source: mainline/kernel/generic/src/ddi/irq.c@ b3f8fb7

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since b3f8fb7 was b3f8fb7, checked in by Martin Decky <martin@…>, 18 years ago

huge type system cleanup
remove cyclical type dependencies across multiple header files
many minor coding style fixes

  • Property mode set to 100644
File size: 10.5 KB
Line 
1/*
2 * Copyright (c) 2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericddi
30 * @{
31 */
32/**
33 * @file
34 * @brief IRQ dispatcher.
35 *
36 * This file provides means of connecting IRQs with particular
37 * devices and logic for dispatching interrupts to IRQ handlers
38 * defined by those devices.
39 *
40 * This code is designed to support:
41 * - multiple devices sharing single IRQ
42 * - multiple IRQs per signle device
43 *
44 *
45 * Note about architectures.
46 *
47 * Some architectures has the term IRQ well defined. Examples
48 * of such architectures include amd64, ia32 and mips32. Some
49 * other architectures, such as sparc64, don't use the term
50 * at all. In those cases, we boldly step forward and define what
51 * an IRQ is.
52 *
53 * The implementation is generic enough and still allows the
54 * architectures to use the hardware layout effectively.
55 * For instance, on amd64 and ia32, where there is only 16
56 * IRQs, the irq_hash_table can be optimized to a one-dimensional
57 * array. Next, when it is known that the IRQ numbers (aka INR's)
58 * are unique, the claim functions can always return IRQ_ACCEPT.
59 *
60 *
61 * Note about the irq_hash_table.
62 *
63 * The hash table is configured to use two keys: inr and devno.
64 * However, the hash index is computed only from inr. Moreover,
65 * if devno is -1, the match is based on the return value of
66 * the claim() function instead of on devno.
67 */
68
69#include <ddi/irq.h>
70#include <adt/hash_table.h>
71#include <arch/types.h>
72#include <synch/spinlock.h>
73#include <arch.h>
74
75#define KEY_INR 0
76#define KEY_DEVNO 1
77
78/**
79 * Spinlock protecting the hash table.
80 * This lock must be taken only when interrupts are disabled.
81 */
82SPINLOCK_INITIALIZE(irq_hash_table_lock);
83static hash_table_t irq_hash_table;
84
85/**
86 * Hash table operations for cases when we know that
87 * there will be collisions between different keys.
88 */
89static index_t irq_ht_hash(unative_t *key);
90static bool irq_ht_compare(unative_t *key, count_t keys, link_t *item);
91
92static hash_table_operations_t irq_ht_ops = {
93 .hash = irq_ht_hash,
94 .compare = irq_ht_compare,
95 .remove_callback = NULL /* not used */
96};
97
98/**
99 * Hash table operations for cases when we know that
100 * there will be no collisions between different keys.
101 * However, there might be still collisions among
102 * elements with single key (sharing of one IRQ).
103 */
104static index_t irq_lin_hash(unative_t *key);
105static bool irq_lin_compare(unative_t *key, count_t keys, link_t *item);
106
107static hash_table_operations_t irq_lin_ops = {
108 .hash = irq_lin_hash,
109 .compare = irq_lin_compare,
110 .remove_callback = NULL /* not used */
111};
112
113/** Initialize IRQ subsystem.
114 *
115 * @param inrs Numbers of unique IRQ numbers or INRs.
116 * @param chains Number of chains in the hash table.
117 */
118void irq_init(count_t inrs, count_t chains)
119{
120 /*
121 * Be smart about the choice of the hash table operations.
122 * In cases in which inrs equals the requested number of
123 * chains (i.e. where there is no collision between
124 * different keys), we can use optimized set of operations.
125 */
126 if (inrs == chains)
127 hash_table_create(&irq_hash_table, chains, 2, &irq_lin_ops);
128 else
129 hash_table_create(&irq_hash_table, chains, 2, &irq_ht_ops);
130}
131
132/** Initialize one IRQ structure.
