1 | /*
|
---|
2 | * Copyright (c) 2017 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup generic
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 | /** @file
|
---|
33 | */
|
---|
34 |
|
---|
35 | /*
|
---|
36 | * HelenOS capabilities are task-local names for references to kernel objects.
|
---|
37 | * Kernel objects are reference-counted wrappers for a select group of objects
|
---|
38 | * allocated in and by the kernel that can be made accessible to userspace in a
|
---|
39 | * controlled way via integer handles.
|
---|
40 | *
|
---|
41 | * A kernel object (kobject_t) encapsulates one of the following raw objects:
|
---|
42 | *
|
---|
43 | * - IPC call
|
---|
44 | * - IPC phone
|
---|
45 | * - IRQ object
|
---|
46 | *
|
---|
47 | * A capability (cap_t) is either free, allocated or published. Free
|
---|
48 | * capabilities can be allocated, which reserves the capability handle in the
|
---|
49 | * task-local capability space. Allocated capabilities can be published, which
|
---|
50 | * associates them with an existing kernel object. Userspace can only access
|
---|
51 | * published capabilities.
|
---|
52 | *
|
---|
53 | * A published capability may get unpublished, which disassociates it from the
|
---|
54 | * underlying kernel object and puts it back into the allocated state. An
|
---|
55 | * allocated capability can be freed to become available for future use.
|
---|
56 | *
|
---|
57 | * There is a 1:1 correspondence between a kernel object (kobject_t) and the
|
---|
58 | * actual raw object it encapsulates. A kernel object (kobject_t) may have
|
---|
59 | * multiple references, either implicit from one or more capabilities (cap_t),
|
---|
60 | * even from capabilities in different tasks, or explicit as a result of
|
---|
61 | * creating a new reference from a capability handle using kobject_get(), or
|
---|
62 | * creating a new reference from an already existing reference by
|
---|
63 | * kobject_add_ref() or as a result of unpublishing a capability and
|
---|
64 | * disassociating it from its kobject_t using cap_unpublish().
|
---|
65 | *
|
---|
66 | * As kernel objects are reference-counted, they get automatically destroyed
|
---|
67 | * when their last reference is dropped in kobject_put(). The idea is that
|
---|
68 | * whenever a kernel object is inserted into some sort of a container (e.g. a
|
---|
69 | * list or hash table), its reference count should be incremented via
|
---|
70 | * kobject_get() or kobject_add_ref(). When the kernel object is removed from
|
---|
71 | * the container, the reference count should go down via a call to
|
---|
72 | * kobject_put().
|
---|
73 | */
|
---|
74 |
|
---|
75 | #include <cap/cap.h>
|
---|
76 | #include <abi/cap.h>
|
---|
77 | #include <proc/task.h>
|
---|
78 | #include <synch/mutex.h>
|
---|
79 | #include <abi/errno.h>
|
---|
80 | #include <mm/slab.h>
|
---|
81 | #include <adt/list.h>
|
---|
82 |
|
---|
83 | #include <limits.h>
|
---|
84 | #include <stdint.h>
|
---|
85 |
|
---|
86 | #define CAPS_START (CAP_NIL + 1)
|
---|
87 | #define CAPS_SIZE (INT_MAX - CAPS_START)
|
---|
88 | #define CAPS_LAST (CAPS_SIZE - 1)
|
---|
89 |
|
---|
90 | static slab_cache_t *cap_cache;
|
---|
91 |
|
---|
92 | static size_t caps_hash(const ht_link_t *item)
|
---|
93 | {
|
---|
94 | cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
|
---|
95 | return hash_mix(CAP_HANDLE_RAW(cap->handle));
|
---|
96 | }
|
---|
97 |
|
---|
98 | static size_t caps_key_hash(void *key)
|
---|
99 | {
|
---|
100 | cap_handle_t *handle = (cap_handle_t *) key;
|
---|
101 | return hash_mix(CAP_HANDLE_RAW(*handle));
|
---|
102 | }
|
---|
103 |
|
---|
104 | static bool caps_key_equal(void *key, const ht_link_t *item)
|
---|
105 | {
|
---|
106 | cap_handle_t *handle = (cap_handle_t *) key;
|
---|
107 | cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
|
---|
108 | return *handle == cap->handle;
|
---|
109 | }
|
---|
110 |
|
---|
111 | static hash_table_ops_t caps_ops = {
|
---|
112 | .hash = caps_hash,
|
---|
113 | .key_hash = caps_key_hash,
|
---|
114 | .key_equal = caps_key_equal
|
---|
115 | };
|
---|
116 |
|
---|
117 | void caps_init(void)
|
---|
118 | {
|
---|
119 | cap_cache = slab_cache_create("cap_t", sizeof(cap_t), 0, NULL,
|
---|
120 | NULL, 0);
|
---|
121 | }
|
---|
122 |
|
---|
123 | /** Allocate the capability info structure
|
---|
124 | *
|
---|
125 | * @param task Task for which to allocate the info structure.
