source: mainline/kernel/generic/src/cap/cap.c@ 2bdf92a5

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 2bdf92a5 was 05913fe7, checked in by Jakub Jermar <jakub@…>, 8 years ago

Allow virtually unlimited number of capabilities per task

  • Property mode set to 100644
File size: 13.1 KB
RevLine 
[7e3826d9]1/*
2 * Copyright (c) 2017 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup generic
30 * @{
31 */
32/** @file
33 */
34
[6636fb19]35/*
36 * HelenOS capabilities are task-local names for references to kernel objects.
37 * Kernel objects are reference-counted wrappers for a select group of objects
38 * allocated in and by the kernel that can be made accessible to userspace in a
39 * controlled way via integer handles.
40 *
41 * A kernel object (kobject_t) encapsulates one of the following raw objects:
42 *
43 * - IPC phone
44 * - IRQ object
45 *
46 * A capability (cap_t) is either free, allocated or published. Free
47 * capabilities can be allocated, which reserves the capability handle in the
48 * task-local capability space. Allocated capabilities can be published, which
49 * associates them with an existing kernel object. Userspace can only access
50 * published capabilities.
51 *
52 * A published capability may get unpublished, which disassociates it from the
53 * underlying kernel object and puts it back into the allocated state. An
54 * allocated capability can be freed to become available for future use.
55 *
56 * There is a 1:1 correspondence between a kernel object (kobject_t) and the
57 * actual raw object it encapsulates. A kernel object (kobject_t) may have
58 * multiple references, either implicit from one or more capabilities (cap_t),
59 * even from capabilities in different tasks, or explicit as a result of
60 * creating a new reference from a capability handle using kobject_get(), or
61 * creating a new reference from an already existing reference by
62 * kobject_add_ref() or as a result of unpublishing a capability and
63 * disassociating it from its kobject_t using cap_unpublish().
64 *
65 * As kernel objects are reference-counted, they get automatically destroyed
66 * when their last reference is dropped in kobject_put(). The idea is that
67 * whenever a kernel object is inserted into some sort of a container (e.g. a
68 * list or hash table), its reference count should be incremented via
69 * kobject_get() or kobject_add_ref(). When the kernel object is removed from
70 * the container, the reference count should go down via a call to
71 * kobject_put().
72 */
73
[3f74275]74#include <cap/cap.h>
[7e3826d9]75#include <proc/task.h>
[9e87562]76#include <synch/mutex.h>
[e9d15d9]77#include <abi/errno.h>
[e7ac23d0]78#include <mm/slab.h>
[9e87562]79#include <adt/list.h>
[7e3826d9]80
[05913fe7]81#include <stdint.h>
82
83#define MAX_CAPS INT_MAX
84
[48bcf49]85static kobject_t *cap_unpublish_locked(task_t *, cap_handle_t, kobject_type_t);
86
[05913fe7]87static size_t caps_hash(const ht_link_t *item)
[05ffb41]88{
[05913fe7]89 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
90 return hash_mix(cap->handle);
91}
92
93static size_t caps_key_hash(void *key)
94{
95 cap_handle_t *handle = (cap_handle_t *) key;
96 return hash_mix(*handle);
97}
98
99static bool caps_key_equal(void *key, const ht_link_t *item)
100{
101 cap_handle_t *handle = (cap_handle_t *) key;
102 cap_t *cap = hash_table_get_inst(item, cap_t, caps_link);
103 return *handle == cap->handle;
[05ffb41]104}
105
[05913fe7]106static hash_table_ops_t caps_ops = {
107 .hash = caps_hash,
108 .key_hash = caps_key_hash,
109 .key_equal = caps_key_equal
110};
111
[6636fb19]112/** Allocate the capability info structure
113 *
114 * @param task Task for which to allocate the info structure.
