source: mainline/kernel/generic/src/adt/cht.c@ 3ac5086

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 3ac5086 was 3ac5086, checked in by Adam Hraska <adam.hraska+hos@…>, 13 years ago

Fixed kernel futex cleanup: now walks list via correct links and frees items once it is sure cht is not resizing.

  • Property mode set to 100644
File size: 89.9 KB
RevLine 
[7ef2249]1/*
2 * Copyright (c) 2012 Adam Hraska
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
[14c9aa6]29
[7ef2249]30/** @addtogroup genericadt
31 * @{
32 */
33
34/**
35 * @file
[14c9aa6]36 * @brief Scalable resizable concurrent lock-free hash table.
[991d2d8]37 *
38 * CHT is a concurrent hash table that is scalable resizable and lock-free.
39 * resizable = the number of buckets of the table increases or decreases
40 * depending on the average number of elements per bucket (ie load)
41 * scalable = accessing the table from more cpus increases performance
42 * almost linearly
43 * lock-free = common operations never block; even if any of the operations
44 * is preempted or interrupted at any time, other operations will still
45 * make forward progress
46 *
47 * CHT is designed for read mostly scenarios. Performance degrades as the
48 * fraction of updates (insert/remove) increases. Other data structures
49 * significantly outperform CHT if the fraction of updates exceeds ~40%.
50 *
51 * CHT tolerates hardware exceptions and may be accessed from exception
52 * handlers as long as the underlying RCU implementation is exception safe.
53 *
54 * @par Caveats
55 *
56 * 0) Never assume an item is still in the table.
57 * The table may be accessed concurrently; therefore, other threads may
58 * insert or remove an item at any time. Do not assume an item is still
59 * in the table if cht_find() just returned it to you. Similarly, an
60 * item may have already been inserted by the time cht_find() returns NULL.
61 *
62 * 1) Always use RCU read locks when searching the table.
63 * Holding an RCU lock guarantees that an item found in the table remains
64 * valid (eg is not freed) even if the item was removed from the table
65 * in the meantime by another thread.
66 *
67 * 2) Never update values in place.
68 * Do not update items in the table in place, ie directly. The changes
69 * will not propagate to other readers (on other cpus) immediately or even
70 * correctly. Some readers may then encounter items that have only some
71 * of their fields changed or are completely inconsistent.
72 *
73 * Instead consider inserting an updated/changed copy of the item and
74 * removing the original item. Or contact the maintainer to provide
75 * you with a function that atomically replaces an item with a copy.
76 *
77 * 3) Use cht_insert_unique() instead of checking for duplicates with cht_find()
78 * The following code is prone to race conditions:
79 * @code
80 * if (NULL == cht_find(&h, key)) {
81 * // If another thread inserts and item here, we'll insert a duplicate.
82 * cht_insert(&h, item);
83 * }
84 * @endcode
85 * See cht_insert_unique() on how to correctly fix this.
86 *
87 *
88 * @par Semantics
89 *
90 * Lazy readers = cht_find_lazy(), cht_find_next_lazy()
91 * Readers = lazy readers, cht_find(), cht_find_next()
92 * Updates = cht_insert(), cht_insert_unique(), cht_remove_key(),
93 * cht_remove_item()
94 *
95 * Readers (but not lazy readers) are guaranteed to see the effects
96 * of @e completed updates. In other words, if cht_find() is invoked
97 * after a cht_insert() @e returned eg on another cpu, cht_find() is
98 * guaranteed to see the inserted item.
99 *
100 * Similarly, updates see the effects of @e completed updates. For example,
101 * issuing cht_remove() after a cht_insert() for that key returned (even
102 * on another cpu) is guaranteed to remove the inserted item.
103 *
104 * Reading or updating the table concurrently with other updates
105 * always returns consistent data and never corrupts the table.
106 * However the effects of concurrent updates may or may not be
107 * visible to all other concurrent readers or updaters. Eg, not
108 * all readers may see that an item has already been inserted
109 * if cht_insert() has not yet returned.
110 *
111 * Lazy readers are guaranteed to eventually see updates but it
112 * may take some time (possibly milliseconds) after the update
113 * completes for the change to propagate to lazy readers on all
114 * cpus.
