source: mainline/kernel/generic/src/mm/as.c@ a000878c

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since a000878c was 7af8c0e, checked in by Martin Decky <martin@…>, 15 years ago

when no address space is set, then returning AS_PF_FAULT is actually much more helpful then dying on the ASSERT
(this way you get a complete stack trace from the faulting code and the simple test doesn't really cost us so much even in the release build)

  • Property mode set to 100644
File size: 50.7 KB
Line 
1/*
2 * Copyright (c) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address spaces and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <preemption.h>
61#include <synch/spinlock.h>
62#include <synch/mutex.h>
63#include <adt/list.h>
64#include <adt/btree.h>
65#include <proc/task.h>
66#include <proc/thread.h>
67#include <arch/asm.h>
68#include <panic.h>
69#include <debug.h>
70#include <print.h>
71#include <memstr.h>
72#include <macros.h>
73#include <arch.h>
74#include <errno.h>
75#include <config.h>
76#include <align.h>
77#include <arch/types.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81#ifdef CONFIG_VIRT_IDX_DCACHE
82#include <arch/mm/cache.h>
83#endif /* CONFIG_VIRT_IDX_DCACHE */
84
85/**
86 * Each architecture decides what functions will be used to carry out
87 * address space operations such as creating or locking page tables.
88 */
89as_operations_t *as_operations = NULL;
90
91/**
92 * Slab for as_t objects.
93 */
94static slab_cache_t *as_slab;
95
96/**
97 * This lock serializes access to the ASID subsystem.
98 * It protects:
99 * - inactive_as_with_asid_head list
100 * - as->asid for each as of the as_t type
101 * - asids_allocated counter
102 */
103SPINLOCK_INITIALIZE(asidlock);
104
105/**
106 * This list contains address spaces that are not active on any
107 * processor and that have valid ASID.
108 */
109LIST_INITIALIZE(inactive_as_with_asid_head);
110
111/** Kernel address space. */
112as_t *AS_KERNEL = NULL;
113
114static int area_flags_to_page_flags(int);
115static as_area_t *find_area_and_lock(as_t *, uintptr_t);
116static bool check_area_conflicts(as_t *, uintptr_t, size_t, as_area_t *);
117static void sh_info_remove_reference(share_info_t *);
118
119static int as_constructor(void *obj, int flags)
120{
121 as_t *as = (as_t *) obj;
122 int rc;
123
124 link_initialize(&as->inactive_as_with_asid_link);
125 mutex_initialize(&as->lock, MUTEX_PASSIVE);
126
127 rc = as_constructor_arch(as, flags);
128
129 return rc;
130}
131
132static int as_destructor(void *obj)
133{
134 as_t *as = (as_t *) obj;
135
136 return as_destructor_arch(as);
137}
138
139/** Initialize address space subsystem. */
140void as_init(void)
141{
142 as_arch_init();
143
144 as_slab = slab_cache_create("as_slab", sizeof(as_t), 0,
145 as_constructor, as_destructor, SLAB_CACHE_MAGDEFERRED);
146
147 AS_KERNEL = as_create(FLAG_AS_KERNEL);
148 if (!AS_KERNEL)
149 panic("Cannot create kernel address space.");
150
151 /* Make sure the kernel address space
152 * reference count never drops to zero.
153 */
154 atomic_set(&AS_KERNEL->refcount, 1);
155}
156
157/** Create address space.
158 *
159 * @param flags Flags that influence the way in wich the address space
160 * is created.
161 */
162as_t *as_create(int flags)
163{
164 as_t *as;
165
166 as = (as_t *) slab_alloc(as_slab, 0);
167 (void) as_create_arch(as, 0);
168
169 btree_create(&as->as_area_btree);
170
171 if (flags & FLAG_AS_KERNEL)
172 as->asid = ASID_KERNEL;
173 else
174 as->asid = ASID_INVALID;
175
176 atomic_set(&as->refcount, 0);
177 as->cpu_refcount = 0;
178#ifdef AS_PAGE_TABLE
179 as->genarch.page_table = page_table_create(flags);
180#else
181 page_table_create(flags);
182#endif
183
184 return as;
185}
186
187/** Destroy adress space.
188 *
189 * When there are no tasks referencing this address space (i.e. its refcount is
190 * zero), the address space can be destroyed.
191 *
192 * We know that we don't hold any spinlock.
193 *
194 * @param as Address space to be destroyed.
195 */
196void as_destroy(as_t *as)
197{
198 ipl_t ipl;
199 bool cond;
200 DEADLOCK_PROBE_INIT(p_asidlock);
201
202 ASSERT(atomic_get(&as->refcount) == 0);
203
204 /*
205 * Since there is no reference to this area,
206 * it is safe not to lock its mutex.
207 */
208
209 /*
210 * We need to avoid deadlock between TLB shootdown and asidlock.
211 * We therefore try to take asid conditionally and if we don't succeed,
212 * we enable interrupts and try again. This is done while preemption is
213 * disabled to prevent nested context switches. We also depend on the
214 * fact that so far no spinlocks are held.
215 */
216 preemption_disable();
217 ipl = interrupts_read();
218retry:
219 interrupts_disable();
220 if (!spinlock_trylock(&asidlock)) {
221 interrupts_enable();
222 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
223 goto retry;
224 }
225 preemption_enable(); /* Interrupts disabled, enable preemption */
226 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
227 if (as != AS && as->cpu_refcount == 0)
228 list_remove(&as->inactive_as_with_asid_link);
229 asid_put(as->asid);
230 }
231 spinlock_unlock(&asidlock);
232
233 /*
234 * Destroy address space areas of the address space.
235 * The B+tree must be walked carefully because it is
236 * also being destroyed.
237 */
238 for (cond = true; cond; ) {
239 btree_node_t *node;
240
241 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
242 node = list_get_instance(as->as_area_btree.leaf_head.next,
243 btree_node_t, leaf_link);
244
245 if ((cond = node->keys)) {
246 as_area_destroy(as, node->key[0]);
247 }
248 }
249
250 btree_destroy(&as->as_area_btree);
251#ifdef AS_PAGE_TABLE
252 page_table_destroy(as->genarch.page_table);
253#else
254 page_table_destroy(NULL);
255#endif
256
257 interrupts_restore(ipl);
258
259 slab_free(as_slab, as);
260}
261
262/** Create address space area of common attributes.
263 *
264 * The created address space area is added to the target address space.
265 *
266 * @param as Target address space.
267 * @param flags Flags of the area memory.
268 * @param size Size of area.
269 * @param base Base address of area.
270 * @param attrs Attributes of the area.
271 * @param backend Address space area backend. NULL if no backend is used.
272 * @param backend_data NULL or a pointer to an array holding two void *.
273 *
274 * @return Address space area on success or NULL on failure.
275 */
276as_area_t *
277as_area_create(as_t *as, int flags, size_t size, uintptr_t base, int attrs,
278 mem_backend_t *backend, mem_backend_data_t *backend_data)
279{
280 ipl_t ipl;
281 as_area_t *a;
282
283 if (base % PAGE_SIZE)
284 return NULL;
285
286 if (!size)
287 return NULL;
288
289 /* Writeable executable areas are not supported. */
290 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
291 return NULL;
292
293 ipl = interrupts_disable();
294 mutex_lock(&as->lock);
295
296 if (!check_area_conflicts(as, base, size, NULL)) {
297 mutex_unlock(&as->lock);
298 interrupts_restore(ipl);
299 return NULL;
300 }
301
302 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
303
304 mutex_initialize(&a->lock, MUTEX_PASSIVE);
305
306 a->as = as;
307 a->flags = flags;
308 a->attributes = attrs;
309 a->pages = SIZE2FRAMES(size);
310 a->base = base;
311 a->sh_info = NULL;
312 a->backend = backend;
313 if (backend_data)
314 a->backend_data = *backend_data;
315 else
316 memsetb(&a->backend_data, sizeof(a->backend_data), 0);
317
318 btree_create(&a->used_space);
319
320 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
321
322 mutex_unlock(&as->lock);
323 interrupts_restore(ipl);
324
325 return a;
326}
327
328/** Find address space area and change it.
