source: mainline/kernel/generic/src/adt/cht.c@ 205832b

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 205832b was 205832b, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

Replaced 0 with NULL where appropriate (in rcu, cht, uspace hashtable, smp_call, workqueue).

  • Property mode set to 100644
File size: 74.7 KB
Line 
1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29
30/** @addtogroup genericadt
31 * @{
32 */
33
34/**
35 * @file
36 * @brief Scalable resizable concurrent lock-free hash table.
37 *
38 */
39
40#include <adt/cht.h>
41#include <adt/hash.h>
42#include <debug.h>
43#include <memstr.h>
44#include <mm/slab.h>
45#include <arch/barrier.h>
46#include <compiler/barrier.h>
47#include <atomic.h>
48#include <synch/rcu.h>
49
50
51/* Logarithm of the min bucket count. Must be at least 3. 2^6 == 64 buckets. */
52#define CHT_MIN_ORDER 6
53/* Logarithm of the max bucket count. */
54#define CHT_MAX_ORDER (8 * sizeof(size_t))
55/* Minimum number of hash table buckets. */
56#define CHT_MIN_BUCKET_CNT (1 << CHT_MIN_ORDER)
57/* Does not have to be a power of 2. */
58#define CHT_MAX_LOAD 2
59
60typedef cht_ptr_t marked_ptr_t;
61typedef bool (*equal_pred_t)(void *arg, const cht_link_t *item);
62
63/** The following mark items and bucket heads.
64 *
65 * They are stored in the two low order bits of the next item pointers.
66 * Some marks may be combined. Some marks share the same binary value and
67 * are distinguished only by context (eg bucket head vs an ordinary item),
68 * in particular by walk_mode_t.
69 */
70typedef enum mark {
71 /** Normal non-deleted item or a valid bucket head. */
72 N_NORMAL = 0,
73 /** Logically deleted item that might have already been unlinked.
74 *
75 * May be combined with N_JOIN and N_JOIN_FOLLOWS. Applicable only
76 * to items; never to bucket heads.
77 *
78 * Once marked deleted an item remains marked deleted.
79 */
80 N_DELETED = 1,
81 /** Immutable bucket head.
82 *
83 * The bucket is being moved or joined with another and its (old) head
84 * must not be modified.
85 *
86 * May be combined with N_INVALID. Applicable only to old bucket heads,
87 * ie cht_t.b and not cht_t.new_b.
88 */
89 N_CONST = 1,
90 /** Invalid bucket head. The bucket head must not be modified.
91 *
92 * Old bucket heads (ie cht_t.b) are marked invalid if they have
93 * already been moved to cht_t.new_b or if the bucket had already
94 * been merged with another when shrinking the table. New bucket
95 * heads (ie cht_t.new_b) are marked invalid if the old bucket had
96 * not yet been moved or if an old bucket had not yet been split
97 * when growing the table.
98 */
99 N_INVALID = 3,
100 /** The item is a join node, ie joining two buckets
101 *
102 * A join node is either the first node of the second part of
103 * a bucket to be split; or it is the first node of the bucket
104 * to be merged into/appended to/joined with another bucket.
105 *
106 * May be combined with N_DELETED. Applicable only to items, never
107 * to bucket heads.
108 *
109 * Join nodes are referred to from two different buckets and may,
110 * therefore, not be safely/atomically unlinked from both buckets.
111 * As a result join nodes are not unlinked but rather just marked
112 * deleted. Once resize completes join nodes marked deleted are
113 * garbage collected.
114 */
115 N_JOIN = 2,
116 /** The next node is a join node and will soon be marked so.
117 *
118 * A join-follows node is the last node of the first part of bucket
119 * that is to be split, ie it is the last node that will remain
120 * in the same bucket after splitting it.
121 *
122 * May be combined with N_DELETED. Applicable to items as well
123 * as to bucket heads of the bucket to be split (but only in cht_t.new_b).
124 */
125 N_JOIN_FOLLOWS = 2,
126 /** Bit mask to filter out the address to the next item from the next ptr. */
127 N_MARK_MASK = 3
128} mark_t;
129
130/** Determines */
131typedef enum walk_mode {
132 /** The table is not resizing. */
133 WM_NORMAL = 4,
134 /** The table is undergoing a resize. Join nodes may be encountered. */
135 WM_LEAVE_JOIN,
136 /** The table is growing. A join-follows node may be encountered. */
137 WM_MOVE_JOIN_FOLLOWS
138} walk_mode_t;
139
140/** Bucket position window. */
141typedef struct wnd {
142 /** Pointer to cur's predecessor. */
143 marked_ptr_t *ppred;
144 /** Current item. */
145 cht_link_t *cur;
146 /** Last encountered item. Deleted or not. */
147 cht_link_t *last;
148} wnd_t;
149
150
151/* Sentinel node used by all buckets. Stores the greatest possible hash value.*/
152static const cht_link_t sentinel = {
153 /* NULL and N_NORMAL */
154 .link = 0 | N_NORMAL,
155 .hash = -1
156};
157
158
159static size_t size_to_order(size_t bucket_cnt, size_t min_order);
160static cht_buckets_t *alloc_buckets(size_t order, bool set_invalid);
161static inline cht_link_t *find_lazy(cht_t *h, void *key);
162static cht_link_t *search_bucket(cht_t *h, marked_ptr_t head, void *key,
163 size_t search_hash);
164static cht_link_t *find_resizing(cht_t *h, void *key, size_t hash,
165 marked_ptr_t old_head, size_t old_idx);
166static bool insert_impl(cht_t *h, cht_link_t *item, bool unique);
167static bool insert_at(cht_link_t *item, const wnd_t *wnd, walk_mode_t walk_mode,
168 bool *resizing);
169static bool has_duplicates(cht_t *h, const cht_link_t *item, size_t hash,
170 const wnd_t *cwnd);
171static cht_link_t *find_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
172 cht_link_t *start);
173static bool remove_pred(cht_t *h, size_t hash, equal_pred_t pred, void *pred_arg);
174static bool delete_at(cht_t *h, wnd_t *wnd, walk_mode_t walk_mode,
175 bool *deleted_but_gc, bool *resizing);
176static bool mark_deleted(cht_link_t *cur, walk_mode_t walk_mode, bool *resizing);
177static bool unlink_from_pred(wnd_t *wnd, walk_mode_t walk_mode, bool *resizing);
178static bool find_wnd_and_gc_pred(cht_t *h, size_t hash, walk_mode_t walk_mode,
179 equal_pred_t pred, void *pred_arg, wnd_t *wnd, bool *resizing);
180static bool find_wnd_and_gc(cht_t *h, size_t hash, walk_mode_t walk_mode,
181 wnd_t *wnd, bool *resizing);
182static bool gc_deleted_node(cht_t *h, walk_mode_t walk_mode, wnd_t *wnd,
183 bool *resizing);
184static bool join_completed(cht_t *h, const wnd_t *wnd);
185static void upd_resizing_head(cht_t *h, size_t hash, marked_ptr_t **phead,
186 bool *join_finishing, walk_mode_t *walk_mode);
187static void item_removed(cht_t *h);
188static void item_inserted(cht_t *h);
189static void free_later(cht_t *h, cht_link_t *item);
190static void help_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head);
191static void start_head_move(marked_ptr_t *psrc_head);
192static void mark_const(marked_ptr_t *psrc_head);
193static void complete_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head);
194static void split_bucket(cht_t *h, marked_ptr_t *psrc_head,
195 marked_ptr_t *pdest_head, size_t split_hash);
196static void mark_join_follows(cht_t *h, marked_ptr_t *psrc_head,
197 size_t split_hash, wnd_t *wnd);
198static void mark_join_node(cht_link_t *join_node);
199static void join_buckets(cht_t *h, marked_ptr_t *psrc_head,
200 marked_ptr_t *pdest_head, size_t split_hash);
201static void link_to_join_node(cht_t *h, marked_ptr_t *pdest_head,
202 cht_link_t *join_node, size_t split_hash);
203static void resize_table(work_t *arg);
204static void grow_table(cht_t *h);
205static void shrink_table(cht_t *h);
206static void cleanup_join_node(cht_t *h, marked_ptr_t *new_head);
207static void clear_join_and_gc(cht_t *h, cht_link_t *join_node,
208 marked_ptr_t *new_head);
209static void cleanup_join_follows(cht_t *h, marked_ptr_t *new_head);
210static marked_ptr_t make_link(const cht_link_t *next, mark_t mark);
211static cht_link_t * get_next(marked_ptr_t link);
212static mark_t get_mark(marked_ptr_t link);
213static void next_wnd(wnd_t *wnd);
214static bool same_node_pred(void *node, const cht_link_t *item2);
215static size_t calc_key_hash(cht_t *h, void *key);
216static size_t node_hash(cht_t *h, const cht_link_t *item);
217static size_t calc_node_hash(cht_t *h, const cht_link_t *item);
218static void memoize_node_hash(cht_t *h, cht_link_t *item);
219static size_t calc_split_hash(size_t split_idx, size_t order);
220static size_t calc_bucket_idx(size_t hash, size_t order);
221static size_t grow_to_split_idx(size_t old_idx);
222static size_t grow_idx(size_t idx);
223static size_t shrink_idx(size_t idx);
224static marked_ptr_t cas_link(marked_ptr_t *link, const cht_link_t *cur_next,
225 mark_t cur_mark, const cht_link_t *new_next, mark_t new_mark);
226static marked_ptr_t _cas_link(marked_ptr_t *link, marked_ptr_t cur,
227 marked_ptr_t new);
228static void cas_order_barrier(void);
229
230/** Creates a concurrent hash table.
231 *
232 * @param h Valid pointer to a cht_t instance.
233 * @param init_size The initial number of buckets the table should contain.
234 * The table may be shrunk below this value if deemed necessary.
235 * Uses the default value if 0.
236 * @param min_size Minimum number of buckets that the table should contain.
237 * The number of buckets never drops below this value,
238 * although it may be rounded up internally as appropriate.
239 * Uses the default value if 0.
240 * @param max_load Maximum average number of items per bucket that allowed
241 * before the table grows.
242 * @param op Item specific operations. All operations are compulsory.
243 * @return True if successfully created the table. False otherwise.
244 */
245bool cht_create(cht_t *h, size_t init_size, size_t min_size, size_t max_load,
246 cht_ops_t *op)
247{
248 ASSERT(h);
249 ASSERT(op && op->hash && op->key_hash && op->equal && op->key_equal);
250 /* Memoized hashes are stored in the rcu_link.func function pointer. */
251 ASSERT(sizeof(size_t) == sizeof(rcu_func_t));
252 ASSERT(sentinel.hash == (uintptr_t)sentinel.rcu_link.func);
253
254 /* All operations are compulsory. */
255 if (!op || !op->hash || !op->key_hash || !op->equal || !op->key_equal)
256 return false;
257
258 size_t min_order = size_to_order(min_size, CHT_MIN_ORDER);
259 size_t order = size_to_order(init_size, min_order);
260
261 h->b = alloc_buckets(order, false);
262
263 if (!h->b)
264 return false;
265
266 h->max_load = (max_load == 0) ? CHT_MAX_LOAD : max_load;
267 h->min_order = min_order;
268 h->new_b = NULL;
269 h->op = op;
270 atomic_set(&h->item_cnt, 0);
271 atomic_set(&h->resize_reqs, 0);
272 /*
273 * Cached item hashes are stored in item->rcu_link.func. Once the item
274 * is deleted rcu_link.func will contain the value of invalid_hash.
