source: mainline/kernel/generic/src/cap/cap.c@ 208db5a

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 208db5a was d24e987, checked in by Jakub Jermar <jakub@…>, 7 years ago

Make access via capabilities revokable

This commit makes it possible to revoke access to a kernel object from
all capabilities across all tasks. In order to support this, each kernel
object is equipped with a list of capabilities that point to it.

  • Property mode set to 100644
File size: 14.3 KB
Line 
1/*
2 * Copyright (c) 2017 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup kernel_generic
30 * @{
31 */
32/** @file
33 */
34
35/*
36 * HelenOS capabilities are task-local names for references to kernel objects.
37 * Kernel objects are reference-counted wrappers for a select group of objects
38 * allocated in and by the kernel that can be made accessible to userspace in a
39 * controlled way via integer handles.
40 *
41 * A kernel object (kobject_t) encapsulates one of the following raw objects:
42 *
43 * - IPC call
44 * - IPC phone
45 * - IRQ object
46 *
47 * A capability (cap_t) is either free, allocated or published. Free
48 * capabilities can be allocated, which reserves the capability handle in the
49 * task-local capability space. Allocated capabilities can be published, which
50 * associates them with an existing kernel object. Userspace can only access
51 * published capabilities.
52 *
53 * A published capability may get unpublished, which disassociates it from the
54 * underlying kernel object and puts it back into the allocated state. An
55 * allocated capability can be freed to become available for future use.
56 *
57 * There is a 1:1 correspondence between a kernel object (kobject_t) and the
58 * actual raw object it encapsulates. A kernel object (kobject_t) may have
59 * multiple references, either implicit from one or more capabilities (cap_t),
60 * even from capabilities in different tasks, or explicit as a result of
61 * creating a new reference from a capability handle using kobject_get(), or
62 * creating a new reference from an already existing reference by
63 * kobject_add_ref() or as a result of unpublishing a capability and
64 * disassociating it from its kobject_t using cap_unpublish().
65 *
66 * A holder of an explicit reference to a kernel object may revoke access to it
67 * from all capabilities that point to it by calling cap_revoke().
68 *
69 * As kernel objects are reference-counted, they get automatically destroyed
70 * when their last reference is dropped in kobject_put(). The idea is that
71 * whenever a kernel object is inserted into some sort of a container (e.g. a
72 * list or hash table), its reference count should be incremented via
73 * kobject_get() or kobject_add_ref(). When the kernel object is removed from
74 * the container, the reference count should go down via a call to
75 * kobject_put().
76 */
77
78#include <cap/cap.h>
79#include <abi/cap.h>
80#include <proc/task.h>
81#include <synch/mutex.h>
82#include <abi/errno.h>
83#include <mm/slab.h>
84#include <adt/list.h>
85
86#include <limits.h>
87#include <stdint.h>
88
89#define CAPS_START (CAP_NIL + 1)
90#define CAPS_SIZE (INT_MAX - CAPS_START)
91#define CAPS_LAST (CAPS_SIZE - 1)
92
93static slab_cache_t *cap_cache;
94
95static size_t caps_hash(const ht_link_t *item)
96{
97 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
98 return hash_mix(CAP_HANDLE_RAW(cap->handle));
99}
100
101static size_t caps_key_hash(void *key)
102{
103 cap_handle_t *handle = (cap_handle_t *) key;
104 return hash_mix(CAP_HANDLE_RAW(*handle));
105}
106
107static bool caps_key_equal(void *key, const ht_link_t *item)
108{
109 cap_handle_t *handle = (cap_handle_t *) key;
110 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
111 return *handle == cap->handle;
112}
113
114static hash_table_ops_t caps_ops = {
115 .hash = caps_hash,
116 .key_hash = caps_key_hash,
117 .key_equal = caps_key_equal
118};
119
120void caps_init(void)
121{
122 cap_cache = slab_cache_create("cap_t", sizeof(cap_t), 0, NULL,
123 NULL, 0);
124}
125
126/** Allocate the capability info structure
127 *
128 * @param task Task for which to allocate the info structure.
129 */
130errno_t caps_task_alloc(task_t *task)
131{
132 task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t));
133 if (!task->cap_info)
134 return ENOMEM;
135 task->cap_info->handles = ra_arena_create();
136 if (!task->cap_info->handles)
137 goto error_handles;
138 if (!ra_span_add(task->cap_info->handles, CAPS_START, CAPS_SIZE))
139 goto error_span;
140 if (!hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops))
141 goto error_span;
142 return EOK;
143
144error_span:
145 ra_arena_destroy(task->cap_info->handles);
146error_handles:
147 free(task->cap_info);
148 return ENOMEM;
149}
150
151/** Initialize the capability info structure
152 *
153 * @param task Task for which to initialize the info structure.