115 */
[3f74275]116void caps_task_alloc(task_t *task)
[e7ac23d0]117{
[9e87562]118 task->cap_info = (cap_info_t *) malloc(sizeof(cap_info_t), 0);
[05913fe7]119 task->cap_info->handles = ra_arena_create();
120 // FIXME: allow caps_task_alloc() to fail
121 assert(task->cap_info->handles);
122 bool success = ra_span_add(task->cap_info->handles, 0, MAX_CAPS);
123 // FIXME: allow caps_task_alloc() to fail
124 assert(success);
125 success = hash_table_create(&task->cap_info->caps, 0, 0, &caps_ops);
126 // FIXME: allow caps_task_alloc() to fail
127 assert(success);
[e7ac23d0]128}
129
[6636fb19]130/** Initialize the capability info structure
131 *
132 * @param task Task for which to initialize the info structure.
133 */
[3f74275]134void caps_task_init(task_t *task)
[e7ac23d0]135{
[9e87562]136 mutex_initialize(&task->cap_info->lock, MUTEX_PASSIVE);
137
[48bcf49]138 for (kobject_type_t t = 0; t < KOBJECT_TYPE_MAX; t++)
139 list_initialize(&task->cap_info->type_list[t]);
[e7ac23d0]140}
141
[6636fb19]142/** Deallocate the capability info structure
143 *
144 * @param task Task from which to deallocate the info structure.
145 */
[3f74275]146void caps_task_free(task_t *task)
[e7ac23d0]147{
[05913fe7]148 hash_table_destroy(&task->cap_info->caps);
149 ra_arena_destroy(task->cap_info->handles);
[9e87562]150 free(task->cap_info);
151}
152
[6636fb19]153/** Invoke callback function on task's capabilites of given type
154 *
155 * @param task Task where the invocation should take place.
156 * @param type Kernel object type of the task's capabilities that will be
157 * subject to the callback invocation.
158 * @param cb Callback function.
159 * @param arg Argument for the callback function.
160 *
161 * @return True if the callback was called on all matching capabilities.
162 * @return False if the callback was applied only partially.
163 */
[48bcf49]164bool caps_apply_to_kobject_type(task_t *task, kobject_type_t type,
[9e87562]165 bool (*cb)(cap_t *, void *), void *arg)
166{
167 bool done = true;
168
169 mutex_lock(&task->cap_info->lock);
170 list_foreach_safe(task->cap_info->type_list[type], cur, next) {
[05913fe7]171 cap_t *cap = list_get_instance(cur, cap_t, type_link);
[9e87562]172 done = cb(cap, arg);
173 if (!done)
174 break;
175 }
176 mutex_unlock(&task->cap_info->lock);
177
178 return done;
179}
180
[05913fe7]181/** Initialize capability and associate it with its handle
182 *
183 * @param cap Address of the capability.
184 * @param task Backling to the owning task.
185 * @param handle Capability handle.
186 */
187static void cap_initialize(cap_t *cap, task_t *task, cap_handle_t handle)
188{
189 cap->state = CAP_STATE_FREE;
190 cap->task = task;
191 cap->handle = handle;
192 link_initialize(&cap->type_link);
193}
194
[6636fb19]195/** Get capability using capability handle
196 *
197 * @param task Task whose capability to get.
198 * @param handle Capability handle of the desired capability.
199 * @param state State in which the capability must be.
200 *
201 * @return Address of the desired capability if it exists and its state matches.
202 * @return NULL if no such capability exists or it's in a different state.
203 */
[48bcf49]204static cap_t *cap_get(task_t *task, cap_handle_t handle, cap_state_t state)
[7e3826d9]205{
[9e87562]206 assert(mutex_locked(&task->cap_info->lock));
207
[3f74275]208 if ((handle < 0) || (handle >= MAX_CAPS))
[7e3826d9]209 return NULL;
[05913fe7]210 ht_link_t *link = hash_table_find(&task->cap_info->caps, &handle);
211 if (!link)
212 return NULL;
213 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
214 if (cap->state != state)
[7e3826d9]215 return NULL;
[05913fe7]216 return cap;
217}
218
219static bool cap_reclaimer(ht_link_t *link, void *arg)
220{
221 cap_t **result = (cap_t **) arg;
222 cap_t *cap = hash_table_get_inst(link, cap_t, caps_link);
223
224 if (cap->state == CAP_STATE_PUBLISHED && cap->kobject->ops->reclaim &&
225 cap->kobject->ops->reclaim(cap->kobject)) {
226 kobject_t *kobj = cap_unpublish_locked(cap->task, cap->handle,
227 cap->kobject->type);
228 kobject_put(kobj);
229 cap_initialize(cap, cap->task, cap->handle);
230 *result = cap;
231 return false;
232 }
233
234 return true;
[7e3826d9]235}
236
[6636fb19]237/** Allocate new capability
238 *
239 * @param task Task for which to allocate the new capability.