275 */
276 h->invalid_hash = (uintptr_t)h->op->remove_callback;
277
278 /* Ensure the initialization takes place before we start using the table. */
279 write_barrier();
280
281 return true;
282}
283
284/** Allocates and initializes 2^order buckets.
285 *
286 * All bucket heads are initialized to point to the sentinel node.
287 *
288 * @param order The number of buckets to allocate is 2^order.
289 * @param set_invalid Bucket heads are marked invalid if true; otherwise
290 * they are marked N_NORMAL.
291 * @return Newly allocated and initialized buckets or NULL if not enough memory.
292 */
293static cht_buckets_t *alloc_buckets(size_t order, bool set_invalid)
294{
295 size_t bucket_cnt = (1 << order);
296 size_t bytes =
297 sizeof(cht_buckets_t) + (bucket_cnt - 1) * sizeof(marked_ptr_t);
298 cht_buckets_t *b = malloc(bytes, FRAME_ATOMIC);
299
300 if (!b)
301 return NULL;
302
303 b->order = order;
304
305 marked_ptr_t head_link = set_invalid
306 ? make_link(&sentinel, N_INVALID)
307 : make_link(&sentinel, N_NORMAL);
308
309 for (size_t i = 0; i < bucket_cnt; ++i) {
310 b->head[i] = head_link;
311 }
312
313 return b;
314}
315
316/** Returns the smallest k such that bucket_cnt <= 2^k and min_order <= k.*/
317static size_t size_to_order(size_t bucket_cnt, size_t min_order)
318{
319 size_t order = min_order;
320
321 /* Find a power of two such that bucket_cnt <= 2^order */
322 do {
323 if (bucket_cnt <= ((size_t)1 << order))
324 return order;
325
326 ++order;
327 } while (order < CHT_MAX_ORDER);
328
329 return order;
330}
331
332/** Destroys a CHT successfully created via cht_create().
333 *
334 * Waits for all outstanding concurrent operations to complete and
335 * frees internal allocated resources. The table is however not cleared
336 * and items already present in the table (if any) are leaked.
337 */
338void cht_destroy(cht_t *h)
339{
340 /* Wait for resize to complete. */
341 while (0 < atomic_get(&h->resize_reqs)) {
342 rcu_barrier();
343 }
344
345 /* Wait for all remove_callback()s to complete. */
346 rcu_barrier();
347
348 free(h->b);
349 h->b = NULL;
350
351 /* You must clear the table of items. Otherwise cht_destroy will leak. */
352 ASSERT(atomic_get(&h->item_cnt) == 0);
353}
354
355/** Returns the first item equal to the search key or NULL if not found.
356 *
357 * The call must be enclosed in a rcu_read_lock() unlock() pair. The
358 * returned item is guaranteed to be allocated until rcu_read_unlock()
359 * although the item may be concurrently removed from the table by another
360 * cpu.
361 *
362 * Further items matching the key may be retrieved via cht_find_next().
363 *
364 * cht_find() sees the effects of any completed cht_remove(), cht_insert().
365 * If a concurrent remove or insert had not yet completed cht_find() may
366 * or may not see the effects of it (eg it may find an item being removed).
367 *
368 * @param h CHT to operate on.
369 * @param key Search key as defined by cht_ops_t.key_equal() and .key_hash().
370 * @return First item equal to the key or NULL if such an item does not exist.
371 */
372cht_link_t *cht_find(cht_t *h, void *key)
373{
374 /* Make the most recent changes to the table visible. */
375 read_barrier();
376 return cht_find_lazy(h, key);
377}
378
379/** Returns the first item equal to the search key or NULL if not found.
380 *
381 * Unlike cht_find(), cht_find_lazy() may not see the effects of
382 * cht_remove() or cht_insert() even though they have already completed.
383 * It may take a couple of milliseconds for those changes to propagate
384 * and become visible to cht_find_lazy(). On the other hand, cht_find_lazy()
385 * operates a bit faster than cht_find().
386 *
387 * See cht_find() for more details.
388 */
389cht_link_t *cht_find_lazy(cht_t *h, void *key)
390{
391 return find_lazy(h, key);
392}
393
394/** Finds the first item equal to the search key. */
395static inline cht_link_t *find_lazy(cht_t *h, void *key)
396{
397 ASSERT(h);
398 /* See docs to cht_find() and cht_find_lazy(). */
399 ASSERT(rcu_read_locked());
400
401 size_t hash = calc_key_hash(h, key);
402
403 cht_buckets_t *b = rcu_access(h->b);
404 size_t idx = calc_bucket_idx(hash, b->order);
405 /*
406 * No need for access_once. b->head[idx] will point to an allocated node
407 * even if marked invalid until we exit rcu read section.
408 */
409 marked_ptr_t head = b->head[idx];
410
411 /* Undergoing a resize - take the slow path. */
412 if (N_INVALID == get_mark(head))
413 return find_resizing(h, key, hash, head, idx);
414
415 return search_bucket(h, head, key, hash);
416}
417
418/** Returns the next item matching \a item.
419 *
420 * Must be enclosed in a rcu_read_lock()/unlock() pair. Effects of
421 * completed cht_remove(), cht_insert() are guaranteed to be visible
422 * to cht_find_next().
423 *
424 * See cht_find() for more details.
425 */
426cht_link_t *cht_find_next(cht_t *h, const cht_link_t *item)
427{
428 /* Make the most recent changes to the table visible. */
429 read_barrier();
430 return cht_find_next_lazy(h, item);
431}
432
433/** Returns the next item matching \a item.
434 *
435 * Must be enclosed in a rcu_read_lock()/unlock() pair. Effects of
436 * completed cht_remove(), cht_insert() may or may not be visible
437 * to cht_find_next_lazy().
438 *
439 * See cht_find_lazy() for more details.
440 */
441cht_link_t *cht_find_next_lazy(cht_t *h, const cht_link_t *item)
442{
443 ASSERT(h);
444 ASSERT(rcu_read_locked());
445 ASSERT(item);
446
447 return find_duplicate(h, item, calc_node_hash(h, item), get_next(item->link));
448}
449
450/** Searches the bucket at head for key using search_hash. */
451static inline cht_link_t *search_bucket(cht_t *h, marked_ptr_t head, void *key,
452 size_t search_hash)
453{
454 /*
455 * It is safe to access nodes even outside of this bucket (eg when
456 * splitting the bucket). The resizer makes sure that any node we
457 * may find by following the next pointers is allocated.
458 */
459
460 cht_link_t *cur = NULL;
461 marked_ptr_t prev = head;
462
463try_again:
464 /* Filter out items with different hashes. */
465 do {
466 cur = get_next(prev);
467 ASSERT(cur);
468 prev = cur->link;
469 } while (node_hash(h, cur) < search_hash);
470
471 /*
472 * Only search for an item with an equal key if cur is not the sentinel
473 * node or a node with a different hash.
474 */
475 while (node_hash(h, cur) == search_hash) {
476 if (h->op->key_equal(key, cur)) {
477 if (!(N_DELETED & get_mark(cur->link)))
478 return cur;
479 }
480
481 cur = get_next(cur->link);
482 ASSERT(cur);
483 }
484
485 /*
486 * In the unlikely case that we have encountered a node whose cached
487 * hash has been overwritten due to a pending rcu_call for it, skip
488 * the node and try again.
489 */
490 if (node_hash(h, cur) == h->invalid_hash) {
491 prev = cur->link;
492 goto try_again;
493 }
494
495 return NULL;
496}
497
498/** Searches for the key while the table is undergoing a resize. */
499static cht_link_t *find_resizing(cht_t *h, void *key, size_t hash,
500 marked_ptr_t old_head, size_t old_idx)
501{
502 ASSERT(N_INVALID == get_mark(old_head));
503 ASSERT(h->new_b);
504
505 size_t new_idx = calc_bucket_idx(hash, h->new_b->order);
506 marked_ptr_t new_head = h->new_b->head[new_idx];
507 marked_ptr_t search_head = new_head;
508
509 /* Growing. */
510 if (h->b->order < h->new_b->order) {
511 /*
512 * Old bucket head is invalid, so it must have been already
513 * moved. Make the new head visible if still not visible, ie
514 * invalid.
515 */
516 if (N_INVALID == get_mark(new_head)) {
517 /*
518 * We should be searching a newly added bucket but the old
519 * moved bucket has not yet been split (its marked invalid)
520 * or we have not yet seen the split.
521 */
522 if (grow_idx(old_idx) != new_idx) {
523 /*
524 * Search the moved bucket. It is guaranteed to contain
525 * items of the newly added bucket that were present
526 * before the moved bucket was split.
527 */
528 new_head = h->new_b->head[grow_idx(old_idx)];
529 }
530
531 /* new_head is now the moved bucket, either valid or invalid. */
532
533 /*
534 * The old bucket was definitely moved to new_head but the
535 * change of new_head had not yet propagated to this cpu.
536 */
537 if (N_INVALID == get_mark(new_head)) {
538 /*
539 * We could issue a read_barrier() and make the now valid
540 * moved bucket head new_head visible, but instead fall back
541 * on using the old bucket. Although the old bucket head is
542 * invalid, it points to a node that is allocated and in the
543 * right bucket. Before the node can be freed, it must be
544 * unlinked from the head (or another item after that item
545 * modified the new_head) and a grace period must elapse.
546 * As a result had the node been already freed the grace
547 * period preceeding the free() would make the unlink and
548 * any changes to new_head visible. Therefore, it is safe
549 * to use the node pointed to from the old bucket head.
550 */
551
552 search_head = old_head;
553 } else {
554 search_head = new_head;
555 }
556 }
557
558 return search_bucket(h, search_head, key, hash);
559 } else if (h->b->order > h->new_b->order) {
560 /* Shrinking. */
561
562 /* Index of the bucket in the old table that was moved. */
563 size_t move_src_idx = grow_idx(new_idx);
564 marked_ptr_t moved_old_head = h->b->head[move_src_idx];
565
566 /*
567 * h->b->head[move_src_idx] had already been moved to new_head
568 * but the change to new_head had not yet propagated to us.
569 */
570 if (N_INVALID == get_mark(new_head)) {
571 /*
572 * new_head is definitely valid and we could make it visible
573 * to this cpu with a read_barrier(). Instead, use the bucket
574 * in the old table that was moved even though it is now marked
575 * as invalid. The node it points to must be allocated because
576 * a grace period would have to elapse before it could be freed;
577 * and the grace period would make the now valid new_head
578 * visible to all cpus.
579 *
580 * Note that move_src_idx may not be the same as old_idx.
581 * If move_src_idx != old_idx then old_idx is the bucket
582 * in the old table that is not moved but instead it is
583 * appended to the moved bucket, ie it is added at the tail
584 * of new_head. In that case an invalid old_head notes that
585 * it had already been merged into (the moved) new_head.
586 * We will try to search that bucket first because it
587 * may contain some newly added nodes after the bucket
588 * join. Moreover, the bucket joining link may already be
589 * visible even if new_head is not. Therefore, if we're
590 * lucky we'll find the item via moved_old_head. In any
591 * case, we'll retry in proper old_head if not found.
592 */
593 search_head = moved_old_head;
594 }
595
596 cht_link_t *ret = search_bucket(h, search_head, key, hash);
597
598 if (ret)
599 return ret;
600 /*
601 * Bucket old_head was already joined with moved_old_head
602 * in the new table but we have not yet seen change of the
603 * joining link (or the item is not in the table).
