source: mainline/kernel/generic/src/cap/cap.c@ 9fc776c7

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 9fc776c7 was 9fc776c7, checked in by Jakub Jermar <jakub@…>, 7 years ago

Remove support for capability reclaiming

  • Property mode set to 100644
File size: 12.4 KB
Line 
1/*
2 * Copyright (c) 2017 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup generic
30 * @{
31 */
32/** @file
33 */
34
35/*
36 * HelenOS capabilities are task-local names for references to kernel objects.
37 * Kernel objects are reference-counted wrappers for a select group of objects
38 * allocated in and by the kernel that can be made accessible to userspace in a
39 * controlled way via integer handles.
40 *
41 * A kernel object (kobject_t) encapsulates one of the following raw objects:
42 *
43 * - IPC call
44 * - IPC phone
45 * - IRQ object
46 *
47 * A capability (cap_t) is either free, allocated or published. Free
48 * capabilities can be allocated, which reserves the capability handle in the
49 * task-local capability space. Allocated capabilities can be published, which
50 * associates them with an existing kernel object. Userspace can only access
51 * published capabilities.
52 *
53 * A published capability may get unpublished, which disassociates it from the
54 * underlying kernel object and puts it back into the allocated state. An
55 * allocated capability can be freed to become available for future use.
56 *
57 * There is a 1:1 correspondence between a kernel object (kobject_t) and the
58 * actual raw object it encapsulates. A kernel object (kobject_t) may have
59 * multiple references, either implicit from one or more capabilities (cap_t),
60 * even from capabilities in different tasks, or explicit as a result of
61 * creating a new reference from a capability handle using kobject_get(), or
62 * creating a new reference from an already existing reference by
63 * kobject_add_ref() or as a result of unpublishing a capability and
64 * disassociating it from its kobject_t using cap_unpublish().
65 *
66 * As kernel objects are reference-counted, they get automatically destroyed
67 * when their last reference is dropped in kobject_put(). The idea is that
68 * whenever a kernel object is inserted into some sort of a container (e.g. a
69 * list or hash table), its reference count should be incremented via
70 * kobject_get() or kobject_add_ref(). When the kernel object is removed from
71 * the container, the reference count should go down via a call to
72 * kobject_put().
73 */
74
75#include <cap/cap.h>
76#include <abi/cap.h>
77#include <proc/task.h>
78#include <synch/mutex.h>
79#include <abi/errno.h>
80#include <mm/slab.h>
81#include <adt/list.h>
82
83#include <stdint.h>
84
85#define CAPS_START (CAP_NIL + 1)
86#define CAPS_SIZE (INT_MAX - CAPS_START)
87#define CAPS_LAST (CAPS_SIZE - 1)
88
89static slab_cache_t *cap_cache;
90
91static size_t caps_hash(const ht_link_t *item)
92{
93 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
94 return hash_mix(cap->handle);
95}
96
97static size_t caps_key_hash(void *key)
98{
99 cap_handle_t *handle = (cap_handle_t *) key;
100 return hash_mix(*handle);
101}
102
103static bool caps_key_equal(void *key, const ht_link_t *item)
104{
105 cap_handle_t *handle = (cap_handle_t *) key;
106 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
107 return *handle == cap->handle;
108}
109
110static hash_table_ops_t caps_ops = {
111 .hash = caps_hash,
112 .key_hash = caps_key_hash,
113 .key_equal = caps_key_equal
114};
115
116void caps_init(void)
117{
118 cap_cache = slab_cache_create("cap_t", sizeof(cap_t), 0, NULL,
119 NULL, 0);
120}
121
122/** Allocate the capability info structure
123 *
124 * @param task Task for which to allocate the info structure.
125 */
126errno_t caps_task_alloc(task_t *task)
127{
128 task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t),
129 FRAME_ATOMIC);
130 if (!task->cap_info)
131 return ENOMEM;
132 task->cap_info->handles = ra_arena_create();
133 if (!task->cap_info->handles)
134 goto error_handles;
135 if (!ra_span_add(task->cap_info->handles, CAPS_START, CAPS_SIZE))
136 goto error_span;
137 if (!hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops))
138 goto error_span;
139 return EOK;
140
141error_span:
142 ra_arena_destroy(task->cap_info->handles);
143error_handles:
144 free(task->cap_info);
145 return ENOMEM;
146}
147
148/** Initialize the capability info structure
149 *
150 * @param task Task for which to initialize the info structure.