133 *
134 * @param irq Pointer to the IRQ structure to be initialized.
135 *
136 */
137void irq_initialize(irq_t *irq)
138{
139 link_initialize(&irq->link);
140 spinlock_initialize(&irq->lock, "irq.lock");
141 irq->inr = -1;
142 irq->devno = -1;
143 irq->trigger = 0;
144 irq->claim = NULL;
145 irq->handler = NULL;
146 irq->arg = NULL;
147 irq->notif_cfg.notify = false;
148 irq->notif_cfg.answerbox = NULL;
149 irq->notif_cfg.code = NULL;
150 irq->notif_cfg.method = 0;
151 irq->notif_cfg.counter = 0;
152 link_initialize(&irq->notif_cfg.link);
153}
154
155/** Register IRQ for device.
156 *
157 * The irq structure must be filled with information
158 * about the interrupt source and with the claim()
159 * function pointer and irq_handler() function pointer.
160 *
161 * @param irq IRQ structure belonging to a device.
162 */
163void irq_register(irq_t *irq)
164{
165 ipl_t ipl;
166 unative_t key[] = {
167 (unative_t) irq->inr,
168 (unative_t) irq->devno
169 };
170
171 ipl = interrupts_disable();
172 spinlock_lock(&irq_hash_table_lock);
173 hash_table_insert(&irq_hash_table, key, &irq->link);
174 spinlock_unlock(&irq_hash_table_lock);
175 interrupts_restore(ipl);
176}
177
178/** Dispatch the IRQ.
179 *
180 * We assume this function is only called from interrupt
181 * context (i.e. that interrupts are disabled prior to
182 * this call).
183 *
184 * This function attempts to lookup a fitting IRQ
185 * structure. In case of success, return with interrupts
186 * disabled and holding the respective structure.
187 *
188 * @param inr Interrupt number (aka inr or irq).
189 *
190 * @return IRQ structure of the respective device or NULL.
191 */
192irq_t *irq_dispatch_and_lock(inr_t inr)
193{
194 link_t *lnk;
195 unative_t key[] = {
196 (unative_t) inr,
197 (unative_t) -1 /* search will use claim() instead of devno */
198 };
199
200 spinlock_lock(&irq_hash_table_lock);
201
202 lnk = hash_table_find(&irq_hash_table, key);
203 if (lnk) {
204 irq_t *irq;
205
206 irq = hash_table_get_instance(lnk, irq_t, link);
207
208 spinlock_unlock(&irq_hash_table_lock);
209 return irq;
210 }
211
212 spinlock_unlock(&irq_hash_table_lock);
213
214 return NULL;
215}
216
217/** Find the IRQ structure corresponding to inr and devno.
218 *
219 * This functions attempts to lookup the IRQ structure
220 * corresponding to its arguments. On success, this
221 * function returns with interrups disabled, holding
222 * the lock of the respective IRQ structure.
223 *
224 * This function assumes interrupts are already disabled.
225 *
226 * @param inr INR being looked up.
227 * @param devno Devno being looked up.
228 *
229 * @return Locked IRQ structure on success or NULL on failure.
230 */
231irq_t *irq_find_and_lock(inr_t inr, devno_t devno)
232{
233 link_t *lnk;
234 unative_t keys[] = {
235 (unative_t) inr,
236 (unative_t) devno
237 };
238
239 spinlock_lock(&irq_hash_table_lock);
240
241 lnk = hash_table_find(&irq_hash_table, keys);
242 if (lnk) {
243 irq_t *irq;
244
245 irq = hash_table_get_instance(lnk, irq_t, link);
246
247 spinlock_unlock(&irq_hash_table_lock);
248 return irq;
249 }
250
251 spinlock_unlock(&irq_hash_table_lock);
252
253 return NULL;
254}
255
256/** Compute hash index for the key.
257 *
258 * This function computes hash index into
259 * the IRQ hash table for which there
260 * can be collisions between different
261 * INRs.
