte_t *page_table_create(unsigned int flags)
1630{
1631 assert(as_operations);
1632 assert(as_operations->page_table_create);
1633
1634 return as_operations->page_table_create(flags);
1635}
1636
1637/** Destroy page table.
1638 *
1639 * Destroy page table in architecture specific way.
1640 *
1641 * @param page_table Physical address of PTL0.
1642 *
1643 */
1644NO_TRACE void page_table_destroy(pte_t *page_table)
1645{
1646 assert(as_operations);
1647 assert(as_operations->page_table_destroy);
1648
1649 as_operations->page_table_destroy(page_table);
1650}
1651
1652/** Lock page table.
1653 *
1654 * This function should be called before any page_mapping_insert(),
1655 * page_mapping_remove() and page_mapping_find().
1656 *
1657 * Locking order is such that address space areas must be locked
1658 * prior to this call. Address space can be locked prior to this
1659 * call in which case the lock argument is false.
1660 *
1661 * @param as Address space.
1662 * @param lock If false, do not attempt to lock as->lock.
1663 *
1664 */
1665NO_TRACE void page_table_lock(as_t *as, bool lock)
1666{
1667 assert(as_operations);
1668 assert(as_operations->page_table_lock);
1669
1670 as_operations->page_table_lock(as, lock);
1671}
1672
1673/** Unlock page table.
1674 *
1675 * @param as Address space.
1676 * @param unlock If false, do not attempt to unlock as->lock.
1677 *
1678 */
1679NO_TRACE void page_table_unlock(as_t *as, bool unlock)
1680{
1681 assert(as_operations);
1682 assert(as_operations->page_table_unlock);
1683
1684 as_operations->page_table_unlock(as, unlock);
1685}
1686
1687/** Test whether page tables are locked.
1688 *
1689 * @param as Address space where the page tables belong.
1690 *
1691 * @return True if the page tables belonging to the address soace
1692 * are locked, otherwise false.
1693 */
1694NO_TRACE bool page_table_locked(as_t *as)
1695{
1696 assert(as_operations);
1697 assert(as_operations->page_table_locked);
1698
1699 return as_operations->page_table_locked(as);
1700}
1701
1702/** Return size of the address space area with given base.
1703 *
1704 * @param base Arbitrary address inside the address space area.
1705 *
1706 * @return Size of the address space area in bytes or zero if it
1707 * does not exist.
1708 *
1709 */
1710size_t as_area_get_size(uintptr_t base)
1711{
1712 size_t size;
1713
1714 page_table_lock(AS, true);
1715 as_area_t *src_area = find_area_and_lock(AS, base);
1716
1717 if (src_area) {
1718 size = P2SZ(src_area->pages);
1719 mutex_unlock(&src_area->lock);
1720 } else
1721 size = 0;
1722
1723 page_table_unlock(AS, true);
1724 return size;
1725}
1726
1727/** Mark portion of address space area as used.
1728 *
1729 * The address space area must be already locked.
1730 *
1731 * @param area Address space area.
1732 * @param page First page to be marked.
1733 * @param count Number of page to be marked.
1734 *
1735 * @return False on failure or true on success.
1736 *
1737 */
1738bool used_space_insert(as_area_t *area, uintptr_t page, size_t count)
1739{
1740 assert(mutex_locked(&area->lock));
1741 assert(IS_ALIGNED(page, PAGE_SIZE));
1742 assert(count);
1743
1744 btree_node_t *leaf = NULL;
1745 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
1746 if (pages) {
1747 /*
1748 * We hit the beginning of some used space.
1749 */
1750 return false;
1751 }
1752
1753 assert(leaf != NULL);
1754
1755 if (!leaf->keys) {
1756 btree_insert(&area->used_space, page, (void *) count, leaf);
1757 goto success;
1758 }
1759
1760 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space, leaf);
1761 if (node) {
1762 uintptr_t left_pg = node->key[node->keys - 1];
1763 uintptr_t right_pg = leaf->key[0];
1764 size_t left_cnt = (size_t) node->value[node->keys - 1];
1765 size_t right_cnt = (size_t) leaf->value[0];
1766
1767 /*
1768 * Examine the possibility that the interval fits
1769 * somewhere between the rightmost interval of
1770 * the left neigbour and the first interval of the leaf.