604 */
605 if (move_src_idx != old_idx && get_next(old_head) != &sentinel) {
606 /*
607 * Note that old_head (the bucket to be merged into new_head)
608 * points to an allocated join node (if non-null) even if marked
609 * invalid. Before the resizer lets join nodes to be unlinked
610 * (and freed) it sets old_head to NULL and waits for a grace period.
611 * So either the invalid old_head points to join node; or old_head
612 * is null and we would have seen a completed bucket join while
613 * traversing search_head.
614 */
615 ASSERT(N_JOIN & get_mark(get_next(old_head)->link));
616 return search_bucket(h, old_head, key, hash);
617 }
618
619 return NULL;
620 } else {
621 /*
622 * Resize is almost done. The resizer is waiting to make
623 * sure all cpus see that the new table replaced the old one.
624 */
625 ASSERT(h->b->order == h->new_b->order);
626 /*
627 * The resizer must ensure all new bucket heads are visible before
628 * replacing the old table.
629 */
630 ASSERT(N_NORMAL == get_mark(new_head));
631 return search_bucket(h, new_head, key, hash);
632 }
633}
634
635/** Inserts an item. Succeeds even if an equal item is already present. */
636void cht_insert(cht_t *h, cht_link_t *item)
637{
638 insert_impl(h, item, false);
639}
640
641/** Inserts a unique item. Returns false if an equal item was already present.
642 *
643 * Use this function to atomically check if an equal/duplicate item had
644 * not yet been inserted into the table and to insert this item into the
645 * table.
646 *
647 * The following is NOT thread-safe, so do not use:
648 * \code
649 * if (!cht_find(h, key)) {
650 * // A concurrent insert here may go unnoticed by cht_find() above.
651 * item = malloc(..);
652 * cht_insert(h, item);
653 * // Now we may have two items with equal search keys.
654 * }
655 * \endcode
656 *
657 * Replace such code with:
658 * \code
659 * item = malloc(..);
660 * if (!cht_insert_unique(h, item)) {
661 * // Whoops, someone beat us to it - an equal item had already been inserted.
662 * free(item);
663 * } else {
664 * // Successfully inserted the item and we are guaranteed that
665 * // there are no other equal items.
666 * }
667 * \endcode
668 *
669 */
670bool cht_insert_unique(cht_t *h, cht_link_t *item)
671{
672 return insert_impl(h, item, true);
673}
674
675/** Inserts the item into the table and checks for duplicates if unique is true.*/
676static bool insert_impl(cht_t *h, cht_link_t *item, bool unique)
677{
678 rcu_read_lock();
679
680 cht_buckets_t *b = rcu_access(h->b);
681 memoize_node_hash(h, item);
682 size_t hash = node_hash(h, item);
683 size_t idx = calc_bucket_idx(hash, b->order);
684 marked_ptr_t *phead = &b->head[idx];
685
686 bool resizing = false;
687 bool inserted = false;
688
689 do {
690 walk_mode_t walk_mode = WM_NORMAL;
691 bool join_finishing;
692
693 resizing = resizing || (N_NORMAL != get_mark(*phead));
694
695 /* The table is resizing. Get the correct bucket head. */
696 if (resizing) {
697 upd_resizing_head(h, hash, &phead, &join_finishing, &walk_mode);
698 }
699
700 wnd_t wnd = {
701 .ppred = phead,
702 .cur = get_next(*phead),
703 .last = NULL
704 };
705
706 if (!find_wnd_and_gc(h, hash, walk_mode, &wnd, &resizing)) {
707 /* Could not GC a node; or detected an unexpected resize. */
708 continue;
709 }
710
711 if (unique && has_duplicates(h, item, hash, &wnd)) {
712 rcu_read_unlock();
713 return false;
714 }
715
716 inserted = insert_at(item, &wnd, walk_mode, &resizing);
717 } while (!inserted);
718
719 rcu_read_unlock();
720
721 item_inserted(h);
722 return true;
723}
724
725/** Inserts item between wnd.ppred and wnd.cur.
726 *
727 * @param item Item to link to wnd.ppred and wnd.cur.
728 * @param wnd The item will be inserted before wnd.cur. Wnd.ppred
729 * must be N_NORMAL.
730 * @param walk_mode
731 * @param resizing Set to true only if the table is undergoing resize
732 * and it was not expected (ie walk_mode == WM_NORMAL).
733 * @return True if the item was successfully linked to wnd.ppred. False
734 * if whole insert operation must be retried because the predecessor
735 * of wnd.cur has changed.
736 */
737inline static bool insert_at(cht_link_t *item, const wnd_t *wnd,
738 walk_mode_t walk_mode, bool *resizing)
739{
740 marked_ptr_t ret;
741
742 if (walk_mode == WM_NORMAL) {
743 item->link = make_link(wnd->cur, N_NORMAL);
744 /* Initialize the item before adding it to a bucket. */
745 memory_barrier();
746
747 /* Link a clean/normal predecessor to the item. */
748 ret = cas_link(wnd->ppred, wnd->cur, N_NORMAL, item, N_NORMAL);
749
750 if (ret == make_link(wnd->cur, N_NORMAL)) {
751 return true;
752 } else {
753 /* This includes an invalid head but not a const head. */
754 *resizing = ((N_JOIN_FOLLOWS | N_JOIN) & get_mark(ret));
755 return false;
756 }
757 } else if (walk_mode == WM_MOVE_JOIN_FOLLOWS) {
758 /* Move JOIN_FOLLOWS mark but filter out the DELETED mark. */
759 mark_t jf_mark = get_mark(*wnd->ppred) & N_JOIN_FOLLOWS;
760 item->link = make_link(wnd->cur, jf_mark);
761 /* Initialize the item before adding it to a bucket. */
762 memory_barrier();
763
764 /* Link the not-deleted predecessor to the item. Move its JF mark. */
765 ret = cas_link(wnd->ppred, wnd->cur, jf_mark, item, N_NORMAL);
766
767 return ret == make_link(wnd->cur, jf_mark);
768 } else {
769 ASSERT(walk_mode == WM_LEAVE_JOIN);
770
771 item->link = make_link(wnd->cur, N_NORMAL);
772 /* Initialize the item before adding it to a bucket. */
773 memory_barrier();
774
775 mark_t pred_mark = get_mark(*wnd->ppred);
776 /* If the predecessor is a join node it may be marked deleted.*/
777 mark_t exp_pred_mark = (N_JOIN & pred_mark) ? pred_mark : N_NORMAL;
778
779 ret = cas_link(wnd->ppred, wnd->cur, exp_pred_mark, item, exp_pred_mark);
780 return ret == make_link(wnd->cur, exp_pred_mark);
781 }
782}
783
784/** Returns true the chain starting at wnd hash an item equal to \a item.
785 *
786 * @param h CHT to operate on.
787 * @param item Item whose duplicates the function looks for.
788 * @param hash Hash of \a item.
789 * @param[in] wnd wnd.cur is the first node with a hash greater to or equal
790 * to item's hash.
791 * @return True if a non-deleted item equal to \a item exists in the table.
792 */
793static inline bool has_duplicates(cht_t *h, const cht_link_t *item, size_t hash,
794 const wnd_t *wnd)
795{
796 ASSERT(wnd->cur);
797 ASSERT(wnd->cur == &sentinel || hash <= node_hash(h, wnd->cur)
798 || node_hash(h, wnd->cur) == h->invalid_hash);
799
800 /* hash < node_hash(h, wnd->cur) */
801 if (hash != node_hash(h, wnd->cur) && h->invalid_hash != node_hash(h, wnd->cur))
802 return false;
803
804 /*
805 * Load the most recent node marks. Otherwise we might pronounce a
806 * logically deleted node for a duplicate of the item just because
807 * the deleted node's DEL mark had not yet propagated to this cpu.
808 */
809 read_barrier();
810 return NULL != find_duplicate(h, item, hash, wnd->cur);
811}
812
813/** Returns an item that is equal to \a item starting in a chain at \a start. */
814static cht_link_t *find_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
815 cht_link_t *start)
816{
817 ASSERT(hash <= node_hash(h, start) || h->invalid_hash == node_hash(h, start));
818
819 cht_link_t *cur = start;
820
821try_again:
822 ASSERT(cur);
823
824 while (node_hash(h, cur) == hash) {
825 ASSERT(cur != &sentinel);
826
827 bool deleted = (N_DELETED & get_mark(cur->link));
828
829 /* Skip logically deleted nodes. */
830 if (!deleted && h->op->equal(item, cur))
831 return cur;
832
833 cur = get_next(cur->link);
834 ASSERT(cur);
835 }
836
837 /* Skip logically deleted nodes with rcu_call() in progress. */
838 if (h->invalid_hash == node_hash(h, cur)) {
839 cur = get_next(cur->link);
840 goto try_again;
841 }
842
843 return NULL;
844}
845
846/** Removes all items matching the search key. Returns the number of items removed.*/
847size_t cht_remove_key(cht_t *h, void *key)
848{
849 ASSERT(h);
850
851 size_t hash = calc_key_hash(h, key);
852 size_t removed = 0;
853
854 while (remove_pred(h, hash, h->op->key_equal, key))
855 ++removed;
856
857 return removed;
858}
859
860/** Removes a specific item from the table.
861 *
862 * The called must hold rcu read lock.
863 *
864 * @param item Item presumably present in the table and to be removed.
865 * @return True if the item was removed successfully; or false if it had
866 * already been deleted.
867 */
868bool cht_remove_item(cht_t *h, cht_link_t *item)
869{
870 ASSERT(h);
871 ASSERT(item);
872 /* Otherwise a concurrent cht_remove_key might free the item. */
873 ASSERT(rcu_read_locked());
874
875 /*
876 * Even though we know the node we want to delete we must unlink it
877 * from the correct bucket and from a clean/normal predecessor. Therefore,
878 * we search for it again from the beginning of the correct bucket.
879 */
880 size_t hash = calc_node_hash(h, item);
881 return remove_pred(h, hash, same_node_pred, item);
882}
883
884/** Removes an item equal to pred_arg according to the predicate pred. */
885static bool remove_pred(cht_t *h, size_t hash, equal_pred_t pred, void *pred_arg)
886{
887 rcu_read_lock();
888
889 bool resizing = false;
890 bool deleted = false;
891 bool deleted_but_gc = false;
892
893 cht_buckets_t *b = rcu_access(h->b);
894 size_t idx = calc_bucket_idx(hash, b->order);
895 marked_ptr_t *phead = &b->head[idx];
896
897 do {
898 walk_mode_t walk_mode = WM_NORMAL;
899 bool join_finishing = false;
900
901 resizing = resizing || (N_NORMAL != get_mark(*phead));
902
903 /* The table is resizing. Get the correct bucket head. */
904 if (resizing) {
905 upd_resizing_head(h, hash, &phead, &join_finishing, &walk_mode);
906 }
907
908 wnd_t wnd = {
909 .ppred = phead,
910 .cur = get_next(*phead),
911 .last = NULL
912 };
913
914 if (!find_wnd_and_gc_pred(
915 h, hash, walk_mode, pred, pred_arg, &wnd, &resizing)) {
916 /* Could not GC a node; or detected an unexpected resize. */
917 continue;
918 }
919
920 /*
921 * The item lookup is affected by a bucket join but effects of
922 * the bucket join have not been seen while searching for the item.