154 */
155void caps_task_init(task_t *task)
156{
157 mutex_initialize(&task->cap_info->lock, MUTEX_RECURSIVE);
158
159 for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++)
160 list_initialize(&task->cap_info->type_list[t]);
161}
162
163/** Deallocate the capability info structure
164 *
165 * @param task Task from which to deallocate the info structure.
166 */
167void caps_task_free(task_t *task)
168{
169 hash_table_destroy(&task->cap_info->caps);
170 ra_arena_destroy(task->cap_info->handles);
171 free(task->cap_info);
172}
173
174/** Invoke callback function on task's capabilites of given type
175 *
176 * @param task Task where the invocation should take place.
177 * @param type Kernel object type of the task's capabilities that will be
178 * subject to the callback invocation.
179 * @param cb Callback function.
180 * @param arg Argument for the callback function.
181 *
182 * @return True if the callback was called on all matching capabilities.
183 * @return False if the callback was applied only partially.
184 */
185bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type,
186 bool (*cb)(cap_t *, void *), void *arg)
187{
188 bool done = true;
189
190 mutex_lock(&task->cap_info->lock);
191 list_foreach_safe(task->cap_info->type_list[type], cur, next) {
192 cap_t *cap = list_get_instance(cur, cap_t, type_link);
193 done = cb(cap, arg);
194 if (!done)
195 break;
196 }
197 mutex_unlock(&task->cap_info->lock);
198
199 return done;
200}
201
202/** Initialize capability and associate it with its handle
203 *
204 * @param cap Address of the capability.
205 * @param task Backling to the owning task.
206 * @param handle Capability handle.
207 */
208static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle)
209{
210 cap->state = CAP_STATE_FREE;
211 cap->task = task;
212 cap->handle = handle;
213 link_initialize(&cap->kobj_link);
214 link_initialize(&cap->type_link);
215}
216
217/** Get capability using capability handle
218 *
219 * @param task Task whose capability to get.
220 * @param handle Capability handle of the desired capability.
221 * @param state State in which the capability must be.
222 *
223 * @return Address of the desired capability if it exists and its state matches.
224 * @return NULL if no such capability exists or it's in a different state.
225 */
226static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state)
227{
228 assert(mutex_locked(&task->cap_info->lock));
229
230 if ((CAP_HANDLE_RAW(handle) < CAPS_START) ||
231 (CAP_HANDLE_RAW(handle) > CAPS_LAST))
232 return NULL;
233 ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle);
234 if (!link)
235 return NULL;
236 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
237 if (cap->state != state)
238 return NULL;
239 return cap;
240}
241
242/** Allocate new capability
243 *
244 * @param task Task for which to allocate the new capability.
245 *
246 * @param[out] handle New capability handle on success.
247 *
248 * @return An error code in case of error.
249 */
250errno_t cap_alloc(task_t *task, cap_handle_t *handle)
251{
252 mutex_lock(&task->cap_info->lock);
253 cap_t *cap = slab_alloc(cap_cache, FRAME_ATOMIC);
254 if (!cap) {
255 mutex_unlock(&task->cap_info->lock);
256 return ENOMEM;
257 }
258 uintptr_t hbase;
259 if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) {
260 slab_free(cap_cache, cap);
261 mutex_unlock(&task->cap_info->lock);
262 return ENOMEM;
263 }
264 cap_initialize(cap, task, (cap_handle_t) hbase);
265 hash_table_insert(&task->cap_info->caps, &cap->caps_link);
266
267 cap->state = CAP_STATE_ALLOCATED;
268 *handle = cap->handle;
269 mutex_unlock(&task->cap_info->lock);
270
271 return EOK;
272}
273
274/** Publish allocated capability
275 *
276 * The kernel object is moved into the capability. In other words, its reference
277 * is handed over to the capability. Once published, userspace can access and
278 * manipulate the capability.
279 *
280 * @param task Task in which to publish the capability.
281 * @param handle Capability handle.
282 * @param kobj Kernel object.
283 */
284void
285cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj)
286{
287 mutex_lock(&kobj->caps_list_lock);
288 mutex_lock(&task->cap_info->lock);
289 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
290 assert(cap);
291 cap->state = CAP_STATE_PUBLISHED;
292 /* Hand over kobj's reference to cap */
293 cap->kobject = kobj;
294 list_append(&cap->kobj_link, &kobj->caps_list);
295 list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]);
296 mutex_unlock(&task->cap_info->lock);
297 mutex_unlock(&kobj->caps_list_lock);
298}
299
300static void cap_unpublish_unsafe(cap_t *cap)
301{
302 cap->kobject = NULL;
303 list_remove(&cap->kobj_link);
304 list_remove(&cap->type_link);
305 cap->state = CAP_STATE_ALLOCATED;
306}
307
308/** Unpublish published capability
309 *
310 * The kernel object is moved out of the capability. In other words, the
311 * capability's reference to the objects is handed over to the kernel object
312 * pointer returned by this function. Once unpublished, the capability does not
313 * refer to any kernel object anymore.
314 *
315 * @param task Task in which to unpublish the capability.