1771 */
1772
1773 if (page >= right_pg) {
1774 /* Do nothing. */
1775 } else if (overlaps(page, P2SZ(count), left_pg,
1776 P2SZ(left_cnt))) {
1777 /* The interval intersects with the left interval. */
1778 return false;
1779 } else if (overlaps(page, P2SZ(count), right_pg,
1780 P2SZ(right_cnt))) {
1781 /* The interval intersects with the right interval. */
1782 return false;
1783 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1784 (page + P2SZ(count) == right_pg)) {
1785 /*
1786 * The interval can be added by merging the two already
1787 * present intervals.
1788 */
1789 node->value[node->keys - 1] += count + right_cnt;
1790 btree_remove(&area->used_space, right_pg, leaf);
1791 goto success;
1792 } else if (page == left_pg + P2SZ(left_cnt)) {
1793 /*
1794 * The interval can be added by simply growing the left
1795 * interval.
1796 */
1797 node->value[node->keys - 1] += count;
1798 goto success;
1799 } else if (page + P2SZ(count) == right_pg) {
1800 /*
1801 * The interval can be addded by simply moving base of
1802 * the right interval down and increasing its size
1803 * accordingly.
1804 */
1805 leaf->value[0] += count;
1806 leaf->key[0] = page;
1807 goto success;
1808 } else {
1809 /*
1810 * The interval is between both neigbouring intervals,
1811 * but cannot be merged with any of them.
1812 */
1813 btree_insert(&area->used_space, page, (void *) count,
1814 leaf);
1815 goto success;
1816 }
1817 } else if (page < leaf->key[0]) {
1818 uintptr_t right_pg = leaf->key[0];
1819 size_t right_cnt = (size_t) leaf->value[0];
1820
1821 /*
1822 * Investigate the border case in which the left neighbour does
1823 * not exist but the interval fits from the left.
1824 */
1825
1826 if (overlaps(page, P2SZ(count), right_pg, P2SZ(right_cnt))) {
1827 /* The interval intersects with the right interval. */
1828 return false;
1829 } else if (page + P2SZ(count) == right_pg) {
1830 /*
1831 * The interval can be added by moving the base of the
1832 * right interval down and increasing its size
1833 * accordingly.
1834 */
1835 leaf->key[0] = page;
1836 leaf->value[0] += count;
1837 goto success;
1838 } else {
1839 /*
1840 * The interval doesn't adjoin with the right interval.
1841 * It must be added individually.
1842 */
1843 btree_insert(&area->used_space, page, (void *) count,
1844 leaf);
1845 goto success;
1846 }
1847 }
1848
1849 node = btree_leaf_node_right_neighbour(&area->used_space, leaf);
1850 if (node) {
1851 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1852 uintptr_t right_pg = node->key[0];
1853 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1854 size_t right_cnt = (size_t) node->value[0];
1855
1856 /*
1857 * Examine the possibility that the interval fits
1858 * somewhere between the leftmost interval of
1859 * the right neigbour and the last interval of the leaf.
1860 */
1861
1862 if (page < left_pg) {
1863 /* Do nothing. */
1864 } else if (overlaps(page, P2SZ(count), left_pg,
1865 P2SZ(left_cnt))) {
1866 /* The interval intersects with the left interval. */
1867 return false;
1868 } else if (overlaps(page, P2SZ(count), right_pg,
1869 P2SZ(right_cnt))) {
1870 /* The interval intersects with the right interval. */
1871 return false;
1872 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1873 (page + P2SZ(count) == right_pg)) {
1874 /*
1875 * The interval can be added by merging the two already
1876 * present intervals.
1877 */
1878 leaf->value[leaf->keys - 1] += count + right_cnt;
1879 btree_remove(&area->used_space, right_pg, node);
1880 goto success;
1881 } else if (page == left_pg + P2SZ(left_cnt)) {
1882 /*
1883 * The interval can be added by simply growing the left
1884 * interval.
1885 */
1886 leaf->value[leaf->keys - 1] += count;
1887 goto success;
1888 } else if (page + P2SZ(count) == right_pg) {
1889 /*
1890 * The interval can be addded by simply moving base of
1891 * the right interval down and increasing its size
1892 * accordingly.
1893 */
1894 node->value[0] += count;
1895 node->key[0] = page;
1896 goto success;
1897 } else {
1898 /*
1899 * The interval is between both neigbouring intervals,
1900 * but cannot be merged with any of them.
1901 */
1902 btree_insert(&area->used_space, page, (void *) count,
1903 leaf);
1904 goto success;
1905 }
1906 } else if (page >= leaf->key[leaf->keys - 1]) {
1907 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1908 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1909
1910 /*
1911 * Investigate the border case in which the right neighbour
1912 * does not exist but the interval fits from the right.