923 */
924 if (join_finishing && !join_completed(h, &wnd)) {
925 /*
926 * Bucket was appended at the end of another but the next
927 * ptr linking them together was not visible on this cpu.
928 * join_completed() makes this appended bucket visible.
929 */
930 continue;
931 }
932
933 /* Already deleted, but delete_at() requested one GC pass. */
934 if (deleted_but_gc)
935 break;
936
937 bool found = (wnd.cur != &sentinel && pred(pred_arg, wnd.cur));
938
939 if (!found) {
940 rcu_read_unlock();
941 return false;
942 }
943
944 deleted = delete_at(h, &wnd, walk_mode, &deleted_but_gc, &resizing);
945 } while (!deleted || deleted_but_gc);
946
947 rcu_read_unlock();
948 return true;
949}
950
951/** Unlinks wnd.cur from wnd.ppred and schedules a deferred free for the item.
952 *
953 * Ignores nodes marked N_JOIN if walk mode is WM_LEAVE_JOIN.
954 *
955 * @param h CHT to operate on.
956 * @param wnd Points to the item to delete and its N_NORMAL predecessor.
957 * @param walk_mode Bucket chaing walk mode.
958 * @param deleted_but_gc Set to true if the item had been logically deleted,
959 * but a garbage collecting walk of the bucket is in order for
960 * it to be fully unlinked.
961 * @param resizing Set to true if the table is undergoing an unexpected
962 * resize (ie walk_mode == WM_NORMAL).
963 * @return False if the wnd.ppred changed in the meantime and the whole
964 * delete operation must be retried.
965 */
966static inline bool delete_at(cht_t *h, wnd_t *wnd, walk_mode_t walk_mode,
967 bool *deleted_but_gc, bool *resizing)
968{
969 ASSERT(wnd->cur && wnd->cur != &sentinel);
970
971 *deleted_but_gc = false;
972
973 if (!mark_deleted(wnd->cur, walk_mode, resizing)) {
974 /* Already deleted, or unexpectedly marked as JOIN/JOIN_FOLLOWS. */
975 return false;
976 }
977
978 /* Marked deleted. Unlink from the bucket. */
979
980 /* Never unlink join nodes. */
981 if (walk_mode == WM_LEAVE_JOIN && (N_JOIN & get_mark(wnd->cur->link)))
982 return true;
983
984 cas_order_barrier();
985
986 if (unlink_from_pred(wnd, walk_mode, resizing)) {
987 free_later(h, wnd->cur);
988 } else {
989 *deleted_but_gc = true;
990 }
991
992 return true;
993}
994
995/** Marks cur logically deleted. Returns false to request a retry. */
996static inline bool mark_deleted(cht_link_t *cur, walk_mode_t walk_mode,
997 bool *resizing)
998{
999 ASSERT(cur && cur != &sentinel);
1000
1001 /*
1002 * Btw, we could loop here if the cas fails but let's not complicate
1003 * things and let's retry from the head of the bucket.
1004 */
1005
1006 cht_link_t *next = get_next(cur->link);
1007
1008 if (walk_mode == WM_NORMAL) {
1009 /* Only mark clean/normal nodes - JF/JN is used only during resize. */
1010 marked_ptr_t ret = cas_link(&cur->link, next, N_NORMAL, next, N_DELETED);
1011
1012 if (ret != make_link(next, N_NORMAL)) {
1013 *resizing = (N_JOIN | N_JOIN_FOLLOWS) & get_mark(ret);
1014 return false;
1015 }
1016 } else {
1017 ASSERT(N_JOIN == N_JOIN_FOLLOWS);
1018
1019 /* Keep the N_JOIN/N_JOIN_FOLLOWS mark but strip N_DELETED. */
1020 mark_t cur_mark = get_mark(cur->link) & N_JOIN_FOLLOWS;
1021
1022 marked_ptr_t ret =
1023 cas_link(&cur->link, next, cur_mark, next, cur_mark | N_DELETED);
1024
1025 if (ret != make_link(next, cur_mark))
1026 return false;
1027 }
1028
1029 return true;
1030}
1031
1032/** Unlinks wnd.cur from wnd.ppred. Returns false if it should be retried. */
1033static inline bool unlink_from_pred(wnd_t *wnd, walk_mode_t walk_mode,
1034 bool *resizing)
1035{
1036 ASSERT(wnd->cur != &sentinel);
1037 ASSERT(wnd->cur && (N_DELETED & get_mark(wnd->cur->link)));
1038
1039 cht_link_t *next = get_next(wnd->cur->link);
1040
1041 if (walk_mode == WM_LEAVE_JOIN) {
1042 /* Never try to unlink join nodes. */
1043 ASSERT(!(N_JOIN & get_mark(wnd->cur->link)));
1044
1045 mark_t pred_mark = get_mark(*wnd->ppred);
1046 /* Succeed only if the predecessor is clean/normal or a join node. */
1047 mark_t exp_pred_mark = (N_JOIN & pred_mark) ? pred_mark : N_NORMAL;
1048
1049 marked_ptr_t pred_link = make_link(wnd->cur, exp_pred_mark);
1050 marked_ptr_t next_link = make_link(next, exp_pred_mark);
1051
1052 if (pred_link != _cas_link(wnd->ppred, pred_link, next_link))
1053 return false;
1054 } else {
1055 ASSERT(walk_mode == WM_MOVE_JOIN_FOLLOWS || walk_mode == WM_NORMAL);
1056 /* Move the JF mark if set. Clear DEL mark. */
1057 mark_t cur_mark = N_JOIN_FOLLOWS & get_mark(wnd->cur->link);
1058
1059 /* The predecessor must be clean/normal. */
1060 marked_ptr_t pred_link = make_link(wnd->cur, N_NORMAL);
1061 /* Link to cur's successor keeping/copying cur's JF mark. */
1062 marked_ptr_t next_link = make_link(next, cur_mark);
1063
1064 marked_ptr_t ret = _cas_link(wnd->ppred, pred_link, next_link);
1065
1066 if (pred_link != ret) {
1067 /* If we're not resizing the table there are no JF/JN nodes. */
1068 *resizing = (walk_mode == WM_NORMAL)
1069 && (N_JOIN_FOLLOWS & get_mark(ret));
1070 return false;
1071 }
1072 }
1073
1074 return true;
1075}
1076
1077/** Finds the first non-deleted item equal to \a pred_arg according to \a pred.
1078 *
1079 * The function returns the candidate item in \a wnd. Logically deleted
1080 * nodes are garbage collected so the predecessor will most likely not
1081 * be marked as deleted.
1082 *
1083 * Unlike find_wnd_and_gc(), this function never returns a node that
1084 * is known to have already been marked N_DELETED.
1085 *
1086 * Any logically deleted nodes (ie those marked N_DELETED) are garbage
1087 * collected, ie free in the background via rcu_call (except for join-nodes
1088 * if walk_mode == WM_LEAVE_JOIN).
1089 *
1090 * @param h CHT to operate on.
1091 * @param hash Hash the search for.
1092 * @param walk_mode Bucket chain walk mode.
1093 * @param pred Predicate used to find an item equal to pred_arg.
1094 * @param pred_arg Argument to pass to the equality predicate \a pred.
1095 * @param[in,out] wnd The search starts with wnd.cur. If the desired
1096 * item is found wnd.cur will point to it.
1097 * @param resizing Set to true if the table is resizing but it was not
1098 * expected (ie walk_mode == WM_NORMAL).
1099 * @return False if the operation has to be retried. True otherwise
1100 * (even if an equal item had not been found).
1101 */
1102static bool find_wnd_and_gc_pred(cht_t *h, size_t hash, walk_mode_t walk_mode,
1103 equal_pred_t pred, void *pred_arg, wnd_t *wnd, bool *resizing)
1104{
1105 ASSERT(wnd->cur);
1106
1107 if (wnd->cur == &sentinel)
1108 return true;
1109
1110 /*
1111 * A read barrier is not needed here to bring up the most recent
1112 * node marks (esp the N_DELETED). At worst we'll try to delete
1113 * an already deleted node; fail in delete_at(); and retry.
1114 */
1115
1116 size_t cur_hash;
1117
1118try_again:
1119 cur_hash = node_hash(h, wnd->cur);
1120
1121 while (cur_hash <= hash) {
1122 ASSERT(wnd->cur && wnd->cur != &sentinel);
1123
1124 /* GC any deleted nodes on the way. */
1125 if (N_DELETED & get_mark(wnd->cur->link)) {
1126 if (!gc_deleted_node(h, walk_mode, wnd, resizing)) {
1127 /* Retry from the head of a bucket. */
1128 return false;
1129 }
1130 } else {
1131 /* Is this the node we were looking for? */
1132 if (cur_hash == hash && pred(pred_arg, wnd->cur))
1133 return true;
1134
1135 next_wnd(wnd);
1136 }
1137
1138 cur_hash = node_hash(h, wnd->cur);
1139 }
1140
1141 if (cur_hash == h->invalid_hash) {
1142 next_wnd(wnd);
1143 ASSERT(wnd->cur);
1144 goto try_again;
1145 }
1146
1147 /* The searched for node is not in the current bucket. */
1148 return true;
1149}
1150
1151/** Find the first item (deleted or not) with a hash greater or equal to \a hash.
1152 *
1153 * The function returns the first item with a hash that is greater or
1154 * equal to \a hash in \a wnd. Moreover it garbage collects logically
1155 * deleted node that have not yet been unlinked and freed. Therefore,
1156 * the returned node's predecessor will most likely be N_NORMAL.
1157 *
1158 * Unlike find_wnd_and_gc_pred(), this function may return a node
1159 * that is known to had been marked N_DELETED.
1160 *
1161 * @param h CHT to operate on.
1162 * @param hash Hash of the item to find.
1163 * @param walk_mode Bucket chain walk mode.
1164 * @param[in,out] wnd wnd.cur denotes the first node of the chain. If the
1165 * the operation is successful, \a wnd points to the desired
1166 * item.
1167 * @param resizing Set to true if a table resize was detected but walk_mode
1168 * suggested the table was not undergoing a resize.
1169 * @return False indicates the operation must be retried. True otherwise
1170 * (even if an item with exactly the same has was not found).
1171 */
1172static bool find_wnd_and_gc(cht_t *h, size_t hash, walk_mode_t walk_mode,
1173 wnd_t *wnd, bool *resizing)
1174{
1175try_again:
1176 ASSERT(wnd->cur);
1177
1178 while (node_hash(h, wnd->cur) < hash) {
1179 /* GC any deleted nodes along the way to our desired node. */
1180 if (N_DELETED & get_mark(wnd->cur->link)) {
1181 if (!gc_deleted_node(h, walk_mode, wnd, resizing)) {
1182 /* Failed to remove the garbage node. Retry. */
1183 return false;
1184 }
1185 } else {
1186 next_wnd(wnd);
1187 }
1188
1189 ASSERT(wnd->cur);
1190 }
1191
1192 if (node_hash(h, wnd->cur) == h->invalid_hash) {
1193 next_wnd(wnd);
1194 goto try_again;
1195 }
1196
1197 /* wnd->cur may be NULL or even marked N_DELETED. */
1198 return true;
1199}
1200
1201/** Garbage collects the N_DELETED node at \a wnd skipping join nodes. */
1202static bool gc_deleted_node(cht_t *h, walk_mode_t walk_mode, wnd_t *wnd,
1203 bool *resizing)
1204{
1205 ASSERT(N_DELETED & get_mark(wnd->cur->link));
1206
1207 /* Skip deleted JOIN nodes. */
1208 if (walk_mode == WM_LEAVE_JOIN && (N_JOIN & get_mark(wnd->cur->link))) {
1209 next_wnd(wnd);
1210 } else {
1211 /* Ordinary deleted node or a deleted JOIN_FOLLOWS. */
1212 ASSERT(walk_mode != WM_LEAVE_JOIN
1213 || !((N_JOIN | N_JOIN_FOLLOWS) & get_mark(wnd->cur->link)));
1214
1215 /* Unlink an ordinary deleted node, move JOIN_FOLLOWS mark. */
1216 if (!unlink_from_pred(wnd, walk_mode, resizing)) {
1217 /* Retry. The predecessor was deleted, invalid, const, join_follows. */
1218 return false;
1219 }
1220
1221 free_later(h, wnd->cur);
1222
1223 /* Leave ppred as is. */
1224 wnd->last = wnd->cur;
1225 wnd->cur = get_next(wnd->cur->link);
1226 }
1227
1228 return true;
1229}
1230
1231/** Returns true if a bucket join had already completed.