151 */
152void caps_task_init(task_t *task)
153{
154 mutex_initialize(&task->cap_info->lock, MUTEX_RECURSIVE);
155
156 for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++)
157 list_initialize(&task->cap_info->type_list[t]);
158}
159
160/** Deallocate the capability info structure
161 *
162 * @param task Task from which to deallocate the info structure.
163 */
164void caps_task_free(task_t *task)
165{
166 hash_table_destroy(&task->cap_info->caps);
167 ra_arena_destroy(task->cap_info->handles);
168 free(task->cap_info);
169}
170
171/** Invoke callback function on task's capabilites of given type
172 *
173 * @param task Task where the invocation should take place.
174 * @param type Kernel object type of the task's capabilities that will be
175 * subject to the callback invocation.
176 * @param cb Callback function.
177 * @param arg Argument for the callback function.
178 *
179 * @return True if the callback was called on all matching capabilities.
180 * @return False if the callback was applied only partially.
181 */
182bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type,
183 bool (*cb)(cap_t *, void *), void *arg)
184{
185 bool done = true;
186
187 mutex_lock(&task->cap_info->lock);
188 list_foreach_safe(task->cap_info->type_list[type], cur, next) {
189 cap_t *cap = list_get_instance(cur, cap_t, type_link);
190 done = cb(cap, arg);
191 if (!done)
192 break;
193 }
194 mutex_unlock(&task->cap_info->lock);
195
196 return done;
197}
198
199/** Initialize capability and associate it with its handle
200 *
201 * @param cap Address of the capability.
202 * @param task Backling to the owning task.
203 * @param handle Capability handle.
204 */
205static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle)
206{
207 cap->state = CAP_STATE_FREE;
208 cap->task = task;
209 cap->handle = handle;
210 link_initialize(&cap->type_link);
211}
212
213/** Get capability using capability handle
214 *
215 * @param task Task whose capability to get.
216 * @param handle Capability handle of the desired capability.
217 * @param state State in which the capability must be.
218 *
219 * @return Address of the desired capability if it exists and its state matches.
220 * @return NULL if no such capability exists or it's in a different state.
221 */
222static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state)
223{
224 assert(mutex_locked(&task->cap_info->lock));
225
226 if ((handle < CAPS_START) || (handle > CAPS_LAST))
227 return NULL;
228 ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle);
229 if (!link)
230 return NULL;
231 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
232 if (cap->state != state)
233 return NULL;
234 return cap;
235}
236
237/** Allocate new capability
238 *
239 * @param task Task for which to allocate the new capability.
240 *
241 * @param[out] handle New capability handle on success.
242 *
243 * @return An error code in case of error.
244 */
245errno_t cap_alloc(task_t *task, cap_handle_t *handle)
246{
247 mutex_lock(&task->cap_info->lock);
248 cap_t *cap = slab_alloc(cap_cache, FRAME_ATOMIC);
249 if (!cap) {
250 mutex_unlock(&task->cap_info->lock);
251 return ENOMEM;
252 }
253 uintptr_t hbase;
254 if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) {
255 slab_free(cap_cache, cap);
256 mutex_unlock(&task->cap_info->lock);
257 return ENOMEM;
258 }
259 cap_initialize(cap, task, (cap_handle_t) hbase);
260 hash_table_insert(&task->cap_info->caps, &cap->caps_link);
261
262 cap->state = CAP_STATE_ALLOCATED;
263 *handle = cap->handle;
264 mutex_unlock(&task->cap_info->lock);
265
266 return EOK;
267}
268
269/** Publish allocated capability
270 *
271 * The kernel object is moved into the capability. In other words, its reference
272 * is handed over to the capability. Once published, userspace can access and
273 * manipulate the capability.