|
---|
126 | */
|
---|
127 | errno_t caps_task_alloc(task_t *task)
|
---|
128 | {
|
---|
129 | task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t));
|
---|
130 | if (!task->cap_info)
|
---|
131 | return ENOMEM;
|
---|
132 | task->cap_info->handles = ra_arena_create();
|
---|
133 | if (!task->cap_info->handles)
|
---|
134 | goto error_handles;
|
---|
135 | if (!ra_span_add(task->cap_info->handles, CAPS_START, CAPS_SIZE))
|
---|
136 | goto error_span;
|
---|
137 | if (!hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops))
|
---|
138 | goto error_span;
|
---|
139 | return EOK;
|
---|
140 |
|
---|
141 | error_span:
|
---|
142 | ra_arena_destroy(task->cap_info->handles);
|
---|
143 | error_handles:
|
---|
144 | free(task->cap_info);
|
---|
145 | return ENOMEM;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** Initialize the capability info structure
|
---|
149 | *
|
---|
150 | * @param task Task for which to initialize the info structure.
|
---|
151 | */
|
---|
152 | void caps_task_init(task_t *task)
|
---|
153 | {
|
---|
154 | mutex_initialize(&task->cap_info->lock, MUTEX_RECURSIVE);
|
---|
155 |
|
---|
156 | for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++)
|
---|
157 | list_initialize(&task->cap_info->type_list[t]);
|
---|
158 | }
|
---|
159 |
|
---|
160 | /** Deallocate the capability info structure
|
---|
161 | *
|
---|
162 | * @param task Task from which to deallocate the info structure.
|
---|
163 | */
|
---|
164 | void caps_task_free(task_t *task)
|
---|
165 | {
|
---|
166 | hash_table_destroy(&task->cap_info->caps);
|
---|
167 | ra_arena_destroy(task->cap_info->handles);
|
---|
168 | free(task->cap_info);
|
---|
169 | }
|
---|
170 |
|
---|
171 | /** Invoke callback function on task's capabilites of given type
|
---|
172 | *
|
---|
173 | * @param task Task where the invocation should take place.
|
---|
174 | * @param type Kernel object type of the task's capabilities that will be
|
---|
175 | * subject to the callback invocation.
|
---|
176 | * @param cb Callback function.
|
---|
177 | * @param arg Argument for the callback function.
|
---|
178 | *
|
---|
179 | * @return True if the callback was called on all matching capabilities.
|
---|
180 | * @return False if the callback was applied only partially.
|
---|
181 | */
|
---|
182 | bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type,
|
---|
183 | bool (*cb)(cap_t *, void *), void *arg)
|
---|
184 | {
|
---|
185 | bool done = true;
|
---|
186 |
|
---|
187 | mutex_lock(&task->cap_info->lock);
|
---|
188 | list_foreach_safe(task->cap_info->type_list[type], cur, next) {
|
---|
189 | cap_t *cap = list_get_instance(cur, cap_t, type_link);
|
---|
190 | done = cb(cap, arg);
|
---|
191 | if (!done)
|
---|
192 | break;
|
---|
193 | }
|
---|
194 | mutex_unlock(&task->cap_info->lock);
|
---|
195 |
|
---|
196 | return done;
|
---|
197 | }
|
---|
198 |
|
---|
199 | /** Initialize capability and associate it with its handle
|
---|
200 | *
|
---|
201 | * @param cap Address of the capability.
|
---|
202 | * @param task Backling to the owning task.
|
---|
203 | * @param handle Capability handle.
|
---|
204 | */
|
---|
205 | static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle)
|
---|
206 | {
|
---|
207 | cap->state = CAP_STATE_FREE;
|
---|
208 | cap->task = task;
|
---|
209 | cap->handle = handle;
|
---|
210 | link_initialize(&cap->type_link);
|
---|
211 | }
|
---|
212 |
|
---|
213 | /** Get capability using capability handle
|
---|
214 | *
|
---|
215 | * @param task Task whose capability to get.
|
---|
216 | * @param handle Capability handle of the desired capability.
|
---|
217 | * @param state State in which the capability must be.