329 *
330 * @param as Address space.
331 * @param address Virtual address belonging to the area to be changed.
332 * Must be page-aligned.
333 * @param size New size of the virtual memory block starting at
334 * address.
335 * @param flags Flags influencing the remap operation. Currently unused.
336 *
337 * @return Zero on success or a value from @ref errno.h otherwise.
338 */
339int as_area_resize(as_t *as, uintptr_t address, size_t size, int flags)
340{
341 as_area_t *area;
342 ipl_t ipl;
343 size_t pages;
344
345 ipl = interrupts_disable();
346 mutex_lock(&as->lock);
347
348 /*
349 * Locate the area.
350 */
351 area = find_area_and_lock(as, address);
352 if (!area) {
353 mutex_unlock(&as->lock);
354 interrupts_restore(ipl);
355 return ENOENT;
356 }
357
358 if (area->backend == &phys_backend) {
359 /*
360 * Remapping of address space areas associated
361 * with memory mapped devices is not supported.
362 */
363 mutex_unlock(&area->lock);
364 mutex_unlock(&as->lock);
365 interrupts_restore(ipl);
366 return ENOTSUP;
367 }
368 if (area->sh_info) {
369 /*
370 * Remapping of shared address space areas
371 * is not supported.
372 */
373 mutex_unlock(&area->lock);
374 mutex_unlock(&as->lock);
375 interrupts_restore(ipl);
376 return ENOTSUP;
377 }
378
379 pages = SIZE2FRAMES((address - area->base) + size);
380 if (!pages) {
381 /*
382 * Zero size address space areas are not allowed.
383 */
384 mutex_unlock(&area->lock);
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return EPERM;
388 }
389
390 if (pages < area->pages) {
391 bool cond;
392 uintptr_t start_free = area->base + pages * PAGE_SIZE;
393
394 /*
395 * Shrinking the area.
396 * No need to check for overlaps.
397 */
398
399 /*
400 * Start TLB shootdown sequence.
401 */
402 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base +
403 pages * PAGE_SIZE, area->pages - pages);
404
405 /*
406 * Remove frames belonging to used space starting from
407 * the highest addresses downwards until an overlap with
408 * the resized address space area is found. Note that this
409 * is also the right way to remove part of the used_space
410 * B+tree leaf list.
411 */
412 for (cond = true; cond;) {
413 btree_node_t *node;
414
415 ASSERT(!list_empty(&area->used_space.leaf_head));
416 node =
417 list_get_instance(area->used_space.leaf_head.prev,
418 btree_node_t, leaf_link);
419 if ((cond = (bool) node->keys)) {
420 uintptr_t b = node->key[node->keys - 1];
421 size_t c =
422 (size_t) node->value[node->keys - 1];
423 unsigned int i = 0;
424
425 if (overlaps(b, c * PAGE_SIZE, area->base,
426 pages * PAGE_SIZE)) {
427
428 if (b + c * PAGE_SIZE <= start_free) {
429 /*
430 * The whole interval fits
431 * completely in the resized
432 * address space area.
433 */
434 break;
435 }
436
437 /*
438 * Part of the interval corresponding
439 * to b and c overlaps with the resized
440 * address space area.
441 */
442
443 cond = false; /* we are almost done */
444 i = (start_free - b) >> PAGE_WIDTH;
445 if (!used_space_remove(area, start_free,
446 c - i))
447 panic("Cannot remove used "
448 "space.");
449 } else {
450 /*
451 * The interval of used space can be
452 * completely removed.
453 */
454 if (!used_space_remove(area, b, c))
455 panic("Cannot remove used "
456 "space.");
457 }
458
459 for (; i < c; i++) {
460 pte_t *pte;
461
462 page_table_lock(as, false);
463 pte = page_mapping_find(as, b +
464 i * PAGE_SIZE);
465 ASSERT(pte && PTE_VALID(pte) &&
466 PTE_PRESENT(pte));
467 if (area->backend &&
468 area->backend->frame_free) {
469 area->backend->frame_free(area,
470 b + i * PAGE_SIZE,
471 PTE_GET_FRAME(pte));
472 }
473 page_mapping_remove(as, b +
474 i * PAGE_SIZE);
475 page_table_unlock(as, false);
476 }
477 }
478 }
479
480 /*
481 * Finish TLB shootdown sequence.
482 */
483
484 tlb_invalidate_pages(as->asid, area->base + pages * PAGE_SIZE,
485 area->pages - pages);
486 /*
487 * Invalidate software translation caches (e.g. TSB on sparc64).
488 */
489 as_invalidate_translation_cache(as, area->base +
490 pages * PAGE_SIZE, area->pages - pages);
491 tlb_shootdown_finalize();
492
493 } else {
494 /*
495 * Growing the area.
496 * Check for overlaps with other address space areas.
497 */
498 if (!check_area_conflicts(as, address, pages * PAGE_SIZE,
499 area)) {
500 mutex_unlock(&area->lock);
501 mutex_unlock(&as->lock);
502 interrupts_restore(ipl);
503 return EADDRNOTAVAIL;
504 }
505 }
506
507 area->pages = pages;
508
509 mutex_unlock(&area->lock);
510 mutex_unlock(&as->lock);
511 interrupts_restore(ipl);
512
513 return 0;
514}
515
516/** Destroy address space area.
517 *
518 * @param as Address space.
519 * @param address Address within the area to be deleted.
520 *
521 * @return Zero on success or a value from @ref errno.h on failure.
522 */
523int as_area_destroy(as_t *as, uintptr_t address)
524{
525 as_area_t *area;
526 uintptr_t base;
527 link_t *cur;
528 ipl_t ipl;
529
530 ipl = interrupts_disable();
531 mutex_lock(&as->lock);
532
533 area = find_area_and_lock(as, address);
534 if (!area) {
535 mutex_unlock(&as->lock);
536 interrupts_restore(ipl);
537 return ENOENT;
538 }
539
540 base = area->base;
541
542 /*
543 * Start TLB shootdown sequence.
544 */
545 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
546
547 /*
548 * Visit only the pages mapped by used_space B+tree.
549 */
550 for (cur = area->used_space.leaf_head.next;
551 cur != &area->used_space.leaf_head; cur = cur->next) {
552 btree_node_t *node;
553 unsigned int i;
554
555 node = list_get_instance(cur, btree_node_t, leaf_link);
556 for (i = 0; i < node->keys; i++) {
557 uintptr_t b = node->key[i];
558 size_t j;
559 pte_t *pte;
560
561 for (j = 0; j < (size_t) node->value[i]; j++) {
562 page_table_lock(as, false);
563 pte = page_mapping_find(as, b + j * PAGE_SIZE);
564 ASSERT(pte && PTE_VALID(pte) &&
565 PTE_PRESENT(pte));
566 if (area->backend &&
567 area->backend->frame_free) {
568 area->backend->frame_free(area, b +
569 j * PAGE_SIZE, PTE_GET_FRAME(pte));
570 }
571 page_mapping_remove(as, b + j * PAGE_SIZE);
572 page_table_unlock(as, false);
573 }
574 }
575 }
576
577 /*
578 * Finish TLB shootdown sequence.