115 *
116 * @par Implementation
117 *
118 * Collisions in CHT are resolved with chaining. The number of buckets
119 * is always a power of 2. Each bucket is represented with a single linked
120 * lock-free list [1]. Items in buckets are sorted by their mixed hashes
121 * in ascending order. All buckets are terminated with a single global
122 * sentinel node whose mixed hash value is the greatest possible.
[7ef2249]123 *
[991d2d8]124 * CHT with 2^k buckets uses the k most significant bits of a hash value
125 * to determine the bucket number where an item is to be stored. To
126 * avoid storing all items in a single bucket if the user supplied
127 * hash function does not produce uniform hashes, hash values are
128 * mixed first so that the top bits of a mixed hash change even if hash
129 * values differ only in the least significant bits. The mixed hash
130 * values are cached in cht_link.hash (which is overwritten once the
131 * item is scheduled for removal via rcu_call).
132 *
133 * A new item is inserted before all other existing items in the bucket
134 * with the same hash value as the newly inserted item (a la the original
135 * lock-free list [2]). Placing new items at the start of a same-hash
136 * sequence of items (eg duplicates) allows us to easily check for duplicates
137 * in cht_insert_unique(). The function can first check that there are
138 * no duplicates of the newly inserted item amongst the items with the
139 * same hash as the new item. If there were no duplicates the new item
140 * is linked before the same-hash items. Inserting a duplicate while
141 * the function is checking for duplicates is detected as a change of
142 * the link to the first checked same-hash item (and the search for
143 * duplicates can be restarted).
144 *
145 * @par Table resize algorithm
146 *
147 * Table resize is based on [3] and [5]. First, a new bucket head array
148 * is allocated and initialized. Second, old bucket heads are moved
149 * to the new bucket head array with the protocol mentioned in [5].
150 * At this point updaters start using the new bucket heads. Third,
151 * buckets are split (or joined) so that the table can make use of
152 * the extra bucket head slots in the new array (or stop wasting space
153 * with the unnecessary extra slots in the old array). Splitting
154 * or joining buckets employs a custom protocol. Last, the new array
155 * replaces the original bucket array.
156 *
157 * A single background work item (of the system work queue) guides
158 * resizing of the table. If an updater detects that the bucket it
159 * is about to access is undergoing a resize (ie its head is moving
160 * or it needs to be split/joined), it helps out and completes the
161 * head move or the bucket split/join.
162 *
163 * The table always grows or shrinks by a factor of 2. Because items
164 * are assigned a bucket based on the top k bits of their mixed hash
165 * values, when growing the table each bucket is split into two buckets
166 * and all items of the two new buckets come from the single bucket in the
167 * original table. Ie items from separate buckets in the original table
168 * never intermix in the new buckets. Moreover
169 * since the buckets are sorted by their mixed hash values the items
170 * at the beginning of the old bucket will end up in the first new
171 * bucket while all the remaining items of the old bucket will end up
172 * in the second new bucket. Therefore, there is a single point where
173 * to split the linked list of the old bucket into two correctly sorted
174 * linked lists of the new buckets:
175 * .- bucket split
176 * |
177 * <-- first --> v <-- second -->
178 * [old] --> [00b] -> [01b] -> [10b] -> [11b] -> sentinel
179 * ^ ^
180 * [new0] -- -+ |
181 * [new1] -- -- -- -- -- -- -- -+
182 *
183 * Resize in greater detail:
184 *
185 * a) First, a resizer (a single background system work queue item
186 * in charge of resizing the table) allocates and initializes a new
187 * bucket head array. New bucket heads are pointed to the sentinel
188 * and marked Invalid (in the lower order bits of the pointer to the
189 * next item, ie the sentinel in this case):
190 *
191 * [old, N] --> [00b] -> [01b] -> [10b] -> [11b] -> sentinel
192 * ^ ^
193 * [new0, Inv] -------------------------------------+ |
194 * [new1, Inv] ---------------------------------------+
195 *
196 *
197 * b) Second, the resizer starts moving old bucket heads with the following
198 * lock-free protocol (from [5]) where cas(variable, expected_val, new_val)
199 * is short for compare-and-swap:
200 *
201 * old head new0 head transition to next state
202 * -------- --------- ------------------------
203 * addr, N sentinel, Inv cas(old, (addr, N), (addr, Const))
204 * .. mark the old head as immutable, so that
205 * updaters do not relink it to other nodes
206 * until the head move is done.