|
---|
218 | *
|
---|
219 | * @return Address of the desired capability if it exists and its state matches.
|
---|
220 | * @return NULL if no such capability exists or it's in a different state.
|
---|
221 | */
|
---|
222 | static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state)
|
---|
223 | {
|
---|
224 | assert(mutex_locked(&task->cap_info->lock));
|
---|
225 |
|
---|
226 | if ((CAP_HANDLE_RAW(handle) < CAPS_START) ||
|
---|
227 | (CAP_HANDLE_RAW(handle) > CAPS_LAST))
|
---|
228 | return NULL;
|
---|
229 | ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle);
|
---|
230 | if (!link)
|
---|
231 | return NULL;
|
---|
232 | cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
|
---|
233 | if (cap->state != state)
|
---|
234 | return NULL;
|
---|
235 | return cap;
|
---|
236 | }
|
---|
237 |
|
---|
238 | /** Allocate new capability
|
---|
239 | *
|
---|
240 | * @param task Task for which to allocate the new capability.
|
---|
241 | *
|
---|
242 | * @param[out] handle New capability handle on success.
|
---|
243 | *
|
---|
244 | * @return An error code in case of error.
|
---|
245 | */
|
---|
246 | errno_t cap_alloc(task_t *task, cap_handle_t *handle)
|
---|
247 | {
|
---|
248 | mutex_lock(&task->cap_info->lock);
|
---|
249 | cap_t *cap = slab_alloc(cap_cache, FRAME_ATOMIC);
|
---|
250 | if (!cap) {
|
---|
251 | mutex_unlock(&task->cap_info->lock);
|
---|
252 | return ENOMEM;
|
---|
253 | }
|
---|
254 | uintptr_t hbase;
|
---|
255 | if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) {
|
---|
256 | slab_free(cap_cache, cap);
|
---|
257 | mutex_unlock(&task->cap_info->lock);
|
---|
258 | return ENOMEM;
|
---|
259 | }
|
---|
260 | cap_initialize(cap, task, (cap_handle_t) hbase);
|
---|
261 | hash_table_insert(&task->cap_info->caps, &cap->caps_link);
|
---|
262 |
|
---|
263 | cap->state = CAP_STATE_ALLOCATED;
|
---|
264 | *handle = cap->handle;
|
---|
265 | mutex_unlock(&task->cap_info->lock);
|
---|
266 |
|
---|
267 | return EOK;
|
---|
268 | }
|
---|
269 |
|
---|
270 | /** Publish allocated capability
|
---|
271 | *
|
---|
272 | * The kernel object is moved into the capability. In other words, its reference
|
---|
273 | * is handed over to the capability. Once published, userspace can access and
|
---|
274 | * manipulate the capability.
|
---|
275 | *
|
---|
276 | * @param task Task in which to publish the capability.
|
---|
277 | * @param handle Capability handle.
|
---|
278 | * @param kobj Kernel object.
|
---|
279 | */
|
---|
280 | void
|
---|
281 | cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj)
|
---|
282 | {
|
---|
283 | mutex_lock(&task->cap_info->lock);
|
---|
284 | cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
|
---|
285 | assert(cap);
|
---|
286 | cap->state = CAP_STATE_PUBLISHED;
|
---|
287 | /* Hand over kobj's reference to cap */
|
---|
288 | cap->kobject = kobj;
|
---|
289 | list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]);
|
---|
290 | mutex_unlock(&task->cap_info->lock);
|
---|
291 | }
|
---|
292 |
|
---|
293 | /** Unpublish published capability
|
---|
294 | *
|
---|
295 | * The kernel object is moved out of the capability. In other words, the
|
---|
296 | * capability's reference to the objects is handed over to the kernel object
|
---|
297 | * pointer returned by this function. Once unpublished, the capability does not
|
---|
298 | * refer to any kernel object anymore.
|
---|
299 | *
|
---|
300 | * @param task Task in which to unpublish the capability.
|
---|
301 | * @param handle Capability handle.
|
---|
302 | * @param type Kernel object type of the object associated with the
|
---|
303 | * capability.