579 */
580
581 tlb_invalidate_pages(as->asid, area->base, area->pages);
582 /*
583 * Invalidate potential software translation caches (e.g. TSB on
584 * sparc64).
585 */
586 as_invalidate_translation_cache(as, area->base, area->pages);
587 tlb_shootdown_finalize();
588
589 btree_destroy(&area->used_space);
590
591 area->attributes |= AS_AREA_ATTR_PARTIAL;
592
593 if (area->sh_info)
594 sh_info_remove_reference(area->sh_info);
595
596 mutex_unlock(&area->lock);
597
598 /*
599 * Remove the empty area from address space.
600 */
601 btree_remove(&as->as_area_btree, base, NULL);
602
603 free(area);
604
605 mutex_unlock(&as->lock);
606 interrupts_restore(ipl);
607 return 0;
608}
609
610/** Share address space area with another or the same address space.
611 *
612 * Address space area mapping is shared with a new address space area.
613 * If the source address space area has not been shared so far,
614 * a new sh_info is created. The new address space area simply gets the
615 * sh_info of the source area. The process of duplicating the
616 * mapping is done through the backend share function.
617 *
618 * @param src_as Pointer to source address space.
619 * @param src_base Base address of the source address space area.
620 * @param acc_size Expected size of the source area.
621 * @param dst_as Pointer to destination address space.
622 * @param dst_base Target base address.
623 * @param dst_flags_mask Destination address space area flags mask.
624 *
625 * @return Zero on success or ENOENT if there is no such task or if
626 * there is no such address space area, EPERM if there was
627 * a problem in accepting the area or ENOMEM if there was a
628 * problem in allocating destination address space area.
629 * ENOTSUP is returned if the address space area backend
630 * does not support sharing.
631 */
632int as_area_share(as_t *src_as, uintptr_t src_base, size_t acc_size,
633 as_t *dst_as, uintptr_t dst_base, int dst_flags_mask)
634{
635 ipl_t ipl;
636 int src_flags;
637 size_t src_size;
638 as_area_t *src_area, *dst_area;
639 share_info_t *sh_info;
640 mem_backend_t *src_backend;
641 mem_backend_data_t src_backend_data;
642
643 ipl = interrupts_disable();
644 mutex_lock(&src_as->lock);
645 src_area = find_area_and_lock(src_as, src_base);
646 if (!src_area) {
647 /*
648 * Could not find the source address space area.
649 */
650 mutex_unlock(&src_as->lock);
651 interrupts_restore(ipl);
652 return ENOENT;
653 }
654
655 if (!src_area->backend || !src_area->backend->share) {
656 /*
657 * There is no backend or the backend does not
658 * know how to share the area.
659 */
660 mutex_unlock(&src_area->lock);
661 mutex_unlock(&src_as->lock);
662 interrupts_restore(ipl);
663 return ENOTSUP;
664 }
665
666 src_size = src_area->pages * PAGE_SIZE;
667 src_flags = src_area->flags;
668 src_backend = src_area->backend;
669 src_backend_data = src_area->backend_data;
670
671 /* Share the cacheable flag from the original mapping */
672 if (src_flags & AS_AREA_CACHEABLE)
673 dst_flags_mask |= AS_AREA_CACHEABLE;
674
675 if (src_size != acc_size ||
676 (src_flags & dst_flags_mask) != dst_flags_mask) {
677 mutex_unlock(&src_area->lock);
678 mutex_unlock(&src_as->lock);
679 interrupts_restore(ipl);
680 return EPERM;
681 }
682
683 /*
684 * Now we are committed to sharing the area.
685 * First, prepare the area for sharing.
686 * Then it will be safe to unlock it.
687 */
688 sh_info = src_area->sh_info;
689 if (!sh_info) {
690 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
691 mutex_initialize(&sh_info->lock, MUTEX_PASSIVE);
692 sh_info->refcount = 2;
693 btree_create(&sh_info->pagemap);
694 src_area->sh_info = sh_info;
695 /*
696 * Call the backend to setup sharing.
697 */
698 src_area->backend->share(src_area);
699 } else {
700 mutex_lock(&sh_info->lock);
701 sh_info->refcount++;
702 mutex_unlock(&sh_info->lock);
703 }
704
705 mutex_unlock(&src_area->lock);
706 mutex_unlock(&src_as->lock);
707
708 /*
709 * Create copy of the source address space area.
710 * The destination area is created with AS_AREA_ATTR_PARTIAL
711 * attribute set which prevents race condition with
712 * preliminary as_page_fault() calls.
713 * The flags of the source area are masked against dst_flags_mask
714 * to support sharing in less privileged mode.
715 */
716 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
717 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
718 if (!dst_area) {
719 /*
720 * Destination address space area could not be created.
721 */
722 sh_info_remove_reference(sh_info);
723
724 interrupts_restore(ipl);
725 return ENOMEM;
726 }
727
728 /*
729 * Now the destination address space area has been
730 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
731 * attribute and set the sh_info.
732 */
733 mutex_lock(&dst_as->lock);
734 mutex_lock(&dst_area->lock);
735 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
736 dst_area->sh_info = sh_info;
737 mutex_unlock(&dst_area->lock);
738 mutex_unlock(&dst_as->lock);
739
740 interrupts_restore(ipl);
741
742 return 0;
743}
744
745/** Check access mode for address space area.
746 *
747 * The address space area must be locked prior to this call.
748 *
749 * @param area Address space area.
750 * @param access Access mode.
751 *
752 * @return False if access violates area's permissions, true
753 * otherwise.
754 */
755bool as_area_check_access(as_area_t *area, pf_access_t access)
756{
757 int flagmap[] = {
758 [PF_ACCESS_READ] = AS_AREA_READ,
759 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
760 [PF_ACCESS_EXEC] = AS_AREA_EXEC
761 };
762
763 if (!(area->flags & flagmap[access]))
764 return false;
765
766 return true;
767}
768
769/** Change adress space area flags.
770 *
771 * The idea is to have the same data, but with a different access mode.
772 * This is needed e.g. for writing code into memory and then executing it.
773 * In order for this to work properly, this may copy the data
774 * into private anonymous memory (unless it's already there).
775 *
776 * @param as Address space.
777 * @param flags Flags of the area memory.
778 * @param address Address within the area to be changed.
779 *
780 * @return Zero on success or a value from @ref errno.h on failure.
781 *
782 */
783int as_area_change_flags(as_t *as, int flags, uintptr_t address)
784{
785 as_area_t *area;
786 uintptr_t base;
787 link_t *cur;
788 ipl_t ipl;
789 int page_flags;
790 uintptr_t *old_frame;
791 size_t frame_idx;
792 size_t used_pages;
793
794 /* Flags for the new memory mapping */
795 page_flags = area_flags_to_page_flags(flags);
796
797 ipl = interrupts_disable();
798 mutex_lock(&as->lock);
799
800 area = find_area_and_lock(as, address);
801 if (!area) {
802 mutex_unlock(&as->lock);
803 interrupts_restore(ipl);
804 return ENOENT;
805 }
806
807 if ((area->sh_info) || (area->backend != &anon_backend)) {
808 /* Copying shared areas not supported yet */
809 /* Copying non-anonymous memory not supported yet */
810 mutex_unlock(&area->lock);
811 mutex_unlock(&as->lock);
812 interrupts_restore(ipl);
813 return ENOTSUP;
814 }
815
816 base = area->base;
817
818 /*
819 * Compute total number of used pages in the used_space B+tree
820 */
821 used_pages = 0;
822
823 for (cur = area->used_space.leaf_head.next;
824 cur != &area->used_space.leaf_head; cur = cur->next) {
825 btree_node_t *node;
826 unsigned int i;
827
828 node = list_get_instance(cur, btree_node_t, leaf_link);
829 for (i = 0; i < node->keys; i++) {
830 used_pages += (size_t) node->value[i];
831 }
832 }
833
834 /* An array for storing frame numbers */
835 old_frame = malloc(used_pages * sizeof(uintptr_t), 0);
836
837 /*
838 * Start TLB shootdown sequence.