1232 *
1233 * May only be called if upd_resizing_head() indicates a bucket join
1234 * may be in progress.
1235 *
1236 * If it returns false, the search must be retried in order to guarantee
1237 * all item that should have been encountered have been seen.
1238 */
1239static bool join_completed(cht_t *h, const wnd_t *wnd)
1240{
1241 /*
1242 * The table is shrinking and the searched for item is in a bucket
1243 * appended to another. Check that the link joining these two buckets
1244 * is visible and if not, make it visible to this cpu.
1245 */
1246
1247 /*
1248 * Resizer ensures h->b->order stays the same for the duration of this
1249 * func. We got here because there was an alternative head to search.
1250 * The resizer waits for all preexisting readers to finish after
1251 * it
1252 */
1253 ASSERT(h->b->order > h->new_b->order);
1254 ASSERT(wnd->cur);
1255
1256 /* Either we did not need the joining link or we have already followed it.*/
1257 if (wnd->cur != &sentinel)
1258 return true;
1259
1260 /* We have reached the end of a bucket. */
1261
1262 if (wnd->last != &sentinel) {
1263 size_t last_seen_hash = node_hash(h, wnd->last);
1264
1265 if (last_seen_hash == h->invalid_hash) {
1266 last_seen_hash = calc_node_hash(h, wnd->last);
1267 }
1268
1269 size_t last_old_idx = calc_bucket_idx(last_seen_hash, h->b->order);
1270 size_t move_src_idx = grow_idx(shrink_idx(last_old_idx));
1271
1272 /*
1273 * Last node seen was in the joining bucket - if the searched
1274 * for node is there we will find it.
1275 */
1276 if (move_src_idx != last_old_idx)
1277 return true;
1278 }
1279
1280 /*
1281 * Reached the end of the bucket but no nodes from the joining bucket
1282 * were seen. There should have at least been a JOIN node so we have
1283 * definitely not seen (and followed) the joining link. Make the link
1284 * visible and retry.
1285 */
1286 read_barrier();
1287 return false;
1288}
1289
1290/** When resizing returns the bucket head to start the search with in \a phead.
1291 *
1292 * If a resize had been detected (eg cht_t.b.head[idx] is marked immutable).
1293 * upd_resizing_head() moves the bucket for \a hash from the old head
1294 * to the new head. Moreover, it splits or joins buckets as necessary.
1295 *
1296 * @param h CHT to operate on.
1297 * @param hash Hash of an item whose chain we would like to traverse.
1298 * @param[out] phead Head of the bucket to search for \a hash.
1299 * @param[out] join_finishing Set to true if a bucket join might be
1300 * in progress and the bucket may have to traversed again
1301 * as indicated by join_completed().
1302 * @param[out] walk_mode Specifies how to interpret node marks.
1303 */
1304static void upd_resizing_head(cht_t *h, size_t hash, marked_ptr_t **phead,
1305 bool *join_finishing, walk_mode_t *walk_mode)
1306{
1307 cht_buckets_t *b = rcu_access(h->b);
1308 size_t old_idx = calc_bucket_idx(hash, b->order);
1309 size_t new_idx = calc_bucket_idx(hash, h->new_b->order);
1310
1311 marked_ptr_t *pold_head = &b->head[old_idx];
1312 marked_ptr_t *pnew_head = &h->new_b->head[new_idx];
1313
1314 /* In any case, use the bucket in the new table. */
1315 *phead = pnew_head;
1316
1317 /* Growing the table. */
1318 if (b->order < h->new_b->order) {
1319 size_t move_dest_idx = grow_idx(old_idx);
1320 marked_ptr_t *pmoved_head = &h->new_b->head[move_dest_idx];
1321
1322 /* Complete moving the bucket from the old to the new table. */
1323 help_head_move(pold_head, pmoved_head);
1324
1325 /* The hash belongs to the moved bucket. */
1326 if (move_dest_idx == new_idx) {
1327 ASSERT(pmoved_head == pnew_head);
1328 /*
1329 * move_head() makes the new head of the moved bucket visible.
1330 * The new head may be marked with a JOIN_FOLLOWS
1331 */
1332 ASSERT(!(N_CONST & get_mark(*pmoved_head)));
1333 *walk_mode = WM_MOVE_JOIN_FOLLOWS;
1334 } else {
1335 ASSERT(pmoved_head != pnew_head);
1336 /*
1337 * The hash belongs to the bucket that is the result of splitting
1338 * the old/moved bucket, ie the bucket that contains the second
1339 * half of the split/old/moved bucket.
1340 */
1341
1342 /* The moved bucket has not yet been split. */
1343 if (N_NORMAL != get_mark(*pnew_head)) {
1344 size_t split_hash = calc_split_hash(new_idx, h->new_b->order);
1345 split_bucket(h, pmoved_head, pnew_head, split_hash);
1346 /*
1347 * split_bucket() makes the new head visible. No
1348 * JOIN_FOLLOWS in this part of split bucket.
1349 */
1350 ASSERT(N_NORMAL == get_mark(*pnew_head));
1351 }
1352
1353 *walk_mode = WM_LEAVE_JOIN;
1354 }
1355 } else if (h->new_b->order < b->order ) {
1356 /* Shrinking the table. */
1357
1358 size_t move_src_idx = grow_idx(new_idx);
1359
1360 /*
1361 * Complete moving the bucket from the old to the new table.
1362 * Makes a valid pnew_head visible if already moved.
1363 */
1364 help_head_move(&b->head[move_src_idx], pnew_head);
1365
1366 /* Hash belongs to the bucket to be joined with the moved bucket. */
1367 if (move_src_idx != old_idx) {
1368 /* Bucket join not yet completed. */
1369 if (N_INVALID != get_mark(*pold_head)) {
1370 size_t split_hash = calc_split_hash(old_idx, b->order);
1371 join_buckets(h, pold_head, pnew_head, split_hash);
1372 }
1373
1374 /*
1375 * The resizer sets pold_head to &sentinel when all cpus are
1376 * guaranteed to see the bucket join.
1377 */
1378 *join_finishing = (&sentinel != get_next(*pold_head));
1379 }
1380
1381 /* move_head() or join_buckets() makes it so or makes the mark visible.*/
1382 ASSERT(N_INVALID == get_mark(*pold_head));
1383 /* move_head() makes it visible. No JOIN_FOLLOWS used when shrinking. */
1384 ASSERT(N_NORMAL == get_mark(*pnew_head));
1385
1386 *walk_mode = WM_LEAVE_JOIN;
1387 } else {
1388 /*
1389 * Final stage of resize. The resizer is waiting for all
1390 * readers to notice that the old table had been replaced.
1391 */
1392 ASSERT(b == h->new_b);
1393 *walk_mode = WM_NORMAL;
1394 }
1395}
1396
1397
1398#if 0
1399static void move_head(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head)
1400{
1401 start_head_move(psrc_head);
1402 cas_order_barrier();
1403 complete_head_move(psrc_head, pdest_head);
1404}
1405#endif
1406
1407/** Moves an immutable head \a psrc_head of cht_t.b to \a pdest_head of cht_t.new_b.
1408 *
1409 * The function guarantees the move will be visible on this cpu once
1410 * it completes. In particular, *pdest_head will not be N_INVALID.
1411 *
1412 * Unlike complete_head_move(), help_head_move() checks if the head had already
1413 * been moved and tries to avoid moving the bucket heads if possible.
1414 */
1415static inline void help_head_move(marked_ptr_t *psrc_head,
1416 marked_ptr_t *pdest_head)
1417{
1418 /* Head move has to in progress already when calling this func. */
1419 ASSERT(N_CONST & get_mark(*psrc_head));
1420
1421 /* Head already moved. */
1422 if (N_INVALID == get_mark(*psrc_head)) {
1423 /* Effects of the head move have not yet propagated to this cpu. */
1424 if (N_INVALID == get_mark(*pdest_head)) {
1425 /* Make the move visible on this cpu. */
1426 read_barrier();
1427 }
1428 } else {
1429 complete_head_move(psrc_head, pdest_head);
1430 }
1431
1432 ASSERT(!(N_CONST & get_mark(*pdest_head)));
1433}
1434
1435/** Initiates the move of the old head \a psrc_head.
1436 *
1437 * The move may be completed with help_head_move().
1438 */
1439static void start_head_move(marked_ptr_t *psrc_head)
1440{
1441 /* Mark src head immutable. */
1442 mark_const(psrc_head);
1443}
1444
1445/** Marks the head immutable. */
1446static void mark_const(marked_ptr_t *psrc_head)
1447{
1448 marked_ptr_t ret, src_link;
1449
1450 /* Mark src head immutable. */
1451 do {
1452 cht_link_t *next = get_next(*psrc_head);
1453 src_link = make_link(next, N_NORMAL);
1454
1455 /* Mark the normal/clean src link immutable/const. */
1456 ret = cas_link(psrc_head, next, N_NORMAL, next, N_CONST);
1457 } while(ret != src_link && !(N_CONST & get_mark(ret)));
1458}
1459
1460/** Completes moving head psrc_head to pdest_head (started by start_head_move()).*/
1461static void complete_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head)
1462{
1463 ASSERT(N_JOIN_FOLLOWS != get_mark(*psrc_head));
1464 ASSERT(N_CONST & get_mark(*psrc_head));
1465
1466 cht_link_t *next = get_next(*psrc_head);
1467 marked_ptr_t ret;
1468
1469 ret = cas_link(pdest_head, &sentinel, N_INVALID, next, N_NORMAL);
1470 ASSERT(ret == make_link(&sentinel, N_INVALID) || (N_NORMAL == get_mark(ret)));
1471 cas_order_barrier();
1472
1473 ret = cas_link(psrc_head, next, N_CONST, next, N_INVALID);
1474 ASSERT(ret == make_link(next, N_CONST) || (N_INVALID == get_mark(ret)));
1475 cas_order_barrier();
1476}
1477
1478/** Splits the bucket at psrc_head and links to the remainder from pdest_head.
1479 *
1480 * Items with hashes greater or equal to \a split_hash are moved to bucket
1481 * with head at \a pdest_head.
1482 *
1483 * @param h CHT to operate on.
1484 * @param psrc_head Head of the bucket to split (in cht_t.new_b).