240 *
241 * @return New capability handle on success.
242 * @return Negative error code in case of error.
243 */
[48bcf49]244cap_handle_t cap_alloc(task_t *task)
[7e3826d9]245{
[05913fe7]246 cap_t *cap = NULL;
247 cap_handle_t handle;
248
249 /*
250 * First of all, see if we can reclaim a capability. Note that this
251 * feature is only temporary and capability reclamaition will eventually
252 * be phased out.
253 */
[9e87562]254 mutex_lock(&task->cap_info->lock);
[05913fe7]255 hash_table_apply(&task->cap_info->caps, cap_reclaimer, &cap);
256
257 /*
258 * If we don't have a capability by now, try to allocate a new one.
259 */
260 if (!cap) {
261 cap = malloc(sizeof(cap_t), 0);
262 if (!cap) {
263 mutex_unlock(&task->cap_info->lock);
264 return ENOMEM;
[05ffb41]265 }
[05913fe7]266 uintptr_t hbase;
267 if (!ra_alloc(task->cap_info->handles, 1, 1, &hbase)) {
268 free(cap);
[9e87562]269 mutex_unlock(&task->cap_info->lock);
[05913fe7]270 return ENOMEM;
[7e3826d9]271 }
[05913fe7]272 cap_initialize(cap, task, (cap_handle_t) hbase);
273 hash_table_insert(&task->cap_info->caps, &cap->caps_link);
[7e3826d9]274 }
[05913fe7]275
276 cap->state = CAP_STATE_ALLOCATED;
277 handle = cap->handle;
[9e87562]278 mutex_unlock(&task->cap_info->lock);
[7e3826d9]279
[05913fe7]280 return handle;
[7e3826d9]281}
282
[6636fb19]283/** Publish allocated capability
284 *
285 * The kernel object is moved into the capability. In other words, its reference
286 * is handed over to the capability. Once published, userspace can access and
287 * manipulate the capability.
288 *
289 * @param task Task in which to publish the capability.
290 * @param handle Capability handle.
291 * @param kobj Kernel object.
292 */
[48bcf49]293void
294cap_publish(task_t *task, cap_handle_t handle, kobject_t *kobj)
[9e87562]295{
296 mutex_lock(&task->cap_info->lock);
[48bcf49]297 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
[9e87562]298 assert(cap);
[48bcf49]299 cap->state = CAP_STATE_PUBLISHED;
300 /* Hand over kobj's reference to cap */
301 cap->kobject = kobj;
[05913fe7]302 list_append(&cap->type_link, &task->cap_info->type_list[kobj->type]);
[9e87562]303 mutex_unlock(&task->cap_info->lock);
304}
305
[48bcf49]306static kobject_t *
307cap_unpublish_locked(task_t *task, cap_handle_t handle, kobject_type_t type)
[9e87562]308{
[48bcf49]309 kobject_t *kobj = NULL;
[9e87562]310
[48bcf49]311 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
[9e87562]312 if (cap) {
[48bcf49]313 if (cap->kobject->type == type) {
314 /* Hand over cap's reference to kobj */
315 kobj = cap->kobject;
316 cap->kobject = NULL;
[05913fe7]317 list_remove(&cap->type_link);
[48bcf49]318 cap->state = CAP_STATE_ALLOCATED;
319 }
[9e87562]320 }
[48bcf49]321
322 return kobj;
323}
[6636fb19]324
325/** Unpublish published capability
326 *
327 * The kernel object is moved out of the capability. In other words, the
328 * capability's reference to the objects is handed over to the kernel object
329 * pointer returned by this function. Once unpublished, the capability does not
330 * refer to any kernel object anymore.