839 */
840 tlb_shootdown_start(TLB_INVL_PAGES, as->asid, area->base, area->pages);
841
842 /*
843 * Remove used pages from page tables and remember their frame
844 * numbers.
845 */
846 frame_idx = 0;
847
848 for (cur = area->used_space.leaf_head.next;
849 cur != &area->used_space.leaf_head; cur = cur->next) {
850 btree_node_t *node;
851 unsigned int i;
852
853 node = list_get_instance(cur, btree_node_t, leaf_link);
854 for (i = 0; i < node->keys; i++) {
855 uintptr_t b = node->key[i];
856 size_t j;
857 pte_t *pte;
858
859 for (j = 0; j < (size_t) node->value[i]; j++) {
860 page_table_lock(as, false);
861 pte = page_mapping_find(as, b + j * PAGE_SIZE);
862 ASSERT(pte && PTE_VALID(pte) &&
863 PTE_PRESENT(pte));
864 old_frame[frame_idx++] = PTE_GET_FRAME(pte);
865
866 /* Remove old mapping */
867 page_mapping_remove(as, b + j * PAGE_SIZE);
868 page_table_unlock(as, false);
869 }
870 }
871 }
872
873 /*
874 * Finish TLB shootdown sequence.
875 */
876
877 tlb_invalidate_pages(as->asid, area->base, area->pages);
878
879 /*
880 * Invalidate potential software translation caches (e.g. TSB on
881 * sparc64).
882 */
883 as_invalidate_translation_cache(as, area->base, area->pages);
884 tlb_shootdown_finalize();
885
886 /*
887 * Set the new flags.
888 */
889 area->flags = flags;
890
891 /*
892 * Map pages back in with new flags. This step is kept separate
893 * so that the memory area could not be accesed with both the old and
894 * the new flags at once.
895 */
896 frame_idx = 0;
897
898 for (cur = area->used_space.leaf_head.next;
899 cur != &area->used_space.leaf_head; cur = cur->next) {
900 btree_node_t *node;
901 unsigned int i;
902
903 node = list_get_instance(cur, btree_node_t, leaf_link);
904 for (i = 0; i < node->keys; i++) {
905 uintptr_t b = node->key[i];
906 size_t j;
907
908 for (j = 0; j < (size_t) node->value[i]; j++) {
909 page_table_lock(as, false);
910
911 /* Insert the new mapping */
912 page_mapping_insert(as, b + j * PAGE_SIZE,
913 old_frame[frame_idx++], page_flags);
914
915 page_table_unlock(as, false);
916 }
917 }
918 }
919
920 free(old_frame);
921
922 mutex_unlock(&area->lock);
923 mutex_unlock(&as->lock);
924 interrupts_restore(ipl);
925
926 return 0;
927}
928
929
930/** Handle page fault within the current address space.
931 *
932 * This is the high-level page fault handler. It decides whether the page fault
933 * can be resolved by any backend and if so, it invokes the backend to resolve
934 * the page fault.
935 *
936 * Interrupts are assumed disabled.
937 *
938 * @param page Faulting page.
939 * @param access Access mode that caused the page fault (i.e.
940 * read/write/exec).
941 * @param istate Pointer to the interrupted state.
942 *
943 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or
944 * AS_PF_DEFER if the fault was caused by copy_to_uspace()
945 * or copy_from_uspace().
946 */
947int as_page_fault(uintptr_t page, pf_access_t access, istate_t *istate)
948{
949 pte_t *pte;
950 as_area_t *area;
951
952 if (!THREAD)
953 return AS_PF_FAULT;
954
955 if (!AS)
956 return AS_PF_FAULT;
957
958 mutex_lock(&AS->lock);
959 area = find_area_and_lock(AS, page);
960 if (!area) {
961 /*
962 * No area contained mapping for 'page'.
963 * Signal page fault to low-level handler.
964 */
965 mutex_unlock(&AS->lock);
966 goto page_fault;
967 }
968
969 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
970 /*
971 * The address space area is not fully initialized.
972 * Avoid possible race by returning error.
973 */
974 mutex_unlock(&area->lock);
975 mutex_unlock(&AS->lock);
976 goto page_fault;
977 }
978
979 if (!area->backend || !area->backend->page_fault) {
980 /*
981 * The address space area is not backed by any backend
982 * or the backend cannot handle page faults.
983 */
984 mutex_unlock(&area->lock);
985 mutex_unlock(&AS->lock);
986 goto page_fault;
987 }
988
989 page_table_lock(AS, false);
990
991 /*
992 * To avoid race condition between two page faults on the same address,
993 * we need to make sure the mapping has not been already inserted.
994 */
995 if ((pte = page_mapping_find(AS, page))) {
996 if (PTE_PRESENT(pte)) {
997 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
998 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
999 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
1000 page_table_unlock(AS, false);
1001 mutex_unlock(&area->lock);
1002 mutex_unlock(&AS->lock);
1003 return AS_PF_OK;
1004 }
1005 }
1006 }
1007
1008 /*
1009 * Resort to the backend page fault handler.
1010 */
1011 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
1012 page_table_unlock(AS, false);
1013 mutex_unlock(&area->lock);
1014 mutex_unlock(&AS->lock);
1015 goto page_fault;
1016 }
1017
1018 page_table_unlock(AS, false);
1019 mutex_unlock(&area->lock);
1020 mutex_unlock(&AS->lock);
1021 return AS_PF_OK;
1022
1023page_fault:
1024 if (THREAD->in_copy_from_uspace) {
1025 THREAD->in_copy_from_uspace = false;
1026 istate_set_retaddr(istate,
1027 (uintptr_t) &memcpy_from_uspace_failover_address);
1028 } else if (THREAD->in_copy_to_uspace) {
1029 THREAD->in_copy_to_uspace = false;
1030 istate_set_retaddr(istate,
1031 (uintptr_t) &memcpy_to_uspace_failover_address);
1032 } else {
1033 return AS_PF_FAULT;
1034 }
1035
1036 return AS_PF_DEFER;
1037}
1038
1039/** Switch address spaces.
1040 *
1041 * Note that this function cannot sleep as it is essentially a part of
1042 * scheduling. Sleeping here would lead to deadlock on wakeup. Another
1043 * thing which is forbidden in this context is locking the address space.
1044 *
1045 * When this function is enetered, no spinlocks may be held.
1046 *
1047 * @param old Old address space or NULL.
1048 * @param new New address space.
1049 */
1050void as_switch(as_t *old_as, as_t *new_as)
1051{
1052 DEADLOCK_PROBE_INIT(p_asidlock);
1053 preemption_disable();
1054retry:
1055 (void) interrupts_disable();
1056 if (!spinlock_trylock(&asidlock)) {
1057 /*
1058 * Avoid deadlock with TLB shootdown.
1059 * We can enable interrupts here because
1060 * preemption is disabled. We should not be
1061 * holding any other lock.