1913 */
1914
1915 if (overlaps(page, P2SZ(count), left_pg, P2SZ(left_cnt))) {
1916 /* The interval intersects with the left interval. */
1917 return false;
1918 } else if (left_pg + P2SZ(left_cnt) == page) {
1919 /*
1920 * The interval can be added by growing the left
1921 * interval.
1922 */
1923 leaf->value[leaf->keys - 1] += count;
1924 goto success;
1925 } else {
1926 /*
1927 * The interval doesn't adjoin with the left interval.
1928 * It must be added individually.
1929 */
1930 btree_insert(&area->used_space, page, (void *) count,
1931 leaf);
1932 goto success;
1933 }
1934 }
1935
1936 /*
1937 * Note that if the algorithm made it thus far, the interval can fit
1938 * only between two other intervals of the leaf. The two border cases
1939 * were already resolved.
1940 */
1941 btree_key_t i;
1942 for (i = 1; i < leaf->keys; i++) {
1943 if (page < leaf->key[i]) {
1944 uintptr_t left_pg = leaf->key[i - 1];
1945 uintptr_t right_pg = leaf->key[i];
1946 size_t left_cnt = (size_t) leaf->value[i - 1];
1947 size_t right_cnt = (size_t) leaf->value[i];
1948
1949 /*
1950 * The interval fits between left_pg and right_pg.
1951 */
1952
1953 if (overlaps(page, P2SZ(count), left_pg,
1954 P2SZ(left_cnt))) {
1955 /*
1956 * The interval intersects with the left
1957 * interval.
1958 */
1959 return false;
1960 } else if (overlaps(page, P2SZ(count), right_pg,
1961 P2SZ(right_cnt))) {
1962 /*
1963 * The interval intersects with the right
1964 * interval.
1965 */
1966 return false;
1967 } else if ((page == left_pg + P2SZ(left_cnt)) &&
1968 (page + P2SZ(count) == right_pg)) {
1969 /*
1970 * The interval can be added by merging the two
1971 * already present intervals.
1972 */
1973 leaf->value[i - 1] += count + right_cnt;
1974 btree_remove(&area->used_space, right_pg, leaf);
1975 goto success;
1976 } else if (page == left_pg + P2SZ(left_cnt)) {
1977 /*
1978 * The interval can be added by simply growing
1979 * the left interval.
1980 */
1981 leaf->value[i - 1] += count;
1982 goto success;
1983 } else if (page + P2SZ(count) == right_pg) {
1984 /*
1985 * The interval can be addded by simply moving
1986 * base of the right interval down and
1987 * increasing its size accordingly.
1988 */
1989 leaf->value[i] += count;
1990 leaf->key[i] = page;
1991 goto success;
1992 } else {
1993 /*
1994 * The interval is between both neigbouring
1995 * intervals, but cannot be merged with any of
1996 * them.
1997 */
1998 btree_insert(&area->used_space, page,
1999 (void *) count, leaf);
2000 goto success;
2001 }
2002 }
2003 }
2004
2005 panic("Inconsistency detected while adding %zu pages of used "
2006 "space at %p.", count, (void *) page);
2007
2008success:
2009 area->resident += count;
2010 return true;
2011}
2012
2013/** Mark portion of address space area as unused.
2014 *
2015 * The address space area must be already locked.
2016 *
2017 * @param area Address space area.
2018 * @param page First page to be marked.
2019 * @param count Number of page to be marked.
2020 *
2021 * @return False on failure or true on success.
2022 *
2023 */
2024bool used_space_remove(as_area_t *area, uintptr_t page, size_t count)
2025{
2026 assert(mutex_locked(&area->lock));
2027 assert(IS_ALIGNED(page, PAGE_SIZE));
2028 assert(count);
2029
2030 btree_node_t *leaf;
2031 size_t pages = (size_t) btree_search(&area->used_space, page, &leaf);
2032 if (pages) {
2033 /*
2034 * We are lucky, page is the beginning of some interval.
2035 */
2036 if (count > pages) {
2037 return false;
2038 } else if (count == pages) {
2039 btree_remove(&area->used_space, page, leaf);
2040 goto success;
2041 } else {
2042 /*
2043 * Find the respective interval.
2044 * Decrease its size and relocate its start address.