|
---|
304 | */
|
---|
305 | kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type)
|
---|
306 | {
|
---|
307 | kobject_t *kobj = NULL;
|
---|
308 |
|
---|
309 | mutex_lock(&task->cap_info->lock);
|
---|
310 | cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
|
---|
311 | if (cap) {
|
---|
312 | if (cap->kobject->type == type) {
|
---|
313 | /* Hand over cap's reference to kobj */
|
---|
314 | kobj = cap->kobject;
|
---|
315 | cap->kobject = NULL;
|
---|
316 | list_remove(&cap->type_link);
|
---|
317 | cap->state = CAP_STATE_ALLOCATED;
|
---|
318 | }
|
---|
319 | }
|
---|
320 | mutex_unlock(&task->cap_info->lock);
|
---|
321 |
|
---|
322 | return kobj;
|
---|
323 | }
|
---|
324 |
|
---|
325 | /** Free allocated capability
|
---|
326 | *
|
---|
327 | * @param task Task in which to free the capability.
|
---|
328 | * @param handle Capability handle.
|
---|
329 | */
|
---|
330 | void cap_free(task_t *task, cap_handle_t handle)
|
---|
331 | {
|
---|
332 | assert(CAP_HANDLE_RAW(handle) >= CAPS_START);
|
---|
333 | assert(CAP_HANDLE_RAW(handle) <= CAPS_LAST);
|
---|
334 |
|
---|
335 | mutex_lock(&task->cap_info->lock);
|
---|
336 | cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
|
---|
337 |
|
---|
338 | assert(cap);
|
---|
339 |
|
---|
340 | hash_table_remove_item(&task->cap_info->caps, &cap->caps_link);
|
---|
341 | ra_free(task->cap_info->handles, CAP_HANDLE_RAW(handle), 1);
|
---|
342 | slab_free(cap_cache, cap);
|
---|
343 | mutex_unlock(&task->cap_info->lock);
|
---|
344 | }
|
---|
345 |
|
---|
346 | /** Initialize kernel object
|
---|
347 | *
|
---|
348 | * @param kobj Kernel object to initialize.
|
---|
349 | * @param type Type of the kernel object.
|
---|
350 | * @param raw Raw pointer to the encapsulated object.
|
---|
351 | * @param ops Pointer to kernel object operations for the respective type.
|
---|
352 | */
|
---|
353 | void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw,
|
---|
354 | kobject_ops_t *ops)
|
---|
355 | {
|
---|
356 | atomic_store(&kobj->refcnt, 1);
|
---|
357 | kobj->type = type;
|
---|
358 | kobj->raw = raw;
|
---|
359 | kobj->ops = ops;
|
---|
360 | }
|
---|
361 |
|
---|
362 | /** Get new reference to kernel object from capability
|
---|
363 | *
|
---|
364 | * @param task Task from which to get the reference.
|
---|
365 | * @param handle Capability handle.
|
---|
366 | * @param type Kernel object type of the object associated with the
|
---|
367 | * capability referenced by handle.
|
---|
368 | *
|
---|
369 | * @return Kernel object with incremented reference count on success.
|
---|
370 | * @return NULL if there is no matching capability or kernel object.
|
---|
371 | */
|
---|
372 | kobject_t *
|
---|
373 | kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type)
|
---|
374 | {
|
---|
375 | kobject_t *kobj = NULL;
|
---|
376 |
|
---|
377 | mutex_lock(&task->cap_info->lock);
|
---|
378 | cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
|
---|
379 | if (cap) {
|
---|
380 | if (cap->kobject->type == type) {
|
---|
381 | kobj = cap->kobject;
|
---|
382 | atomic_inc(&kobj->refcnt);
|
---|
383 | }
|
---|
384 | }
|
---|
385 | mutex_unlock(&task->cap_info->lock);
|
---|
386 |
|
---|
387 | return kobj;
|
---|
388 | }
|
---|
389 |
|
---|
390 | /** Record new reference
|
---|
391 | *
|
---|
392 | * @param kobj Kernel object from which the new reference is created.
|
---|
393 | */
|
---|
394 | void kobject_add_ref(kobject_t *kobj)
|
---|
395 | {
|
---|
396 | atomic_inc(&kobj->refcnt);
|
---|
397 | }
|
---|
398 |
|
---|
399 | /** Drop reference to kernel object
|
---|
400 | *
|
---|
401 | * The encapsulated object and the kobject_t wrapper are both destroyed when the
|
---|
402 | * last reference is dropped.
|
---|
403 | *
|
---|
404 | * @param kobj Kernel object whose reference to drop.
|
---|
405 | */
|
---|
406 | void kobject_put(kobject_t *kobj)
|
---|
407 | {
|
---|
408 | if (atomic_postdec(&kobj->refcnt) == 1) {
|
---|
409 | kobj->ops->destroy(kobj->raw);
|
---|
410 | free(kobj);
|
---|
411 | }
|
---|
412 | }
|
---|
413 |
|
---|
414 | /** @}
|
---|
415 | */
|
---|