1485 * @param pdest_head Head of the bucket that points to the second part
1486 * of the split bucket in psrc_head. (in cht_t.new_b)
1487 * @param split_hash Hash of the first possible item in the remainder of
1488 * psrc_head, ie the smallest hash pdest_head is allowed
1489 * to point to..
1490 */
1491static void split_bucket(cht_t *h, marked_ptr_t *psrc_head,
1492 marked_ptr_t *pdest_head, size_t split_hash)
1493{
1494 /* Already split. */
1495 if (N_NORMAL == get_mark(*pdest_head))
1496 return;
1497
1498 /*
1499 * L == Last node of the first part of the split bucket. That part
1500 * remains in the original/src bucket.
1501 * F == First node of the second part of the split bucket. That part
1502 * will be referenced from the dest bucket head.
1503 *
1504 * We want to first mark a clean L as JF so that updaters unaware of
1505 * the split (or table resize):
1506 * - do not insert a new node between L and F
1507 * - do not unlink L (that is why it has to be clean/normal)
1508 * - do not unlink F
1509 *
1510 * Then we can safely mark F as JN even if it has been marked deleted.
1511 * Once F is marked as JN updaters aware of table resize will not
1512 * attempt to unlink it (JN will have two predecessors - we cannot
1513 * safely unlink from both at the same time). Updaters unaware of
1514 * ongoing resize can reach F only via L and that node is already
1515 * marked JF, so they won't unlink F.
1516 *
1517 * Last, link the new/dest head to F.
1518 *
1519 *
1520 * 0) ,-- split_hash, first hash of the dest bucket
1521 * v
1522 * [src_head | N] -> .. -> [L] -> [F]
1523 * [dest_head | Inv]
1524 *
1525 * 1) ,-- split_hash
1526 * v
1527 * [src_head | N] -> .. -> [JF] -> [F]
1528 * [dest_head | Inv]
1529 *
1530 * 2) ,-- split_hash
1531 * v
1532 * [src_head | N] -> .. -> [JF] -> [JN]
1533 * [dest_head | Inv]
1534 *
1535 * 2) ,-- split_hash
1536 * v
1537 * [src_head | N] -> .. -> [JF] -> [JN]
1538 * ^
1539 * [dest_head | N] -----------------'
1540 */
1541 wnd_t wnd;
1542
1543 rcu_read_lock();
1544
1545 /* Mark the last node of the first part of the split bucket as JF. */
1546 mark_join_follows(h, psrc_head, split_hash, &wnd);
1547 cas_order_barrier();
1548
1549 /* There are nodes in the dest bucket, ie the second part of the split. */
1550 if (wnd.cur != &sentinel) {
1551 /*
1552 * Mark the first node of the dest bucket as a join node so
1553 * updaters do not attempt to unlink it if it is deleted.
1554 */
1555 mark_join_node(wnd.cur);
1556 cas_order_barrier();
1557 } else {
1558 /*
1559 * Second part of the split bucket is empty. There are no nodes
1560 * to mark as JOIN nodes and there never will be.
1561 */
1562 }
1563
1564 /* Link the dest head to the second part of the split. */
1565 marked_ptr_t ret =
1566 cas_link(pdest_head, &sentinel, N_INVALID, wnd.cur, N_NORMAL);
1567 ASSERT(ret == make_link(&sentinel, N_INVALID) || (N_NORMAL == get_mark(ret)));
1568 cas_order_barrier();
1569
1570 rcu_read_unlock();
1571}
1572
1573/** Finds and marks the last node of psrc_head w/ hash less than split_hash.
1574 *
1575 * Finds a node in psrc_head with the greatest hash that is strictly less
1576 * than split_hash and marks it with N_JOIN_FOLLOWS.
1577 *
1578 * Returns a window pointing to that node.
1579 *
1580 * Any logically deleted nodes along the way are
1581 * garbage collected; therefore, the predecessor node (if any) will most
1582 * likely not be marked N_DELETED.
1583 *
1584 * @param h CHT to operate on.
1585 * @param psrc_head Bucket head.
1586 * @param split_hash The smallest hash a join node (ie the node following
1587 * the desired join-follows node) may have.
1588 * @param[out] wnd Points to the node marked with N_JOIN_FOLLOWS.
1589 */
1590static void mark_join_follows(cht_t *h, marked_ptr_t *psrc_head,
1591 size_t split_hash, wnd_t *wnd)
1592{
1593 /* See comment in split_bucket(). */
1594
1595 bool done;
1596 do {
1597 bool resizing = false;
1598 wnd->ppred = psrc_head;
1599 wnd->cur = get_next(*psrc_head);
1600
1601 /*
1602 * Find the split window, ie the last node of the first part of
1603 * the split bucket and the its successor - the first node of
1604 * the second part of the split bucket. Retry if GC failed.
1605 */
1606 if (!find_wnd_and_gc(h, split_hash, WM_MOVE_JOIN_FOLLOWS, wnd, &resizing))
1607 continue;
1608
1609 /* Must not report that the table is resizing if WM_MOVE_JOIN_FOLLOWS.*/
1610 ASSERT(!resizing);
1611 /*
1612 * Mark the last node of the first half of the split bucket
1613 * that a join node follows. It must be clean/normal.
1614 */
1615 marked_ptr_t ret
1616 = cas_link(wnd->ppred, wnd->cur, N_NORMAL, wnd->cur, N_JOIN_FOLLOWS);
1617
1618 /*
1619 * Successfully marked as a JF node or already marked that way (even
1620 * if also marked deleted - unlinking the node will move the JF mark).
1621 */
1622 done = (ret == make_link(wnd->cur, N_NORMAL))
1623 || (N_JOIN_FOLLOWS & get_mark(ret));
1624 } while (!done);
1625}
1626
1627/** Marks join_node with N_JOIN. */
1628static void mark_join_node(cht_link_t *join_node)
1629{
1630 /* See comment in split_bucket(). */
1631
1632 bool done;
1633 do {
1634 cht_link_t *next = get_next(join_node->link);
1635 mark_t mark = get_mark(join_node->link);
1636
1637 /*
1638 * May already be marked as deleted, but it won't be unlinked
1639 * because its predecessor is marked with JOIN_FOLLOWS or CONST.
1640 */
1641 marked_ptr_t ret
1642 = cas_link(&join_node->link, next, mark, next, mark | N_JOIN);
1643
1644 /* Successfully marked or already marked as a join node. */
1645 done = (ret == make_link(next, mark))
1646 || (N_JOIN & get_mark(ret));
1647 } while(!done);
1648}
1649
1650/** Appends the bucket at psrc_head to the bucket at pdest_head.
1651 *
1652 * @param h CHT to operate on.
1653 * @param psrc_head Bucket to merge with pdest_head.
1654 * @param pdest_head Bucket to be joined by psrc_head.
1655 * @param split_hash The smallest hash psrc_head may contain.
1656 */
1657static void join_buckets(cht_t *h, marked_ptr_t *psrc_head,
1658 marked_ptr_t *pdest_head, size_t split_hash)
1659{
1660 /* Buckets already joined. */
1661 if (N_INVALID == get_mark(*psrc_head))
1662 return;
1663 /*
1664 * F == First node of psrc_head, ie the bucket we want to append
1665 * to (ie join with) the bucket starting at pdest_head.
1666 * L == Last node of pdest_head, ie the bucket that psrc_head will
1667 * be appended to.
1668 *
1669 * (1) We first mark psrc_head immutable to signal that a join is
1670 * in progress and so that updaters unaware of the join (or table
1671 * resize):
1672 * - do not insert new nodes between the head psrc_head and F
1673 * - do not unlink F (it may already be marked deleted)
1674 *
1675 * (2) Next, F is marked as a join node. Updaters aware of table resize
1676 * will not attempt to unlink it. We cannot safely/atomically unlink
1677 * the join node because it will be pointed to from two different
1678 * buckets. Updaters unaware of resize will fail to unlink the join
1679 * node due to the head being marked immutable.
1680 *
1681 * (3) Then the tail of the bucket at pdest_head is linked to the join
1682 * node. From now on, nodes in both buckets can be found via pdest_head.
1683 *
1684 * (4) Last, mark immutable psrc_head as invalid. It signals updaters
1685 * that the join is complete and they can insert new nodes (originally
1686 * destined for psrc_head) into pdest_head.
1687 *
1688 * Note that pdest_head keeps pointing at the join node. This allows
1689 * lookups and updaters to determine if they should see a link between
1690 * the tail L and F when searching for nodes originally in psrc_head
1691 * via pdest_head. If they reach the tail of pdest_head without
1692 * encountering any nodes of psrc_head, either there were no nodes
1693 * in psrc_head to begin with or the link between L and F did not
1694 * yet propagate to their cpus. If psrc_head was empty, it remains
1695 * NULL. Otherwise psrc_head points to a join node (it will not be
1696 * unlinked until table resize completes) and updaters/lookups
1697 * should issue a read_barrier() to make the link [L]->[JN] visible.
1698 *
1699 * 0) ,-- split_hash, first hash of the src bucket
1700 * v
1701 * [dest_head | N]-> .. -> [L]
1702 * [src_head | N]--> [F] -> ..
1703 * ^
1704 * ` split_hash, first hash of the src bucket
1705 *
1706 * 1) ,-- split_hash
1707 * v
1708 * [dest_head | N]-> .. -> [L]
1709 * [src_head | C]--> [F] -> ..
1710 *
1711 * 2) ,-- split_hash
1712 * v
1713 * [dest_head | N]-> .. -> [L]
1714 * [src_head | C]--> [JN] -> ..
1715 *
1716 * 3) ,-- split_hash
1717 * v
1718 * [dest_head | N]-> .. -> [L] --+
1719 * v
1720 * [src_head | C]-------------> [JN] -> ..
1721 *
1722 * 4) ,-- split_hash
1723 * v
1724 * [dest_head | N]-> .. -> [L] --+
1725 * v
1726 * [src_head | Inv]-----------> [JN] -> ..
1727 */
1728
1729 rcu_read_lock();
1730
1731 /* Mark src_head immutable - signals updaters that bucket join started. */
1732 mark_const(psrc_head);
1733 cas_order_barrier();
1734
1735 cht_link_t *join_node = get_next(*psrc_head);
1736
1737 if (join_node != &sentinel) {
1738 mark_join_node(join_node);
1739 cas_order_barrier();
1740
1741 link_to_join_node(h, pdest_head, join_node, split_hash);
1742 cas_order_barrier();
1743 }
1744
1745 marked_ptr_t ret =
1746 cas_link(psrc_head, join_node, N_CONST, join_node, N_INVALID);
1747 ASSERT(ret == make_link(join_node, N_CONST) || (N_INVALID == get_mark(ret)));
1748 cas_order_barrier();
1749
1750 rcu_read_unlock();
1751}
1752
1753/** Links the tail of pdest_head to join_node.
1754 *
1755 * @param h CHT to operate on.
1756 * @param pdest_head Head of the bucket whose tail is to be linked to join_node.
1757 * @param join_node A node marked N_JOIN with a hash greater or equal to
1758 * split_hash.
1759 * @param split_hash The least hash that is greater than the hash of any items
1760 * (originally) in pdest_head.