2045 */
2046 btree_key_t i;
2047 for (i = 0; i < leaf->keys; i++) {
2048 if (leaf->key[i] == page) {
2049 leaf->key[i] += P2SZ(count);
2050 leaf->value[i] -= count;
2051 goto success;
2052 }
2053 }
2054
2055 goto error;
2056 }
2057 }
2058
2059 btree_node_t *node = btree_leaf_node_left_neighbour(&area->used_space,
2060 leaf);
2061 if ((node) && (page < leaf->key[0])) {
2062 uintptr_t left_pg = node->key[node->keys - 1];
2063 size_t left_cnt = (size_t) node->value[node->keys - 1];
2064
2065 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2066 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2067 /*
2068 * The interval is contained in the rightmost
2069 * interval of the left neighbour and can be
2070 * removed by updating the size of the bigger
2071 * interval.
2072 */
2073 node->value[node->keys - 1] -= count;
2074 goto success;
2075 } else if (page + P2SZ(count) <
2076 left_pg + P2SZ(left_cnt)) {
2077 size_t new_cnt;
2078
2079 /*
2080 * The interval is contained in the rightmost
2081 * interval of the left neighbour but its
2082 * removal requires both updating the size of
2083 * the original interval and also inserting a
2084 * new interval.
2085 */
2086 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2087 (page + P2SZ(count))) >> PAGE_WIDTH;
2088 node->value[node->keys - 1] -= count + new_cnt;
2089 btree_insert(&area->used_space, page +
2090 P2SZ(count), (void *) new_cnt, leaf);
2091 goto success;
2092 }
2093 }
2094
2095 return false;
2096 } else if (page < leaf->key[0])
2097 return false;
2098
2099 if (page > leaf->key[leaf->keys - 1]) {
2100 uintptr_t left_pg = leaf->key[leaf->keys - 1];
2101 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
2102
2103 if (overlaps(left_pg, P2SZ(left_cnt), page, P2SZ(count))) {
2104 if (page + P2SZ(count) == left_pg + P2SZ(left_cnt)) {
2105 /*
2106 * The interval is contained in the rightmost
2107 * interval of the leaf and can be removed by
2108 * updating the size of the bigger interval.
2109 */
2110 leaf->value[leaf->keys - 1] -= count;
2111 goto success;
2112 } else if (page + P2SZ(count) < left_pg +
2113 P2SZ(left_cnt)) {
2114 size_t new_cnt;
2115
2116 /*
2117 * The interval is contained in the rightmost
2118 * interval of the leaf but its removal
2119 * requires both updating the size of the
2120 * original interval and also inserting a new
2121 * interval.
2122 */
2123 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2124 (page + P2SZ(count))) >> PAGE_WIDTH;
2125 leaf->value[leaf->keys - 1] -= count + new_cnt;
2126 btree_insert(&area->used_space, page +
2127 P2SZ(count), (void *) new_cnt, leaf);
2128 goto success;
2129 }
2130 }
2131
2132 return false;
2133 }
2134
2135 /*
2136 * The border cases have been already resolved.
2137 * Now the interval can be only between intervals of the leaf.
2138 */
2139 btree_key_t i;
2140 for (i = 1; i < leaf->keys - 1; i++) {
2141 if (page < leaf->key[i]) {
2142 uintptr_t left_pg = leaf->key[i - 1];
2143 size_t left_cnt = (size_t) leaf->value[i - 1];
2144
2145 /*
2146 * Now the interval is between intervals corresponding
2147 * to (i - 1) and i.
2148 */
2149 if (overlaps(left_pg, P2SZ(left_cnt), page,
2150 P2SZ(count))) {
2151 if (page + P2SZ(count) ==
2152 left_pg + P2SZ(left_cnt)) {
2153 /*
2154 * The interval is contained in the
2155 * interval (i - 1) of the leaf and can
2156 * be removed by updating the size of
2157 * the bigger interval.
2158 */
2159 leaf->value[i - 1] -= count;
2160 goto success;
2161 } else if (page + P2SZ(count) <
2162 left_pg + P2SZ(left_cnt)) {
2163 size_t new_cnt;
2164
2165 /*
2166 * The interval is contained in the
2167 * interval (i - 1) of the leaf but its
2168 * removal requires both updating the
2169 * size of the original interval and
2170 * also inserting a new interval.