274 *
275 * @param task Task in which to publish the capability.
276 * @param handle Capability handle.
277 * @param kobj Kernel object.
278 */
279void
280cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj)
281{
282 mutex_lock(&task->cap_info->lock);
283 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
284 assert(cap);
285 cap->state = CAP_STATE_PUBLISHED;
286 /* Hand over kobj's reference to cap */
287 cap->kobject = kobj;
288 list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]);
289 mutex_unlock(&task->cap_info->lock);
290}
291
292/** Unpublish published capability
293 *
294 * The kernel object is moved out of the capability. In other words, the
295 * capability's reference to the objects is handed over to the kernel object
296 * pointer returned by this function. Once unpublished, the capability does not
297 * refer to any kernel object anymore.
298 *
299 * @param task Task in which to unpublish the capability.
300 * @param handle Capability handle.
301 * @param type Kernel object type of the object associated with the
302 * capability.
303 */
304kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type)
305{
306 kobject_t *kobj = NULL;
307
308 mutex_lock(&task->cap_info->lock);
309 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
310 if (cap) {
311 if (cap->kobject->type == type) {
312 /* Hand over cap's reference to kobj */
313 kobj = cap->kobject;
314 cap->kobject = NULL;
315 list_remove(&cap->type_link);
316 cap->state = CAP_STATE_ALLOCATED;
317 }
318 }
319 mutex_unlock(&task->cap_info->lock);
320
321 return kobj;
322}
323
324/** Free allocated capability
325 *
326 * @param task Task in which to free the capability.
327 * @param handle Capability handle.
328 */
329void cap_free(task_t *task, cap_handle_t handle)
330{
331 assert(handle >= CAPS_START);
332 assert(handle <= CAPS_LAST);
333
334 mutex_lock(&task->cap_info->lock);
335 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
336
337 assert(cap);
338
339 hash_table_remove_item(&task->cap_info->caps, &cap->caps_link);
340 ra_free(task->cap_info->handles, handle, 1);
341 slab_free(cap_cache, cap);
342 mutex_unlock(&task->cap_info->lock);
343}
344
345/** Initialize kernel object
346 *
347 * @param kobj Kernel object to initialize.
348 * @param type Type of the kernel object.
349 * @param raw Raw pointer to the encapsulated object.
350 * @param ops Pointer to kernel object operations for the respective type.
351 */
352void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw,
353 kobject_ops_t *ops)
354{
355 atomic_set(&kobj->refcnt, 1);
356 kobj->type = type;
357 kobj->raw = raw;
358 kobj->ops = ops;
359}
360
361/** Get new reference to kernel object from capability
362 *
363 * @param task Task from which to get the reference.
364 * @param handle Capability handle.
365 * @param type Kernel object type of the object associated with the
366 * capability referenced by handle.
367 *
368 * @return Kernel object with incremented reference count on success.
369 * @return NULL if there is no matching capability or kernel object.
370 */
371kobject_t *
372kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type)
373{
374 kobject_t *kobj = NULL;
375
376 mutex_lock(&task->cap_info->lock);
377 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
378 if (cap) {
379 if (cap->kobject->type == type) {
380 kobj = cap->kobject;
381 atomic_inc(&kobj->refcnt);
382 }
383 }
384 mutex_unlock(&task->cap_info->lock);
385
386 return kobj;
387}
388
389/** Record new reference
390 *
391 * @param kobj Kernel object from which the new reference is created.
392 */
393void kobject_add_ref(kobject_t *kobj)
394{
395 atomic_inc(&kobj->refcnt);
396}
397
398/** Drop reference to kernel object
399 *
400 * The encapsulated object and the kobject_t wrapper are both destroyed when the
401 * last reference is dropped.
402 *
403 * @param kobj Kernel object whose reference to drop.
404 */
405void kobject_put(kobject_t *kobj)
406{
407 if (atomic_postdec(&kobj->refcnt) == 1) {
408 kobj->ops->destroy(kobj->raw);
409 free(kobj);
410 }
411}
412
413/** @}
414 */
Note: See TracBrowser for help on using the repository browser.