262 *
263 * The devno is not used to compute the hash.
264 *
265 * @param key The first of the keys is inr and the second is devno or -1.
266 *
267 * @return Index into the hash table.
268 */
269index_t irq_ht_hash(unative_t key[])
270{
271 inr_t inr = (inr_t) key[KEY_INR];
272 return inr % irq_hash_table.entries;
273}
274
275/** Compare hash table element with a key.
276 *
277 * There are two things to note about this function.
278 * First, it is used for the more complex architecture setup
279 * in which there are way too many interrupt numbers (i.e. inr's)
280 * to arrange the hash table so that collisions occur only
281 * among same inrs of different devnos. So the explicit check
282 * for inr match must be done.
283 * Second, if devno is -1, the second key (i.e. devno) is not
284 * used for the match and the result of the claim() function
285 * is used instead.
286 *
287 * This function assumes interrupts are already disabled.
288 *
289 * @param key Keys (i.e. inr and devno).
290 * @param keys This is 2.
291 * @param item The item to compare the key with.
292 *
293 * @return True on match or false otherwise.
294 */
295bool irq_ht_compare(unative_t key[], count_t keys, link_t *item)
296{
297 irq_t *irq = hash_table_get_instance(item, irq_t, link);
298 inr_t inr = (inr_t) key[KEY_INR];
299 devno_t devno = (devno_t) key[KEY_DEVNO];
300
301 bool rv;
302
303 spinlock_lock(&irq->lock);
304 if (devno == -1) {
305 /* Invoked by irq_dispatch(). */
306 rv = ((irq->inr == inr) && (irq->claim() == IRQ_ACCEPT));
307 } else {
308 /* Invoked by irq_find(). */
309 rv = ((irq->inr == inr) && (irq->devno == devno));
310 }
311
312 /* unlock only on non-match */
313 if (!rv)
314 spinlock_unlock(&irq->lock);
315
316 return rv;
317}
318
319/** Compute hash index for the key.
320 *
321 * This function computes hash index into
322 * the IRQ hash table for which there
323 * are no collisions between different
324 * INRs.
325 *
326 * @param key The first of the keys is inr and the second is devno or -1.
327 *
328 * @return Index into the hash table.
329 */
330index_t irq_lin_hash(unative_t key[])
331{
332 inr_t inr = (inr_t) key[KEY_INR];
333 return inr;
334}
335
336/** Compare hash table element with a key.
337 *
338 * There are two things to note about this function.
339 * First, it is used for the less complex architecture setup
340 * in which there are not too many interrupt numbers (i.e. inr's)
341 * to arrange the hash table so that collisions occur only
342 * among same inrs of different devnos. So the explicit check
343 * for inr match is not done.
344 * Second, if devno is -1, the second key (i.e. devno) is not
345 * used for the match and the result of the claim() function
346 * is used instead.
347 *
348 * This function assumes interrupts are already disabled.
349 *
350 * @param key Keys (i.e. inr and devno).
351 * @param keys This is 2.
352 * @param item The item to compare the key with.
353 *
354 * @return True on match or false otherwise.
355 */
356bool irq_lin_compare(unative_t key[], count_t keys, link_t *item)
357{
358 irq_t *irq = list_get_instance(item, irq_t, link);
359 devno_t devno = (devno_t) key[KEY_DEVNO];
360 bool rv;
361
362 spinlock_lock(&irq->lock);
363 if (devno == -1) {
364 /* Invoked by irq_dispatch() */
365 rv = (irq->claim() == IRQ_ACCEPT);
366 } else {
367 /* Invoked by irq_find() */
368 rv = (irq->devno == devno);
369 }
370
371 /* unlock only on non-match */
372 if (!rv)
373 spinlock_unlock(&irq->lock);
374
375 return rv;
376}
377
378/** @}
379 */
Note: See TracBrowser for help on using the repository browser.