207 * addr, Const sentinel, Inv cas(new0, (sentinel, Inv), (addr, N))
208 * .. move the address to the new head and mark
209 * the new head normal so updaters can start
210 * using it.
211 * addr, Const addr, N cas(old, (addr, Const), (addr, Inv))
212 * .. mark the old head Invalid to signify
213 * the head move is done.
214 * addr, Inv addr, N
215 *
216 * Notice that concurrent updaters may step in at any point and correctly
217 * complete the head move without disrupting the resizer. At worst, the
218 * resizer or other concurrent updaters will attempt a number of CAS() that
219 * will correctly fail.
220 *
221 * [old, Inv] -> [00b] -> [01b] -> [10b] -> [11b] -> sentinel
222 * ^ ^
223 * [new0, N] ----+ |
224 * [new1, Inv] --------------------------------------+
225 *
226 *
227 * c) Third, buckets are split if the table is growing; or joined if
228 * shrinking (by the resizer or updaters depending on whoever accesses
229 * the bucket first). See split_bucket() and join_buckets() for details.
230 *
231 * 1) Mark the last item of new0 with JOIN_FOLLOWS:
232 * [old, Inv] -> [00b] -> [01b, JF] -> [10b] -> [11b] -> sentinel
233 * ^ ^
234 * [new0, N] ----+ |
235 * [new1, Inv] ------------------------------------------+
236 *
237 * 2) Mark the first item of new1 with JOIN_NODE:
238 * [old, Inv] -> [00b] -> [01b, JF] -> [10b, JN] -> [11b] -> sentinel
239 * ^ ^
240 * [new0, N] ----+ |
241 * [new1, Inv] ----------------------------------------------+
242 *
243 * 3) Point new1 to the join-node and mark new1 NORMAL.
244 * [old, Inv] -> [00b] -> [01b, JF] -> [10b, JN] -> [11b] -> sentinel
245 * ^ ^
246 * [new0, N] ----+ |
247 * [new1, N] --------------------------+
248 *
249 *
250 * d) Fourth, the resizer cleans up extra marks added during bucket
251 * splits/joins but only when it is sure all updaters are accessing
252 * the table via the new bucket heads only (ie it is certain there
253 * are no delayed updaters unaware of the resize and accessing the
254 * table via the old bucket head).
255 *
256 * [old, Inv] ---+
257 * v
258 * [new0, N] --> [00b] -> [01b, N] ---+
259 * v
260 * [new1, N] --> [10b, N] -> [11b] -> sentinel
261 *
262 *
263 * e) Last, the resizer publishes the new bucket head array for everyone
264 * to see and use. This signals the end of the resize and the old bucket
265 * array is freed.
266 *
267 *
268 * To understand details of how the table is resized, read [1, 3, 5]
269 * and comments in join_buckets(), split_bucket().
270 *
271 *
272 * [1] High performance dynamic lock-free hash tables and list-based sets,
273 * Michael, 2002
274 * http://www.research.ibm.com/people/m/michael/spaa-2002.pdf
275 * [2] Lock-free linked lists using compare-and-swap,
276 * Valois, 1995
277 * http://people.csail.mit.edu/bushl2/rpi/portfolio/lockfree-grape/documents/lock-free-linked-lists.pdf
278 * [3] Resizable, scalable, concurrent hash tables via relativistic programming,
279 * Triplett, 2011
280 * http://www.usenix.org/event/atc11/tech/final_files/Triplett.pdf
281 * [4] Split-ordered Lists: Lock-free Extensible Hash Tables,
282 * Shavit, 2006
283 * http://www.cs.ucf.edu/~dcm/Teaching/COT4810-Spring2011/Literature/SplitOrderedLists.pdf
284 * [5] Towards a Scalable Non-blocking Coding Style,
285 * Click, 2008
286 * http://www.azulsystems.com/events/javaone_2008/2008_CodingNonBlock.pdf
[7ef2249]287 */
288
[991d2d8]289
[7ef2249]290#include <adt/cht.h>
[14c9aa6]291#include <adt/hash.h>
[7ef2249]292#include <debug.h>
293#include <memstr.h>
294#include <mm/slab.h>
[14c9aa6]295#include <arch/barrier.h>
[7ef2249]296#include <compiler/barrier.h>
297#include <atomic.h>
298#include <synch/rcu.h>
299
[14c9aa6]300
[0b7bcb8]301/* Logarithm of the min bucket count. Must be at least 3. 2^6 == 64 buckets. */
[3bb732b]302#define CHT_MIN_ORDER 6
303/* Logarithm of the max bucket count. */
304#define CHT_MAX_ORDER (8 * sizeof(size_t))
305/* Minimum number of hash table buckets. */
306#define CHT_MIN_BUCKET_CNT (1 << CHT_MIN_ORDER)
[0b7bcb8]307/* Does not have to be a power of 2. */
[7ef2249]308#define CHT_MAX_LOAD 2
309
310typedef cht_ptr_t marked_ptr_t;
311typedef bool (*equal_pred_t)(void *arg, const cht_link_t *item);
312
[b9cb911]313/** The following mark items and bucket heads.