1062 */
1063 (void) interrupts_enable();
1064 DEADLOCK_PROBE(p_asidlock, DEADLOCK_THRESHOLD);
1065 goto retry;
1066 }
1067 preemption_enable();
1068
1069 /*
1070 * First, take care of the old address space.
1071 */
1072 if (old_as) {
1073 ASSERT(old_as->cpu_refcount);
1074 if((--old_as->cpu_refcount == 0) && (old_as != AS_KERNEL)) {
1075 /*
1076 * The old address space is no longer active on
1077 * any processor. It can be appended to the
1078 * list of inactive address spaces with assigned
1079 * ASID.
1080 */
1081 ASSERT(old_as->asid != ASID_INVALID);
1082 list_append(&old_as->inactive_as_with_asid_link,
1083 &inactive_as_with_asid_head);
1084 }
1085
1086 /*
1087 * Perform architecture-specific tasks when the address space
1088 * is being removed from the CPU.
1089 */
1090 as_deinstall_arch(old_as);
1091 }
1092
1093 /*
1094 * Second, prepare the new address space.
1095 */
1096 if ((new_as->cpu_refcount++ == 0) && (new_as != AS_KERNEL)) {
1097 if (new_as->asid != ASID_INVALID)
1098 list_remove(&new_as->inactive_as_with_asid_link);
1099 else
1100 new_as->asid = asid_get();
1101 }
1102#ifdef AS_PAGE_TABLE
1103 SET_PTL0_ADDRESS(new_as->genarch.page_table);
1104#endif
1105
1106 /*
1107 * Perform architecture-specific steps.
1108 * (e.g. write ASID to hardware register etc.)
1109 */
1110 as_install_arch(new_as);
1111
1112 spinlock_unlock(&asidlock);
1113
1114 AS = new_as;
1115}
1116
1117/** Convert address space area flags to page flags.
1118 *
1119 * @param aflags Flags of some address space area.
1120 *
1121 * @return Flags to be passed to page_mapping_insert().
1122 */
1123int area_flags_to_page_flags(int aflags)
1124{
1125 int flags;
1126
1127 flags = PAGE_USER | PAGE_PRESENT;
1128
1129 if (aflags & AS_AREA_READ)
1130 flags |= PAGE_READ;
1131
1132 if (aflags & AS_AREA_WRITE)
1133 flags |= PAGE_WRITE;
1134
1135 if (aflags & AS_AREA_EXEC)
1136 flags |= PAGE_EXEC;
1137
1138 if (aflags & AS_AREA_CACHEABLE)
1139 flags |= PAGE_CACHEABLE;
1140
1141 return flags;
1142}
1143
1144/** Compute flags for virtual address translation subsytem.
1145 *
1146 * The address space area must be locked.
1147 * Interrupts must be disabled.
1148 *
1149 * @param a Address space area.
1150 *
1151 * @return Flags to be used in page_mapping_insert().
1152 */
1153int as_area_get_flags(as_area_t *a)
1154{
1155 return area_flags_to_page_flags(a->flags);
1156}
1157
1158/** Create page table.
1159 *
1160 * Depending on architecture, create either address space private or global page
1161 * table.
1162 *
1163 * @param flags Flags saying whether the page table is for the kernel
1164 * address space.
1165 *
1166 * @return First entry of the page table.
1167 */
1168pte_t *page_table_create(int flags)
1169{
1170 ASSERT(as_operations);
1171 ASSERT(as_operations->page_table_create);
1172
1173 return as_operations->page_table_create(flags);
1174}
1175
1176/** Destroy page table.
1177 *
1178 * Destroy page table in architecture specific way.
1179 *
1180 * @param page_table Physical address of PTL0.
1181 */
1182void page_table_destroy(pte_t *page_table)
1183{
1184 ASSERT(as_operations);
1185 ASSERT(as_operations->page_table_destroy);
1186
1187 as_operations->page_table_destroy(page_table);
1188}
1189
1190/** Lock page table.
1191 *
1192 * This function should be called before any page_mapping_insert(),
1193 * page_mapping_remove() and page_mapping_find().
1194 *
1195 * Locking order is such that address space areas must be locked
1196 * prior to this call. Address space can be locked prior to this
1197 * call in which case the lock argument is false.
1198 *
1199 * @param as Address space.
1200 * @param lock If false, do not attempt to lock as->lock.
1201 */
1202void page_table_lock(as_t *as, bool lock)
1203{
1204 ASSERT(as_operations);
1205 ASSERT(as_operations->page_table_lock);
1206
1207 as_operations->page_table_lock(as, lock);
1208}
1209
1210/** Unlock page table.
1211 *
1212 * @param as Address space.
1213 * @param unlock If false, do not attempt to unlock as->lock.
1214 */
1215void page_table_unlock(as_t *as, bool unlock)
1216{
1217 ASSERT(as_operations);
1218 ASSERT(as_operations->page_table_unlock);
1219
1220 as_operations->page_table_unlock(as, unlock);
1221}
1222
1223
1224/** Find address space area and lock it.
1225 *
1226 * The address space must be locked and interrupts must be disabled.
1227 *
1228 * @param as Address space.
1229 * @param va Virtual address.
1230 *
1231 * @return Locked address space area containing va on success or
1232 * NULL on failure.
1233 */
1234as_area_t *find_area_and_lock(as_t *as, uintptr_t va)
1235{
1236 as_area_t *a;
1237 btree_node_t *leaf, *lnode;
1238 unsigned int i;
1239
1240 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
1241 if (a) {
1242 /* va is the base address of an address space area */
1243 mutex_lock(&a->lock);
1244 return a;
1245 }
1246
1247 /*
1248 * Search the leaf node and the righmost record of its left neighbour
1249 * to find out whether this is a miss or va belongs to an address
1250 * space area found there.
1251 */
1252
1253 /* First, search the leaf node itself. */
1254 for (i = 0; i < leaf->keys; i++) {
1255 a = (as_area_t *) leaf->value[i];
1256 mutex_lock(&a->lock);
1257 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
1258 return a;
1259 }
1260 mutex_unlock(&a->lock);
1261 }
1262
1263 /*
1264 * Second, locate the left neighbour and test its last record.
1265 * Because of its position in the B+tree, it must have base < va.
1266 */
1267 lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf);
1268 if (lnode) {
1269 a = (as_area_t *) lnode->value[lnode->keys - 1];
1270 mutex_lock(&a->lock);
1271 if (va < a->base + a->pages * PAGE_SIZE) {
1272 return a;
1273 }
1274 mutex_unlock(&a->lock);
1275 }
1276
1277 return NULL;
1278}
1279
1280/** Check area conflicts with other areas.
1281 *
1282 * The address space must be locked and interrupts must be disabled.
1283 *
1284 * @param as Address space.
1285 * @param va Starting virtual address of the area being tested.
1286 * @param size Size of the area being tested.
1287 * @param avoid_area Do not touch this area.
1288 *
1289 * @return True if there is no conflict, false otherwise.
1290 */
1291bool
1292check_area_conflicts(as_t *as, uintptr_t va, size_t size, as_area_t *avoid_area)
1293{
1294 as_area_t *a;
1295 btree_node_t *leaf, *node;
1296 unsigned int i;
1297
1298 /*
1299 * We don't want any area to have conflicts with NULL page.
1300 */
1301 if (overlaps(va, size, NULL, PAGE_SIZE))
1302 return false;
1303
1304 /*
1305 * The leaf node is found in O(log n), where n is proportional to
1306 * the number of address space areas belonging to as.
1307 * The check for conflicts is then attempted on the rightmost
1308 * record in the left neighbour, the leftmost record in the right
1309 * neighbour and all records in the leaf node itself.