1761 */
1762static void link_to_join_node(cht_t *h, marked_ptr_t *pdest_head,
1763 cht_link_t *join_node, size_t split_hash)
1764{
1765 bool done;
1766 do {
1767 wnd_t wnd = {
1768 .ppred = pdest_head,
1769 .cur = get_next(*pdest_head)
1770 };
1771
1772 bool resizing = false;
1773
1774 if (!find_wnd_and_gc(h, split_hash, WM_LEAVE_JOIN, &wnd, &resizing))
1775 continue;
1776
1777 ASSERT(!resizing);
1778
1779 if (wnd.cur != &sentinel) {
1780 /* Must be from the new appended bucket. */
1781 ASSERT(split_hash <= node_hash(h, wnd.cur)
1782 || h->invalid_hash == node_hash(h, wnd.cur));
1783 return;
1784 }
1785
1786 /* Reached the tail of pdest_head - link it to the join node. */
1787 marked_ptr_t ret =
1788 cas_link(wnd.ppred, &sentinel, N_NORMAL, join_node, N_NORMAL);
1789
1790 done = (ret == make_link(&sentinel, N_NORMAL));
1791 } while (!done);
1792}
1793
1794/** Instructs RCU to free the item once all preexisting references are dropped.
1795 *
1796 * The item is freed via op->remove_callback().
1797 */
1798static void free_later(cht_t *h, cht_link_t *item)
1799{
1800 ASSERT(item != &sentinel);
1801
1802 /*
1803 * remove_callback only works as rcu_func_t because rcu_link is the first
1804 * field in cht_link_t.
1805 */
1806 rcu_call(&item->rcu_link, (rcu_func_t)h->op->remove_callback);
1807
1808 item_removed(h);
1809}
1810
1811/** Notes that an item had been unlinked from the table and shrinks it if needed.
1812 *
1813 * If the number of items in the table drops below 1/4 of the maximum
1814 * allowed load the table is shrunk in the background.
1815 */
1816static inline void item_removed(cht_t *h)
1817{
1818 size_t items = (size_t) atomic_predec(&h->item_cnt);
1819 size_t bucket_cnt = (1 << h->b->order);
1820
1821 bool need_shrink = (items == h->max_load * bucket_cnt / 4);
1822 bool missed_shrink = (items == h->max_load * bucket_cnt / 8);
1823
1824 if ((need_shrink || missed_shrink) && h->b->order > h->min_order) {
1825 atomic_count_t resize_reqs = atomic_preinc(&h->resize_reqs);
1826 /* The first resize request. Start the resizer. */
1827 if (1 == resize_reqs) {
1828 workq_global_enqueue_noblock(&h->resize_work, resize_table);
1829 }
1830 }
1831}
1832
1833/** Notes an item had been inserted and grows the table if needed.
1834 *
1835 * The table is resized in the background.
1836 */
1837static inline void item_inserted(cht_t *h)
1838{
1839 size_t items = (size_t) atomic_preinc(&h->item_cnt);
1840 size_t bucket_cnt = (1 << h->b->order);
1841
1842 bool need_grow = (items == h->max_load * bucket_cnt);
1843 bool missed_grow = (items == 2 * h->max_load * bucket_cnt);
1844
1845 if ((need_grow || missed_grow) && h->b->order < CHT_MAX_ORDER) {
1846 atomic_count_t resize_reqs = atomic_preinc(&h->resize_reqs);
1847 /* The first resize request. Start the resizer. */
1848 if (1 == resize_reqs) {
1849 workq_global_enqueue_noblock(&h->resize_work, resize_table);
1850 }
1851 }
1852}
1853
1854/** Resize request handler. Invoked on the system work queue. */
1855static void resize_table(work_t *arg)
1856{
1857 cht_t *h = member_to_inst(arg, cht_t, resize_work);
1858
1859#ifdef CONFIG_DEBUG
1860 ASSERT(h->b);
1861 /* Make resize_reqs visible. */
1862 read_barrier();
1863 ASSERT(0 < atomic_get(&h->resize_reqs));
1864#endif
1865
1866 bool done;
1867 do {
1868 /* Load the most recent h->item_cnt. */
1869 read_barrier();
1870 size_t cur_items = (size_t) atomic_get(&h->item_cnt);
1871 size_t bucket_cnt = (1 << h->b->order);
1872 size_t max_items = h->max_load * bucket_cnt;
1873
1874 if (cur_items >= max_items && h->b->order < CHT_MAX_ORDER) {
1875 grow_table(h);
1876 } else if (cur_items <= max_items / 4 && h->b->order > h->min_order) {
1877 shrink_table(h);
1878 } else {
1879 /* Table is just the right size. */
1880 atomic_count_t reqs = atomic_predec(&h->resize_reqs);
1881 done = (reqs == 0);
1882 }
1883 } while (!done);
1884}
1885
1886/** Increases the number of buckets two-fold. Blocks until done. */
1887static void grow_table(cht_t *h)
1888{
1889 if (h->b->order >= CHT_MAX_ORDER)
1890 return;
1891
1892 h->new_b = alloc_buckets(h->b->order + 1, true);
1893
1894 /* Failed to alloc a new table - try next time the resizer is run. */
1895 if (!h->new_b)
1896 return;
1897
1898 /* Wait for all readers and updaters to see the initialized new table. */
1899 rcu_synchronize();
1900 size_t old_bucket_cnt = (1 << h->b->order);
1901
1902 /*
1903 * Give updaters a chance to help out with the resize. Do the minimum
1904 * work needed to announce a resize is in progress, ie start moving heads.
1905 */
1906 for (size_t idx = 0; idx < old_bucket_cnt; ++idx) {
1907 start_head_move(&h->b->head[idx]);
1908 }
1909
1910 /* Order start_head_move() wrt complete_head_move(). */
1911 cas_order_barrier();
1912
1913 /* Complete moving heads and split any buckets not yet split by updaters. */
1914 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
1915 marked_ptr_t *move_dest_head = &h->new_b->head[grow_idx(old_idx)];
1916 marked_ptr_t *move_src_head = &h->b->head[old_idx];
1917
1918 /* Head move not yet completed. */
1919 if (N_INVALID != get_mark(*move_src_head)) {
1920 complete_head_move(move_src_head, move_dest_head);
1921 }
1922
1923 size_t split_idx = grow_to_split_idx(old_idx);
1924 size_t split_hash = calc_split_hash(split_idx, h->new_b->order);
1925 marked_ptr_t *split_dest_head = &h->new_b->head[split_idx];
1926
1927 split_bucket(h, move_dest_head, split_dest_head, split_hash);
1928 }
1929
1930 /*
1931 * Wait for all updaters to notice the new heads. Once everyone sees
1932 * the invalid old bucket heads they will know a resize is in progress
1933 * and updaters will modify the correct new buckets.
1934 */
1935 rcu_synchronize();
1936
1937 /* Clear the JOIN_FOLLOWS mark and remove the link between the split buckets.*/
1938 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
1939 size_t new_idx = grow_idx(old_idx);
1940
1941 cleanup_join_follows(h, &h->new_b->head[new_idx]);
1942 }
1943
1944 /*
1945 * Wait for everyone to notice that buckets were split, ie link connecting
1946 * the join follows and join node has been cut.
1947 */
1948 rcu_synchronize();
1949
1950 /* Clear the JOIN mark and GC any deleted join nodes. */
1951 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
1952 size_t new_idx = grow_to_split_idx(old_idx);
1953
1954 cleanup_join_node(h, &h->new_b->head[new_idx]);
1955 }
1956
1957 /* Wait for everyone to see that the table is clear of any resize marks. */
1958 rcu_synchronize();
1959
1960 cht_buckets_t *old_b = h->b;
1961 rcu_assign(h->b, h->new_b);
1962
1963 /* Wait for everyone to start using the new table. */
1964 rcu_synchronize();
1965
1966 free(old_b);
1967
1968 /* Not needed; just for increased readability. */
1969 h->new_b = NULL;
1970}
1971
1972/** Halfs the number of buckets. Blocks until done. */
1973static void shrink_table(cht_t *h)
1974{
1975 if (h->b->order <= h->min_order)
1976 return;
1977
1978 h->new_b = alloc_buckets(h->b->order - 1, true);
1979
1980 /* Failed to alloc a new table - try next time the resizer is run. */
1981 if (!h->new_b)
1982 return;
1983
1984 /* Wait for all readers and updaters to see the initialized new table. */
1985 rcu_synchronize();
1986
1987 size_t old_bucket_cnt = (1 << h->b->order);
1988
1989 /*
1990 * Give updaters a chance to help out with the resize. Do the minimum
1991 * work needed to announce a resize is in progress, ie start moving heads.
1992 */
1993 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
1994 size_t new_idx = shrink_idx(old_idx);
1995
1996 /* This bucket should be moved. */
1997 if (grow_idx(new_idx) == old_idx) {
1998 start_head_move(&h->b->head[old_idx]);
1999 } else {
2000 /* This bucket should join the moved bucket once the move is done.*/
2001 }
2002 }
2003
2004 /* Order start_head_move() wrt to complete_head_move(). */
2005 cas_order_barrier();
2006
2007 /* Complete moving heads and join buckets with the moved buckets. */
2008 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2009 size_t new_idx = shrink_idx(old_idx);
2010 size_t move_src_idx = grow_idx(new_idx);
2011
2012 /* This bucket should be moved. */
2013 if (move_src_idx == old_idx) {
2014 /* Head move not yet completed. */
2015 if (N_INVALID != get_mark(h->b->head[old_idx])) {
2016 complete_head_move(&h->b->head[old_idx], &h->new_b->head[new_idx]);
2017 }
2018 } else {
2019 /* This bucket should join the moved bucket. */
2020 size_t split_hash = calc_split_hash(old_idx, h->b->order);
2021 join_buckets(h, &h->b->head[old_idx], &h->new_b->head[new_idx],
2022 split_hash);
2023 }
2024 }
2025
2026 /*
2027 * Wait for all updaters to notice the new heads. Once everyone sees
2028 * the invalid old bucket heads they will know a resize is in progress
2029 * and updaters will modify the correct new buckets.