314 *
315 * They are stored in the two low order bits of the next item pointers.
316 * Some marks may be combined. Some marks share the same binary value and
317 * are distinguished only by context (eg bucket head vs an ordinary item),
318 * in particular by walk_mode_t.
319 */
[7ef2249]320typedef enum mark {
[b9cb911]321 /** Normal non-deleted item or a valid bucket head. */
[7ef2249]322 N_NORMAL = 0,
[b9cb911]323 /** Logically deleted item that might have already been unlinked.
324 *
325 * May be combined with N_JOIN and N_JOIN_FOLLOWS. Applicable only
326 * to items; never to bucket heads.
327 *
328 * Once marked deleted an item remains marked deleted.
329 */
[7ef2249]330 N_DELETED = 1,
[b9cb911]331 /** Immutable bucket head.
332 *
333 * The bucket is being moved or joined with another and its (old) head
334 * must not be modified.
335 *
336 * May be combined with N_INVALID. Applicable only to old bucket heads,
337 * ie cht_t.b and not cht_t.new_b.
338 */
[14c9aa6]339 N_CONST = 1,
[b9cb911]340 /** Invalid bucket head. The bucket head must not be modified.
341 *
342 * Old bucket heads (ie cht_t.b) are marked invalid if they have
343 * already been moved to cht_t.new_b or if the bucket had already
344 * been merged with another when shrinking the table. New bucket
345 * heads (ie cht_t.new_b) are marked invalid if the old bucket had
346 * not yet been moved or if an old bucket had not yet been split
347 * when growing the table.
348 */
[14c9aa6]349 N_INVALID = 3,
[b9cb911]350 /** The item is a join node, ie joining two buckets
351 *
352 * A join node is either the first node of the second part of
353 * a bucket to be split; or it is the first node of the bucket
354 * to be merged into/appended to/joined with another bucket.
355 *
356 * May be combined with N_DELETED. Applicable only to items, never
357 * to bucket heads.
358 *
359 * Join nodes are referred to from two different buckets and may,
360 * therefore, not be safely/atomically unlinked from both buckets.
361 * As a result join nodes are not unlinked but rather just marked
362 * deleted. Once resize completes join nodes marked deleted are
363 * garbage collected.
364 */
[7ef2249]365 N_JOIN = 2,
[b9cb911]366 /** The next node is a join node and will soon be marked so.
367 *
368 * A join-follows node is the last node of the first part of bucket
369 * that is to be split, ie it is the last node that will remain
370 * in the same bucket after splitting it.
371 *
372 * May be combined with N_DELETED. Applicable to items as well
373 * as to bucket heads of the bucket to be split (but only in cht_t.new_b).