1310 */
1311
1312 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1313 if (a != avoid_area)
1314 return false;
1315 }
1316
1317 /* First, check the two border cases. */
1318 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1319 a = (as_area_t *) node->value[node->keys - 1];
1320 mutex_lock(&a->lock);
1321 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1322 mutex_unlock(&a->lock);
1323 return false;
1324 }
1325 mutex_unlock(&a->lock);
1326 }
1327 node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf);
1328 if (node) {
1329 a = (as_area_t *) node->value[0];
1330 mutex_lock(&a->lock);
1331 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1332 mutex_unlock(&a->lock);
1333 return false;
1334 }
1335 mutex_unlock(&a->lock);
1336 }
1337
1338 /* Second, check the leaf node. */
1339 for (i = 0; i < leaf->keys; i++) {
1340 a = (as_area_t *) leaf->value[i];
1341
1342 if (a == avoid_area)
1343 continue;
1344
1345 mutex_lock(&a->lock);
1346 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1347 mutex_unlock(&a->lock);
1348 return false;
1349 }
1350 mutex_unlock(&a->lock);
1351 }
1352
1353 /*
1354 * So far, the area does not conflict with other areas.
1355 * Check if it doesn't conflict with kernel address space.
1356 */
1357 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1358 return !overlaps(va, size,
1359 KERNEL_ADDRESS_SPACE_START,
1360 KERNEL_ADDRESS_SPACE_END - KERNEL_ADDRESS_SPACE_START);
1361 }
1362
1363 return true;
1364}
1365
1366/** Return size of the address space area with given base.
1367 *
1368 * @param base Arbitrary address insede the address space area.
1369 *
1370 * @return Size of the address space area in bytes or zero if it
1371 * does not exist.
1372 */
1373size_t as_area_get_size(uintptr_t base)
1374{
1375 ipl_t ipl;
1376 as_area_t *src_area;
1377 size_t size;
1378
1379 ipl = interrupts_disable();
1380 src_area = find_area_and_lock(AS, base);
1381 if (src_area) {
1382 size = src_area->pages * PAGE_SIZE;
1383 mutex_unlock(&src_area->lock);
1384 } else {
1385 size = 0;
1386 }
1387 interrupts_restore(ipl);
1388 return size;
1389}
1390
1391/** Mark portion of address space area as used.
1392 *
1393 * The address space area must be already locked.
1394 *
1395 * @param a Address space area.
1396 * @param page First page to be marked.
1397 * @param count Number of page to be marked.
1398 *
1399 * @return Zero on failure and non-zero on success.
1400 */
1401int used_space_insert(as_area_t *a, uintptr_t page, size_t count)
1402{
1403 btree_node_t *leaf, *node;
1404 size_t pages;
1405 unsigned int i;
1406
1407 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1408 ASSERT(count);
1409
1410 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1411 if (pages) {
1412 /*
1413 * We hit the beginning of some used space.
1414 */
1415 return 0;
1416 }
1417
1418 if (!leaf->keys) {
1419 btree_insert(&a->used_space, page, (void *) count, leaf);
1420 return 1;
1421 }
1422
1423 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1424 if (node) {
1425 uintptr_t left_pg = node->key[node->keys - 1];
1426 uintptr_t right_pg = leaf->key[0];
1427 size_t left_cnt = (size_t) node->value[node->keys - 1];
1428 size_t right_cnt = (size_t) leaf->value[0];
1429
1430 /*
1431 * Examine the possibility that the interval fits
1432 * somewhere between the rightmost interval of
1433 * the left neigbour and the first interval of the leaf.
1434 */
1435
1436 if (page >= right_pg) {
1437 /* Do nothing. */
1438 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1439 left_cnt * PAGE_SIZE)) {
1440 /* The interval intersects with the left interval. */
1441 return 0;
1442 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1443 right_cnt * PAGE_SIZE)) {
1444 /* The interval intersects with the right interval. */
1445 return 0;
1446 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1447 (page + count * PAGE_SIZE == right_pg)) {
1448 /*
1449 * The interval can be added by merging the two already
1450 * present intervals.
1451 */
1452 node->value[node->keys - 1] += count + right_cnt;
1453 btree_remove(&a->used_space, right_pg, leaf);
1454 return 1;
1455 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1456 /*
1457 * The interval can be added by simply growing the left
1458 * interval.
1459 */
1460 node->value[node->keys - 1] += count;
1461 return 1;
1462 } else if (page + count * PAGE_SIZE == right_pg) {
1463 /*
1464 * The interval can be addded by simply moving base of
1465 * the right interval down and increasing its size
1466 * accordingly.
1467 */
1468 leaf->value[0] += count;
1469 leaf->key[0] = page;
1470 return 1;
1471 } else {
1472 /*
1473 * The interval is between both neigbouring intervals,
1474 * but cannot be merged with any of them.
1475 */
1476 btree_insert(&a->used_space, page, (void *) count,
1477 leaf);
1478 return 1;
1479 }
1480 } else if (page < leaf->key[0]) {
1481 uintptr_t right_pg = leaf->key[0];
1482 size_t right_cnt = (size_t) leaf->value[0];
1483
1484 /*
1485 * Investigate the border case in which the left neighbour does
1486 * not exist but the interval fits from the left.
1487 */
1488
1489 if (overlaps(page, count * PAGE_SIZE, right_pg,
1490 right_cnt * PAGE_SIZE)) {
1491 /* The interval intersects with the right interval. */
1492 return 0;
1493 } else if (page + count * PAGE_SIZE == right_pg) {
1494 /*
1495 * The interval can be added by moving the base of the
1496 * right interval down and increasing its size
1497 * accordingly.
1498 */
1499 leaf->key[0] = page;
1500 leaf->value[0] += count;
1501 return 1;
1502 } else {
1503 /*
1504 * The interval doesn't adjoin with the right interval.
1505 * It must be added individually.
1506 */
1507 btree_insert(&a->used_space, page, (void *) count,
1508 leaf);
1509 return 1;
1510 }
1511 }
1512
1513 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1514 if (node) {
1515 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1516 uintptr_t right_pg = node->key[0];
1517 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1518 size_t right_cnt = (size_t) node->value[0];
1519
1520 /*
1521 * Examine the possibility that the interval fits
1522 * somewhere between the leftmost interval of
1523 * the right neigbour and the last interval of the leaf.
1524 */
1525
1526 if (page < left_pg) {
1527 /* Do nothing. */
1528 } else if (overlaps(page, count * PAGE_SIZE, left_pg,
1529 left_cnt * PAGE_SIZE)) {
1530 /* The interval intersects with the left interval. */
1531 return 0;
1532 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1533 right_cnt * PAGE_SIZE)) {
1534 /* The interval intersects with the right interval. */
1535 return 0;
1536 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1537 (page + count * PAGE_SIZE == right_pg)) {
1538 /*
1539 * The interval can be added by merging the two already
1540 * present intervals.
1541 * */
1542 leaf->value[leaf->keys - 1] += count + right_cnt;
1543 btree_remove(&a->used_space, right_pg, node);
1544 return 1;
1545 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1546 /*
1547 * The interval can be added by simply growing the left
1548 * interval.
1549 * */
1550 leaf->value[leaf->keys - 1] += count;
1551 return 1;
1552 } else if (page + count * PAGE_SIZE == right_pg) {
1553 /*
1554 * The interval can be addded by simply moving base of
1555 * the right interval down and increasing its size
1556 * accordingly.
1557 */
1558 node->value[0] += count;
1559 node->key[0] = page;
1560 return 1;
1561 } else {
1562 /*
1563 * The interval is between both neigbouring intervals,
1564 * but cannot be merged with any of them.