331 *
332 * @param task Task in which to unpublish the capability.
333 * @param handle Capability handle.
334 * @param type Kernel object type of the object associated with the
335 * capability.
336 */
[48bcf49]337kobject_t *cap_unpublish(task_t *task, cap_handle_t handle, kobject_type_t type)
338{
339
340 mutex_lock(&task->cap_info->lock);
341 kobject_t *kobj = cap_unpublish_locked(task, handle, type);
[9e87562]342 mutex_unlock(&task->cap_info->lock);
343
[48bcf49]344 return kobj;
[9e87562]345}
346
[6636fb19]347/** Free allocated capability
348 *
349 * @param task Task in which to free the capability.
350 * @param handle Capability handle.
351 */
[48bcf49]352void cap_free(task_t *task, cap_handle_t handle)
[7e3826d9]353{
[3f74275]354 assert(handle >= 0);
355 assert(handle < MAX_CAPS);
[7e3826d9]356
[9e87562]357 mutex_lock(&task->cap_info->lock);
[05913fe7]358 cap_t *cap = cap_get(task, handle, CAP_STATE_ALLOCATED);
359
360 assert(cap);
361
362 hash_table_remove_item(&task->cap_info->caps, &cap->caps_link);
363 ra_free(task->cap_info->handles, handle, 1);
364 free(cap);
[9e87562]365 mutex_unlock(&task->cap_info->lock);
[7e3826d9]366}
367
[6636fb19]368/** Initialize kernel object
369 *
370 * @param kobj Kernel object to initialize.
371 * @param type Type of the kernel object.
372 * @param raw Raw pointer to the encapsulated object.
373 * @param ops Pointer to kernel object operations for the respective type.
374 */
[48bcf49]375void kobject_initialize(kobject_t *kobj, kobject_type_t type, void *raw,
376 kobject_ops_t *ops)
377{
378 atomic_set(&kobj->refcnt, 1);
379 kobj->type = type;
380 kobj->raw = raw;
381 kobj->ops = ops;
382}
383
[6636fb19]384/** Get new reference to kernel object from capability
385 *
386 * @param task Task from which to get the reference.
387 * @param handle Capability handle.
388 * @param type Kernel object type of the object associated with the
389 * capability referenced by handle.
390 *
391 * @return Kernel object with incremented reference count on success.
392 * @return NULL if there is no matching capability or kernel object.
393 */
[48bcf49]394kobject_t *
395kobject_get(struct task *task, cap_handle_t handle, kobject_type_t type)
396{
397 kobject_t *kobj = NULL;
398
399 mutex_lock(&task->cap_info->lock);
400 cap_t *cap = cap_get(task, handle, CAP_STATE_PUBLISHED);
401 if (cap) {
402 if (cap->kobject->type == type) {
403 kobj = cap->kobject;
404 atomic_inc(&kobj->refcnt);
405 }
406 }
407 mutex_unlock(&task->cap_info->lock);
408
409 return kobj;
410}
411
[6636fb19]412/** Record new reference
413 *
414 * @param kobj Kernel object from which the new reference is created.
415 */
416void kobject_add_ref(kobject_t *kobj)
417{
418 atomic_inc(&kobj->refcnt);
419}
420
421/** Drop reference to kernel object
422 *
423 * The encapsulated object and the kobject_t wrapper are both destroyed when the
424 * last reference is dropped.
425 *
426 * @param kobj Kernel object whose reference to drop.
427 */
[48bcf49]428void kobject_put(kobject_t *kobj)
429{
430 if (atomic_postdec(&kobj->refcnt) == 1) {
431 kobj->ops->destroy(kobj->raw);
432 free(kobj);
433 }
434}
435
[7e3826d9]436/** @}
437 */
Note: See TracBrowser for help on using the repository browser.