374 */
[7ef2249]375 N_JOIN_FOLLOWS = 2,
[b9cb911]376 /** Bit mask to filter out the address to the next item from the next ptr. */
[7ef2249]377 N_MARK_MASK = 3
378} mark_t;
379
[b9cb911]380/** Determines */
[7ef2249]381typedef enum walk_mode {
[b9cb911]382 /** The table is not resizing. */
[7ef2249]383 WM_NORMAL = 4,
[b9cb911]384 /** The table is undergoing a resize. Join nodes may be encountered. */
[7ef2249]385 WM_LEAVE_JOIN,
[b9cb911]386 /** The table is growing. A join-follows node may be encountered. */
[7ef2249]387 WM_MOVE_JOIN_FOLLOWS
388} walk_mode_t;
389
[b9cb911]390/** Bucket position window. */
[7ef2249]391typedef struct wnd {
[b9cb911]392 /** Pointer to cur's predecessor. */
[7ef2249]393 marked_ptr_t *ppred;
[b9cb911]394 /** Current item. */
[7ef2249]395 cht_link_t *cur;
[b9cb911]396 /** Last encountered item. Deleted or not. */
[7ef2249]397 cht_link_t *last;
398} wnd_t;
399
[0b7bcb8]400
[6eaed07]401/* Sentinel node used by all buckets. Stores the greatest possible hash value.*/
402static const cht_link_t sentinel = {
[205832b]403 /* NULL and N_NORMAL */
404 .link = 0 | N_NORMAL,
[6eaed07]405 .hash = -1
406};
407
408
[14c9aa6]409static size_t size_to_order(size_t bucket_cnt, size_t min_order);
[c28413a9]410static cht_buckets_t *alloc_buckets(size_t order, bool set_invalid,
411 bool can_block);
[5e5cef3]412static inline cht_link_t *find_lazy(cht_t *h, void *key);
[14c9aa6]413static cht_link_t *search_bucket(cht_t *h, marked_ptr_t head, void *key,
414 size_t search_hash);
415static cht_link_t *find_resizing(cht_t *h, void *key, size_t hash,
416 marked_ptr_t old_head, size_t old_idx);
[04d66804]417static bool insert_impl(cht_t *h, cht_link_t *item, cht_link_t **dup_item);
[14c9aa6]418static bool insert_at(cht_link_t *item, const wnd_t *wnd, walk_mode_t walk_mode,
419 bool *resizing);
[04d66804]420static bool has_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
421 cht_link_t *cur, cht_link_t **dup_item);
[14c9aa6]422static cht_link_t *find_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
423 cht_link_t *start);
424static bool remove_pred(cht_t *h, size_t hash, equal_pred_t pred, void *pred_arg);
425static bool delete_at(cht_t *h, wnd_t *wnd, walk_mode_t walk_mode,
426 bool *deleted_but_gc, bool *resizing);
427static bool mark_deleted(cht_link_t *cur, walk_mode_t walk_mode, bool *resizing);
428static bool unlink_from_pred(wnd_t *wnd, walk_mode_t walk_mode, bool *resizing);
429static bool find_wnd_and_gc_pred(cht_t *h, size_t hash, walk_mode_t walk_mode,
430 equal_pred_t pred, void *pred_arg, wnd_t *wnd, bool *resizing);
431static bool find_wnd_and_gc(cht_t *h, size_t hash, walk_mode_t walk_mode,
432 wnd_t *wnd, bool *resizing);
433static bool gc_deleted_node(cht_t *h, walk_mode_t walk_mode, wnd_t *wnd,
434 bool *resizing);
435static bool join_completed(cht_t *h, const wnd_t *wnd);
436static void upd_resizing_head(cht_t *h, size_t hash, marked_ptr_t **phead,
437 bool *join_finishing, walk_mode_t *walk_mode);
438static void item_removed(cht_t *h);
439static void item_inserted(cht_t *h);
440static void free_later(cht_t *h, cht_link_t *item);
441static void help_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head);
442static void start_head_move(marked_ptr_t *psrc_head);
443static void mark_const(marked_ptr_t *psrc_head);
444static void complete_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head);
445static void split_bucket(cht_t *h, marked_ptr_t *psrc_head,
446 marked_ptr_t *pdest_head, size_t split_hash);
447static void mark_join_follows(cht_t *h, marked_ptr_t *psrc_head,
448 size_t split_hash, wnd_t *wnd);
449static void mark_join_node(cht_link_t *join_node);
450static void join_buckets(cht_t *h, marked_ptr_t *psrc_head,
451 marked_ptr_t *pdest_head, size_t split_hash);