1565 */
1566 btree_insert(&a->used_space, page, (void *) count,
1567 leaf);
1568 return 1;
1569 }
1570 } else if (page >= leaf->key[leaf->keys - 1]) {
1571 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1572 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1573
1574 /*
1575 * Investigate the border case in which the right neighbour
1576 * does not exist but the interval fits from the right.
1577 */
1578
1579 if (overlaps(page, count * PAGE_SIZE, left_pg,
1580 left_cnt * PAGE_SIZE)) {
1581 /* The interval intersects with the left interval. */
1582 return 0;
1583 } else if (left_pg + left_cnt * PAGE_SIZE == page) {
1584 /*
1585 * The interval can be added by growing the left
1586 * interval.
1587 */
1588 leaf->value[leaf->keys - 1] += count;
1589 return 1;
1590 } else {
1591 /*
1592 * The interval doesn't adjoin with the left interval.
1593 * It must be added individually.
1594 */
1595 btree_insert(&a->used_space, page, (void *) count,
1596 leaf);
1597 return 1;
1598 }
1599 }
1600
1601 /*
1602 * Note that if the algorithm made it thus far, the interval can fit
1603 * only between two other intervals of the leaf. The two border cases
1604 * were already resolved.
1605 */
1606 for (i = 1; i < leaf->keys; i++) {
1607 if (page < leaf->key[i]) {
1608 uintptr_t left_pg = leaf->key[i - 1];
1609 uintptr_t right_pg = leaf->key[i];
1610 size_t left_cnt = (size_t) leaf->value[i - 1];
1611 size_t right_cnt = (size_t) leaf->value[i];
1612
1613 /*
1614 * The interval fits between left_pg and right_pg.
1615 */
1616
1617 if (overlaps(page, count * PAGE_SIZE, left_pg,
1618 left_cnt * PAGE_SIZE)) {
1619 /*
1620 * The interval intersects with the left
1621 * interval.
1622 */
1623 return 0;
1624 } else if (overlaps(page, count * PAGE_SIZE, right_pg,
1625 right_cnt * PAGE_SIZE)) {
1626 /*
1627 * The interval intersects with the right
1628 * interval.
1629 */
1630 return 0;
1631 } else if ((page == left_pg + left_cnt * PAGE_SIZE) &&
1632 (page + count * PAGE_SIZE == right_pg)) {
1633 /*
1634 * The interval can be added by merging the two
1635 * already present intervals.
1636 */
1637 leaf->value[i - 1] += count + right_cnt;
1638 btree_remove(&a->used_space, right_pg, leaf);
1639 return 1;
1640 } else if (page == left_pg + left_cnt * PAGE_SIZE) {
1641 /*
1642 * The interval can be added by simply growing
1643 * the left interval.
1644 */
1645 leaf->value[i - 1] += count;
1646 return 1;
1647 } else if (page + count * PAGE_SIZE == right_pg) {
1648 /*
1649 * The interval can be addded by simply moving
1650 * base of the right interval down and
1651 * increasing its size accordingly.
1652 */
1653 leaf->value[i] += count;
1654 leaf->key[i] = page;
1655 return 1;
1656 } else {
1657 /*
1658 * The interval is between both neigbouring
1659 * intervals, but cannot be merged with any of
1660 * them.
1661 */
1662 btree_insert(&a->used_space, page,
1663 (void *) count, leaf);
1664 return 1;
1665 }
1666 }
1667 }
1668
1669 panic("Inconsistency detected while adding %" PRIs " pages of used "
1670 "space at %p.", count, page);
1671}
1672
1673/** Mark portion of address space area as unused.
1674 *
1675 * The address space area must be already locked.
1676 *
1677 * @param a Address space area.
1678 * @param page First page to be marked.
1679 * @param count Number of page to be marked.
1680 *
1681 * @return Zero on failure and non-zero on success.
1682 */
1683int used_space_remove(as_area_t *a, uintptr_t page, size_t count)
1684{
1685 btree_node_t *leaf, *node;
1686 size_t pages;
1687 unsigned int i;
1688
1689 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1690 ASSERT(count);
1691
1692 pages = (size_t) btree_search(&a->used_space, page, &leaf);
1693 if (pages) {
1694 /*
1695 * We are lucky, page is the beginning of some interval.
1696 */
1697 if (count > pages) {
1698 return 0;
1699 } else if (count == pages) {
1700 btree_remove(&a->used_space, page, leaf);
1701 return 1;
1702 } else {
1703 /*
1704 * Find the respective interval.
1705 * Decrease its size and relocate its start address.
1706 */
1707 for (i = 0; i < leaf->keys; i++) {
1708 if (leaf->key[i] == page) {
1709 leaf->key[i] += count * PAGE_SIZE;
1710 leaf->value[i] -= count;
1711 return 1;
1712 }
1713 }
1714 goto error;
1715 }
1716 }
1717
1718 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1719 if (node && page < leaf->key[0]) {
1720 uintptr_t left_pg = node->key[node->keys - 1];
1721 size_t left_cnt = (size_t) node->value[node->keys - 1];
1722
1723 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1724 count * PAGE_SIZE)) {
1725 if (page + count * PAGE_SIZE ==
1726 left_pg + left_cnt * PAGE_SIZE) {
1727 /*
1728 * The interval is contained in the rightmost
1729 * interval of the left neighbour and can be
1730 * removed by updating the size of the bigger
1731 * interval.
1732 */
1733 node->value[node->keys - 1] -= count;
1734 return 1;
1735 } else if (page + count * PAGE_SIZE <
1736 left_pg + left_cnt*PAGE_SIZE) {
1737 size_t new_cnt;
1738
1739 /*
1740 * The interval is contained in the rightmost
1741 * interval of the left neighbour but its
1742 * removal requires both updating the size of
1743 * the original interval and also inserting a
1744 * new interval.
1745 */
1746 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1747 (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1748 node->value[node->keys - 1] -= count + new_cnt;
1749 btree_insert(&a->used_space, page +
1750 count * PAGE_SIZE, (void *) new_cnt, leaf);
1751 return 1;
1752 }
1753 }
1754 return 0;
1755 } else if (page < leaf->key[0]) {
1756 return 0;
1757 }
1758
1759 if (page > leaf->key[leaf->keys - 1]) {
1760 uintptr_t left_pg = leaf->key[leaf->keys - 1];
1761 size_t left_cnt = (size_t) leaf->value[leaf->keys - 1];
1762
1763 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1764 count * PAGE_SIZE)) {
1765 if (page + count * PAGE_SIZE ==
1766 left_pg + left_cnt * PAGE_SIZE) {
1767 /*
1768 * The interval is contained in the rightmost
1769 * interval of the leaf and can be removed by
1770 * updating the size of the bigger interval.
1771 */
1772 leaf->value[leaf->keys - 1] -= count;
1773 return 1;
1774 } else if (page + count * PAGE_SIZE < left_pg +
1775 left_cnt * PAGE_SIZE) {
1776 size_t new_cnt;
1777
1778 /*
1779 * The interval is contained in the rightmost
1780 * interval of the leaf but its removal
1781 * requires both updating the size of the
1782 * original interval and also inserting a new
1783 * interval.
1784 */
1785 new_cnt = ((left_pg + left_cnt * PAGE_SIZE) -
1786 (page + count * PAGE_SIZE)) >> PAGE_WIDTH;
1787 leaf->value[leaf->keys - 1] -= count + new_cnt;
1788 btree_insert(&a->used_space, page +
1789 count * PAGE_SIZE, (void *) new_cnt, leaf);
1790 return 1;
1791 }
1792 }
1793 return 0;
1794 }
1795
1796 /*
1797 * The border cases have been already resolved.