2030 */
2031 rcu_synchronize();
2032
2033 /* Let everyone know joins are complete and fully visible. */
2034 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2035 size_t move_src_idx = grow_idx(shrink_idx(old_idx));
2036
2037 /* Set the invalid joinee head to NULL. */
2038 if (old_idx != move_src_idx) {
2039 ASSERT(N_INVALID == get_mark(h->b->head[old_idx]));
2040
2041 if (&sentinel != get_next(h->b->head[old_idx]))
2042 h->b->head[old_idx] = make_link(&sentinel, N_INVALID);
2043 }
2044 }
2045
2046 /* todo comment join node vs reset joinee head*/
2047 rcu_synchronize();
2048
2049 size_t new_bucket_cnt = (1 << h->new_b->order);
2050
2051 /* Clear the JOIN mark and GC any deleted join nodes. */
2052 for (size_t new_idx = 0; new_idx < new_bucket_cnt; ++new_idx) {
2053 cleanup_join_node(h, &h->new_b->head[new_idx]);
2054 }
2055
2056 /* Wait for everyone to see that the table is clear of any resize marks. */
2057 rcu_synchronize();
2058
2059 cht_buckets_t *old_b = h->b;
2060 rcu_assign(h->b, h->new_b);
2061
2062 /* Wait for everyone to start using the new table. */
2063 rcu_synchronize();
2064
2065 free(old_b);
2066
2067 /* Not needed; just for increased readability. */
2068 h->new_b = NULL;
2069}
2070
2071/** Finds and clears the N_JOIN mark from a node in new_head (if present). */
2072static void cleanup_join_node(cht_t *h, marked_ptr_t *new_head)
2073{
2074 rcu_read_lock();
2075
2076 cht_link_t *cur = get_next(*new_head);
2077
2078 while (cur != &sentinel) {
2079 /* Clear the join node's JN mark - even if it is marked as deleted. */
2080 if (N_JOIN & get_mark(cur->link)) {
2081 clear_join_and_gc(h, cur, new_head);
2082 break;
2083 }
2084
2085 cur = get_next(cur->link);
2086 }
2087
2088 rcu_read_unlock();
2089}
2090
2091/** Clears the join_node's N_JOIN mark frees it if marked N_DELETED as well. */
2092static void clear_join_and_gc(cht_t *h, cht_link_t *join_node,
2093 marked_ptr_t *new_head)
2094{
2095 ASSERT(join_node != &sentinel);
2096 ASSERT(join_node && (N_JOIN & get_mark(join_node->link)));
2097
2098 bool done;
2099
2100 /* Clear the JN mark. */
2101 do {
2102 marked_ptr_t jn_link = join_node->link;
2103 cht_link_t *next = get_next(jn_link);
2104 /* Clear the JOIN mark but keep the DEL mark if present. */
2105 mark_t cleared_mark = get_mark(jn_link) & N_DELETED;
2106
2107 marked_ptr_t ret =
2108 _cas_link(&join_node->link, jn_link, make_link(next, cleared_mark));
2109
2110 /* Done if the mark was cleared. Retry if a new node was inserted. */
2111 done = (ret == jn_link);
2112 ASSERT(ret == jn_link || (get_mark(ret) & N_JOIN));
2113 } while (!done);
2114
2115 if (!(N_DELETED & get_mark(join_node->link)))
2116 return;
2117
2118 /* The join node had been marked as deleted - GC it. */
2119
2120 /* Clear the JOIN mark before trying to unlink the deleted join node.*/
2121 cas_order_barrier();
2122
2123 size_t jn_hash = node_hash(h, join_node);
2124 do {
2125 bool resizing = false;
2126
2127 wnd_t wnd = {
2128 .ppred = new_head,
2129 .cur = get_next(*new_head)
2130 };
2131
2132 done = find_wnd_and_gc_pred(h, jn_hash, WM_NORMAL, same_node_pred,
2133 join_node, &wnd, &resizing);
2134
2135 ASSERT(!resizing);
2136 } while (!done);
2137}
2138
2139/** Finds a non-deleted node with N_JOIN_FOLLOWS and clears the mark. */
2140static void cleanup_join_follows(cht_t *h, marked_ptr_t *new_head)
2141{
2142 ASSERT(new_head);
2143
2144 rcu_read_lock();
2145
2146 wnd_t wnd = {
2147 .ppred = NULL,
2148 .cur = NULL
2149 };
2150 marked_ptr_t *cur_link = new_head;
2151
2152 /*
2153 * Find the non-deleted node with a JF mark and clear the JF mark.
2154 * The JF node may be deleted and/or the mark moved to its neighbors
2155 * at any time. Therefore, we GC deleted nodes until we find the JF
2156 * node in order to remove stale/deleted JF nodes left behind eg by
2157 * delayed threads that did not yet get a chance to unlink the deleted
2158 * JF node and move its mark.
2159 *
2160 * Note that the head may be marked JF (but never DELETED).
2161 */
2162 while (true) {
2163 bool is_jf_node = N_JOIN_FOLLOWS & get_mark(*cur_link);
2164
2165 /* GC any deleted nodes on the way - even deleted JOIN_FOLLOWS. */
2166 if (N_DELETED & get_mark(*cur_link)) {
2167 ASSERT(cur_link != new_head);
2168 ASSERT(wnd.ppred && wnd.cur && wnd.cur != &sentinel);
2169 ASSERT(cur_link == &wnd.cur->link);
2170
2171 bool dummy;
2172 bool deleted = gc_deleted_node(h, WM_MOVE_JOIN_FOLLOWS, &wnd, &dummy);
2173
2174 /* Failed to GC or collected a deleted JOIN_FOLLOWS. */
2175 if (!deleted || is_jf_node) {
2176 /* Retry from the head of the bucket. */
2177 cur_link = new_head;
2178 continue;
2179 }
2180 } else {
2181 /* Found a non-deleted JF. Clear its JF mark. */
2182 if (is_jf_node) {
2183 cht_link_t *next = get_next(*cur_link);
2184 marked_ptr_t ret =
2185 cas_link(cur_link, next, N_JOIN_FOLLOWS, &sentinel, N_NORMAL);
2186
2187 ASSERT(next == &sentinel
2188 || ((N_JOIN | N_JOIN_FOLLOWS) & get_mark(ret)));
2189
2190 /* Successfully cleared the JF mark of a non-deleted node. */
2191 if (ret == make_link(next, N_JOIN_FOLLOWS)) {
2192 break;
2193 } else {
2194 /*
2195 * The JF node had been deleted or a new node inserted
2196 * right after it. Retry from the head.
2197 */
2198 cur_link = new_head;
2199 continue;
2200 }
2201 } else {
2202 wnd.ppred = cur_link;
2203 wnd.cur = get_next(*cur_link);
2204 }
2205 }
2206
2207 /* We must encounter a JF node before we reach the end of the bucket. */
2208 ASSERT(wnd.cur && wnd.cur != &sentinel);
2209 cur_link = &wnd.cur->link;
2210 }
2211
2212 rcu_read_unlock();
2213}
2214
2215/** Returns the first possible hash following a bucket split point.
2216 *
2217 * In other words the returned hash is the smallest possible hash
2218 * the remainder of the split bucket may contain.
2219 */
2220static inline size_t calc_split_hash(size_t split_idx, size_t order)
2221{
2222 ASSERT(1 <= order && order <= 8 * sizeof(size_t));
2223 return split_idx << (8 * sizeof(size_t) - order);
2224}
2225
2226/** Returns the bucket head index given the table size order and item hash. */
2227static inline size_t calc_bucket_idx(size_t hash, size_t order)
2228{
2229 ASSERT(1 <= order && order <= 8 * sizeof(size_t));
2230 return hash >> (8 * sizeof(size_t) - order);
2231}
2232
2233/** Returns the bucket index of destination*/
2234static inline size_t grow_to_split_idx(size_t old_idx)
2235{
2236 return grow_idx(old_idx) | 1;
2237}
2238
2239/** Returns the destination index of a bucket head when the table is growing. */
2240static inline size_t grow_idx(size_t idx)
2241{
2242 return idx << 1;
2243}
2244
2245/** Returns the destination index of a bucket head when the table is shrinking.*/
2246static inline size_t shrink_idx(size_t idx)
2247{
2248 return idx >> 1;
2249}
2250
2251/** Returns a mixed hash of the search key.*/
2252static inline size_t calc_key_hash(cht_t *h, void *key)
2253{
2254 /* Mimic calc_node_hash. */
2255 return hash_mix(h->op->key_hash(key)) & ~(size_t)1;
2256}
2257
2258/** Returns a memoized mixed hash of the item. */
2259static inline size_t node_hash(cht_t *h, const cht_link_t *item)
2260{
2261 ASSERT(item->hash == h->invalid_hash
2262 || item->hash == sentinel.hash
2263 || item->hash == calc_node_hash(h, item));
2264
2265 return item->hash;
2266}
2267
2268/** Calculates and mixed the hash of the item. */
2269static inline size_t calc_node_hash(cht_t *h, const cht_link_t *item)
2270{
2271 ASSERT(item != &sentinel);
2272 /*
2273 * Clear the lowest order bit in order for sentinel's node hash
2274 * to be the greatest possible.
2275 */
2276 return hash_mix(h->op->hash(item)) & ~(size_t)1;
2277}
2278
2279/** Computes and memoizes the hash of the item. */
2280static inline void memoize_node_hash(cht_t *h, cht_link_t *item)
2281{
2282 item->hash = calc_node_hash(h, item);
2283}
2284
2285/** Packs the next pointer address and the mark into a single pointer. */
2286static inline marked_ptr_t make_link(const cht_link_t *next, mark_t mark)
2287{
2288 marked_ptr_t ptr = (marked_ptr_t) next;
2289
2290 ASSERT(!(ptr & N_MARK_MASK));
2291 ASSERT(!((unsigned)mark & ~N_MARK_MASK));
2292
2293 return ptr | mark;
2294}
2295
2296/** Strips any marks from the next item link and returns the next item's address.*/
2297static inline cht_link_t * get_next(marked_ptr_t link)
2298{
2299 return (cht_link_t*)(link & ~N_MARK_MASK);
2300}
2301
2302/** Returns the current node's mark stored in the next item link. */
2303static inline mark_t get_mark(marked_ptr_t link)
2304{
2305 return (mark_t)(link & N_MARK_MASK);
2306}
2307
2308/** Moves the window by one item so that is points to the next item. */
2309static inline void next_wnd(wnd_t *wnd)
2310{
2311 ASSERT(wnd);
2312 ASSERT(wnd->cur);
2313
2314 wnd->last = wnd->cur;
2315 wnd->ppred = &wnd->cur->link;
2316 wnd->cur = get_next(wnd->cur->link);
2317}
2318
2319/** Predicate that matches only exactly the same node. */
2320static bool same_node_pred(void *node, const cht_link_t *item2)
2321{
2322 const cht_link_t *item1 = (const cht_link_t*) node;
2323 return item1 == item2;
2324}
2325
2326/** Compare-and-swaps a next item link. */
2327static inline marked_ptr_t cas_link(marked_ptr_t *link, const cht_link_t *cur_next,
2328 mark_t cur_mark, const cht_link_t *new_next, mark_t new_mark)
2329{
2330 return _cas_link(link, make_link(cur_next, cur_mark),
2331 make_link(new_next, new_mark));
2332}
2333
2334/** Compare-and-swaps a next item link. */
2335static inline marked_ptr_t _cas_link(marked_ptr_t *link, marked_ptr_t cur,
2336 marked_ptr_t new)
2337{
2338 ASSERT(link != &sentinel.link);
2339 /*
2340 * cas(x) on the same location x on one cpu must be ordered, but do not
2341 * have to be ordered wrt to other cas(y) to a different location y
2342 * on the same cpu.
2343 *
2344 * cas(x) must act as a write barrier on x, ie if cas(x) succeeds
2345 * and is observed by another cpu, then all cpus must be able to
2346 * make the effects of cas(x) visible just by issuing a load barrier.
2347 * For example:
2348 * cpu1 cpu2 cpu3
2349 * cas(x, 0 -> 1), succeeds
2350 * cas(x, 0 -> 1), fails
2351 * MB
2352 * y = 7
2353 * sees y == 7
2354 * loadMB must be enough to make cas(x) on cpu3 visible to cpu1, ie x == 1.
2355 *
2356 * If cas() did not work this way:
2357 * - our head move protocol would not be correct.
2358 * - freeing an item linked to a moved head after another item was
2359 * inserted in front of it, would require more than one grace period.
2360 */
2361 void *ret = atomic_cas_ptr((void**)link, (void *)cur, (void *)new);
2362 return (marked_ptr_t) ret;
2363}
2364
2365/** Orders compare-and-swaps to different memory locations. */
2366static inline void cas_order_barrier(void)
2367{
2368 /* Make sure CAS to different memory locations are ordered. */
2369 write_barrier();
2370}
2371
2372
2373/** @}
2374 */
Note: See TracBrowser for help on using the repository browser.