316 * @param handle Capability handle.
317 * @param type Kernel object type of the object associated with the
318 * capability.
319 *
320 * @return Pointer and explicit reference to the kobject that was associated
321 * with the capability.
322 */
323kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type)
324{
325 kobject_t *kobj = NULL;
326
327restart:
328 mutex_lock(&task->cap_info->lock);
329 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
330 if (cap) {
331 if (cap->kobject->type == type) {
332 /* Hand over cap's reference to kobj */
333 kobj = cap->kobject;
334 if (!mutex_trylock(&kobj->caps_list_lock)) {
335 mutex_unlock(&task->cap_info->lock);
336 kobj = NULL;
337 goto restart;
338 }
339 cap_unpublish_unsafe(cap);
340 mutex_unlock(&kobj->caps_list_lock);
341 }
342 }
343 mutex_unlock(&task->cap_info->lock);
344
345 return kobj;
346}
347
348/** Revoke access to kobject from all existing capabilities
349 *
350 * All published capabilities associated with the kobject are unpublished (i.e.
351 * their new state is set to CAP_STATE_ALLOCATED) and no longer point to the
352 * kobject. Kobject's reference count is decreased accordingly.
353 *
354 * Note that the caller is supposed to hold an explicit reference to the kobject
355 * so that the kobject is guaranteed to exist when this function returns.
356 *
357 * @param kobj Pointer and explicit reference to the kobject capabilities of
358 * which are about to be unpublished.
359 */
360void cap_revoke(kobject_t *kobj)
361{
362 mutex_lock(&kobj->caps_list_lock);
363 list_foreach_safe(kobj->caps_list, cur, hlp) {
364 cap_t *cap = list_get_instance(cur, cap_t, kobj_link);
365 mutex_lock(&cap->task->cap_info->lock);
366 cap_unpublish_unsafe(cap);
367 /* Drop the reference for the unpublished capability */
368 kobject_put(kobj);
369 mutex_unlock(&cap->task->cap_info->lock);
370 }
371 mutex_unlock(&kobj->caps_list_lock);
372}
373
374/** Free allocated capability
375 *
376 * @param task Task in which to free the capability.
377 * @param handle Capability handle.
378 */
379void cap_free(task_t *task, cap_handle_t handle)
380{
381 assert(CAP_HANDLE_RAW(handle) >= CAPS_START);
382 assert(CAP_HANDLE_RAW(handle) <= CAPS_LAST);
383
384 mutex_lock(&task->cap_info->lock);
385 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
386
387 assert(cap);
388
389 hash_table_remove_item(&task->cap_info->caps, &cap->caps_link);
390 ra_free(task->cap_info->handles, CAP_HANDLE_RAW(handle), 1);
391 slab_free(cap_cache, cap);
392 mutex_unlock(&task->cap_info->lock);
393}
394
395/** Initialize kernel object
396 *
397 * @param kobj Kernel object to initialize.
398 * @param type Type of the kernel object.
399 * @param raw Raw pointer to the encapsulated object.
400 * @param ops Pointer to kernel object operations for the respective type.
401 */
402void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw,
403 kobject_ops_t *ops)
404{
405 atomic_store(&kobj->refcnt, 1);
406
407 mutex_initialize(&kobj->caps_list_lock, MUTEX_PASSIVE);
408 list_initialize(&kobj->caps_list);
409
410 kobj->type = type;
411 kobj->raw = raw;
412 kobj->ops = ops;
413}
414
415/** Get new reference to kernel object from capability
416 *
417 * @param task Task from which to get the reference.
418 * @param handle Capability handle.
419 * @param type Kernel object type of the object associated with the
420 * capability referenced by handle.
421 *
422 * @return Kernel object with incremented reference count on success.
423 * @return NULL if there is no matching capability or kernel object.
424 */
425kobject_t *
426kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type)
427{
428 kobject_t *kobj = NULL;
429
430 mutex_lock(&task->cap_info->lock);
431 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
432 if (cap) {
433 if (cap->kobject->type == type) {
434 kobj = cap->kobject;
435 atomic_inc(&kobj->refcnt);
436 }
437 }
438 mutex_unlock(&task->cap_info->lock);
439
440 return kobj;
441}
442
443/** Record new reference
444 *
445 * @param kobj Kernel object from which the new reference is created.
446 */
447void kobject_add_ref(kobject_t *kobj)
448{
449 atomic_inc(&kobj->refcnt);
450}
451
452/** Drop reference to kernel object
453 *
454 * The encapsulated object and the kobject_t wrapper are both destroyed when the
455 * last reference is dropped.
456 *
457 * @param kobj Kernel object whose reference to drop.
458 */
459void kobject_put(kobject_t *kobj)
460{
461 if (atomic_postdec(&kobj->refcnt) == 1) {
462 kobj->ops->destroy(kobj->raw);
463 free(kobj);
464 }
465}
466
467/** @}
468 */
Note: See TracBrowser for help on using the repository browser.