1798 * Now the interval can be only between intervals of the leaf.
1799 */
1800 for (i = 1; i < leaf->keys - 1; i++) {
1801 if (page < leaf->key[i]) {
1802 uintptr_t left_pg = leaf->key[i - 1];
1803 size_t left_cnt = (size_t) leaf->value[i - 1];
1804
1805 /*
1806 * Now the interval is between intervals corresponding
1807 * to (i - 1) and i.
1808 */
1809 if (overlaps(left_pg, left_cnt * PAGE_SIZE, page,
1810 count * PAGE_SIZE)) {
1811 if (page + count * PAGE_SIZE ==
1812 left_pg + left_cnt*PAGE_SIZE) {
1813 /*
1814 * The interval is contained in the
1815 * interval (i - 1) of the leaf and can
1816 * be removed by updating the size of
1817 * the bigger interval.
1818 */
1819 leaf->value[i - 1] -= count;
1820 return 1;
1821 } else if (page + count * PAGE_SIZE <
1822 left_pg + left_cnt * PAGE_SIZE) {
1823 size_t new_cnt;
1824
1825 /*
1826 * The interval is contained in the
1827 * interval (i - 1) of the leaf but its
1828 * removal requires both updating the
1829 * size of the original interval and
1830 * also inserting a new interval.
1831 */
1832 new_cnt = ((left_pg +
1833 left_cnt * PAGE_SIZE) -
1834 (page + count * PAGE_SIZE)) >>
1835 PAGE_WIDTH;
1836 leaf->value[i - 1] -= count + new_cnt;
1837 btree_insert(&a->used_space, page +
1838 count * PAGE_SIZE, (void *) new_cnt,
1839 leaf);
1840 return 1;
1841 }
1842 }
1843 return 0;
1844 }
1845 }
1846
1847error:
1848 panic("Inconsistency detected while removing %" PRIs " pages of used "
1849 "space from %p.", count, page);
1850}
1851
1852/** Remove reference to address space area share info.
1853 *
1854 * If the reference count drops to 0, the sh_info is deallocated.
1855 *
1856 * @param sh_info Pointer to address space area share info.
1857 */
1858void sh_info_remove_reference(share_info_t *sh_info)
1859{
1860 bool dealloc = false;
1861
1862 mutex_lock(&sh_info->lock);
1863 ASSERT(sh_info->refcount);
1864 if (--sh_info->refcount == 0) {
1865 dealloc = true;
1866 link_t *cur;
1867
1868 /*
1869 * Now walk carefully the pagemap B+tree and free/remove
1870 * reference from all frames found there.
1871 */
1872 for (cur = sh_info->pagemap.leaf_head.next;
1873 cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1874 btree_node_t *node;
1875 unsigned int i;
1876
1877 node = list_get_instance(cur, btree_node_t, leaf_link);
1878 for (i = 0; i < node->keys; i++)
1879 frame_free((uintptr_t) node->value[i]);
1880 }
1881
1882 }
1883 mutex_unlock(&sh_info->lock);
1884
1885 if (dealloc) {
1886 btree_destroy(&sh_info->pagemap);
1887 free(sh_info);
1888 }
1889}
1890
1891/*
1892 * Address space related syscalls.
1893 */
1894
1895/** Wrapper for as_area_create(). */
1896unative_t sys_as_area_create(uintptr_t address, size_t size, int flags)
1897{
1898 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address,
1899 AS_AREA_ATTR_NONE, &anon_backend, NULL))
1900 return (unative_t) address;
1901 else
1902 return (unative_t) -1;
1903}
1904
1905/** Wrapper for as_area_resize(). */
1906unative_t sys_as_area_resize(uintptr_t address, size_t size, int flags)
1907{
1908 return (unative_t) as_area_resize(AS, address, size, 0);
1909}
1910
1911/** Wrapper for as_area_change_flags(). */
1912unative_t sys_as_area_change_flags(uintptr_t address, int flags)
1913{
1914 return (unative_t) as_area_change_flags(AS, flags, address);
1915}
1916
1917/** Wrapper for as_area_destroy(). */
1918unative_t sys_as_area_destroy(uintptr_t address)
1919{
1920 return (unative_t) as_area_destroy(AS, address);
1921}
1922
1923/** Get list of adress space areas.
1924 *
1925 * @param as Address space.
1926 * @param obuf Place to save pointer to returned buffer.
1927 * @param osize Place to save size of returned buffer.
1928 */
1929void as_get_area_info(as_t *as, as_area_info_t **obuf, size_t *osize)
1930{
1931 ipl_t ipl;
1932 size_t area_cnt, area_idx, i;
1933 link_t *cur;
1934
1935 as_area_info_t *info;
1936 size_t isize;
1937
1938 ipl = interrupts_disable();
1939 mutex_lock(&as->lock);
1940
1941 /* First pass, count number of areas. */
1942
1943 area_cnt = 0;
1944
1945 for (cur = as->as_area_btree.leaf_head.next;
1946 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1947 btree_node_t *node;
1948
1949 node = list_get_instance(cur, btree_node_t, leaf_link);
1950 area_cnt += node->keys;
1951 }
1952
1953 isize = area_cnt * sizeof(as_area_info_t);
1954 info = malloc(isize, 0);
1955
1956 /* Second pass, record data. */
1957
1958 area_idx = 0;
1959
1960 for (cur = as->as_area_btree.leaf_head.next;
1961 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
1962 btree_node_t *node;
1963
1964 node = list_get_instance(cur, btree_node_t, leaf_link);
1965
1966 for (i = 0; i < node->keys; i++) {
1967 as_area_t *area = node->value[i];
1968
1969 ASSERT(area_idx < area_cnt);
1970 mutex_lock(&area->lock);
1971
1972 info[area_idx].start_addr = area->base;
1973 info[area_idx].size = FRAMES2SIZE(area->pages);
1974 info[area_idx].flags = area->flags;
1975 ++area_idx;
1976
1977 mutex_unlock(&area->lock);
1978 }
1979 }
1980
1981 mutex_unlock(&as->lock);
1982 interrupts_restore(ipl);
1983
1984 *obuf = info;
1985 *osize = isize;
1986}
1987
1988
1989/** Print out information about address space.
1990 *
1991 * @param as Address space.
1992 */
1993void as_print(as_t *as)
1994{
1995 ipl_t ipl;
1996
1997 ipl = interrupts_disable();
1998 mutex_lock(&as->lock);
1999
2000 /* print out info about address space areas */
2001 link_t *cur;
2002 for (cur = as->as_area_btree.leaf_head.next;
2003 cur != &as->as_area_btree.leaf_head; cur = cur->next) {
2004 btree_node_t *node;
2005
2006 node = list_get_instance(cur, btree_node_t, leaf_link);
2007
2008 unsigned int i;
2009 for (i = 0; i < node->keys; i++) {
2010 as_area_t *area = node->value[i];
2011
2012 mutex_lock(&area->lock);
2013 printf("as_area: %p, base=%p, pages=%" PRIs
2014 " (%p - %p)\n", area, area->base, area->pages,
2015 area->base, area->base + FRAMES2SIZE(area->pages));
2016 mutex_unlock(&area->lock);
2017 }
2018 }
2019
2020 mutex_unlock(&as->lock);
2021 interrupts_restore(ipl);
2022}
2023
2024/** @}
2025 */
Note: See TracBrowser for help on using the repository browser.