2171 */
2172 new_cnt = ((left_pg + P2SZ(left_cnt)) -
2173 (page + P2SZ(count))) >>
2174 PAGE_WIDTH;
2175 leaf->value[i - 1] -= count + new_cnt;
2176 btree_insert(&area->used_space, page +
2177 P2SZ(count), (void *) new_cnt,
2178 leaf);
2179 goto success;
2180 }
2181 }
2182
2183 return false;
2184 }
2185 }
2186
2187error:
2188 panic("Inconsistency detected while removing %zu pages of used "
2189 "space from %p.", count, (void *) page);
2190
2191success:
2192 area->resident -= count;
2193 return true;
2194}
2195
2196/*
2197 * Address space related syscalls.
2198 */
2199
2200sysarg_t sys_as_area_create(uintptr_t base, size_t size, unsigned int flags,
2201 uintptr_t bound, as_area_pager_info_t *pager_info)
2202{
2203 uintptr_t virt = base;
2204 mem_backend_t *backend;
2205 mem_backend_data_t backend_data;
2206
2207 if (pager_info == AS_AREA_UNPAGED)
2208 backend = &anon_backend;
2209 else {
2210 backend = &user_backend;
2211 if (copy_from_uspace(&backend_data.pager_info, pager_info,
2212 sizeof(as_area_pager_info_t)) != EOK) {
2213 return (sysarg_t) AS_MAP_FAILED;
2214 }
2215 }
2216 as_area_t *area = as_area_create(AS, flags, size,
2217 AS_AREA_ATTR_NONE, backend, &backend_data, &virt, bound);
2218 if (area == NULL)
2219 return (sysarg_t) AS_MAP_FAILED;
2220
2221 return (sysarg_t) virt;
2222}
2223
2224sys_errno_t sys_as_area_resize(uintptr_t address, size_t size, unsigned int flags)
2225{
2226 return (sys_errno_t) as_area_resize(AS, address, size, 0);
2227}
2228
2229sys_errno_t sys_as_area_change_flags(uintptr_t address, unsigned int flags)
2230{
2231 return (sys_errno_t) as_area_change_flags(AS, flags, address);
2232}
2233
2234sys_errno_t sys_as_area_destroy(uintptr_t address)
2235{
2236 return (sys_errno_t) as_area_destroy(AS, address);
2237}
2238
2239/** Get list of adress space areas.
2240 *
2241 * @param as Address space.
2242 * @param obuf Place to save pointer to returned buffer.
2243 * @param osize Place to save size of returned buffer.
2244 *
2245 */
2246void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
2247{
2248 mutex_lock(&as->lock);
2249
2250 /* First pass, count number of areas. */
2251
2252 size_t area_cnt = 0;
2253
2254 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2255 node) {
2256 area_cnt += node->keys;
2257 }
2258
2259 size_t isize = area_cnt * sizeof(as_area_info_t);
2260 as_area_info_t *info = nfmalloc(isize);
2261
2262 /* Second pass, record data. */
2263
2264 size_t area_idx = 0;
2265
2266 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2267 node) {
2268 btree_key_t i;
2269
2270 for (i = 0; i < node->keys; i++) {
2271 as_area_t *area = node->value[i];
2272
2273 assert(area_idx < area_cnt);
2274 mutex_lock(&area->lock);
2275
2276 info[area_idx].start_addr = area->base;
2277 info[area_idx].size = P2SZ(area->pages);
2278 info[area_idx].flags = area->flags;
2279 ++area_idx;
2280
2281 mutex_unlock(&area->lock);
2282 }
2283 }
2284
2285 mutex_unlock(&as->lock);
2286
2287 *obuf = info;
2288 *osize = isize;
2289}
2290
2291/** Print out information about address space.
2292 *
2293 * @param as Address space.
2294 *
2295 */
2296void as_print(as_t *as)
2297{
2298 mutex_lock(&as->lock);
2299
2300 /* Print out info about address space areas */
2301 list_foreach(as->as_area_btree.leaf_list, leaf_link, btree_node_t,
2302 node) {
2303 btree_key_t i;
2304
2305 for (i = 0; i < node->keys; i++) {
2306 as_area_t *area = node->value[i];
2307
2308 mutex_lock(&area->lock);
2309 printf("as_area: %p, base=%p, pages=%zu"
2310 " (%p - %p)\n", area, (void *) area->base,
2311 area->pages, (void *) area->base,
2312 (void *) (area->base + P2SZ(area->pages)));
2313 mutex_unlock(&area->lock);
2314 }
2315 }
2316
2317 mutex_unlock(&as->lock);
2318}
2319
2320/** @}
2321 */
Note: See TracBrowser for help on using the repository browser.