452static void link_to_join_node(cht_t *h, marked_ptr_t *pdest_head,
453 cht_link_t *join_node, size_t split_hash);
454static void resize_table(work_t *arg);
455static void grow_table(cht_t *h);
456static void shrink_table(cht_t *h);
457static void cleanup_join_node(cht_t *h, marked_ptr_t *new_head);
458static void clear_join_and_gc(cht_t *h, cht_link_t *join_node,
459 marked_ptr_t *new_head);
460static void cleanup_join_follows(cht_t *h, marked_ptr_t *new_head);
461static marked_ptr_t make_link(const cht_link_t *next, mark_t mark);
[7ef2249]462static cht_link_t * get_next(marked_ptr_t link);
463static mark_t get_mark(marked_ptr_t link);
[14c9aa6]464static void next_wnd(wnd_t *wnd);
465static bool same_node_pred(void *node, const cht_link_t *item2);
[6eaed07]466static size_t calc_key_hash(cht_t *h, void *key);
[7ef2249]467static size_t node_hash(cht_t *h, const cht_link_t *item);
[6eaed07]468static size_t calc_node_hash(cht_t *h, const cht_link_t *item);
469static void memoize_node_hash(cht_t *h, cht_link_t *item);
[3bb732b]470static size_t calc_split_hash(size_t split_idx, size_t order);
[7ef2249]471static size_t calc_bucket_idx(size_t hash, size_t order);
[14c9aa6]472static size_t grow_to_split_idx(size_t old_idx);
[7ef2249]473static size_t grow_idx(size_t idx);
474static size_t shrink_idx(size_t idx);
[14c9aa6]475static marked_ptr_t cas_link(marked_ptr_t *link, const cht_link_t *cur_next,
476 mark_t cur_mark, const cht_link_t *new_next, mark_t new_mark);
477static marked_ptr_t _cas_link(marked_ptr_t *link, marked_ptr_t cur,
478 marked_ptr_t new);
479static void cas_order_barrier(void);
[7ef2249]480
[c28413a9]481static void dummy_remove_callback(cht_link_t *item)
482{
483 /* empty */
484}
485
486/** Creates a concurrent hash table.
487 *
488 * @param h Valid pointer to a cht_t instance.
489 * @param op Item specific operations. All operations are compulsory.
490 * @return True if successfully created the table. False otherwise.
491 */
492bool cht_create_simple(cht_t *h, cht_ops_t *op)
493{
494 return cht_create(h, 0, 0, 0, false, op);
495}
496
[b9cb911]497/** Creates a concurrent hash table.
498 *
499 * @param h Valid pointer to a cht_t instance.
500 * @param init_size The initial number of buckets the table should contain.
501 * The table may be shrunk below this value if deemed necessary.
502 * Uses the default value if 0.
503 * @param min_size Minimum number of buckets that the table should contain.
504 * The number of buckets never drops below this value,
505 * although it may be rounded up internally as appropriate.
506 * Uses the default value if 0.
507 * @param max_load Maximum average number of items per bucket that allowed
508 * before the table grows.
[c28413a9]509 * @param can_block If true creating the table blocks until enough memory
510 * is available (possibly indefinitely). Otherwise,
511 * table creation does not block and returns immediately
512 * even if not enough memory is available.
[b9cb911]513 * @param op Item specific operations. All operations are compulsory.
514 * @return True if successfully created the table. False otherwise.
515 */
[0b7bcb8]516bool cht_create(cht_t *h, size_t init_size, size_t min_size, size_t max_load,
[c28413a9]517 bool can_block, cht_ops_t *op)
[7ef2249]518{
519 ASSERT(h);
520 ASSERT(op && op->hash && op->key_hash && op->equal && op->key_equal);
[6eaed07]521 /* Memoized hashes are stored in the rcu_link.func function pointer. */
522 ASSERT(sizeof(size_t) == sizeof(rcu_func_t));
523 ASSERT(sentinel.hash == (uintptr_t)sentinel.rcu_link.func);
[7ef2249]524
[3bb732b]525 /* All operations are compulsory. */
[7ef2249]526 if (!op || !op->hash || !op->key_hash || !op->equal || !op->key_equal)
527 return false;
528
[14c9aa6]529 size_t min_order = size_to_order(min_size, CHT_MIN_ORDER);
530 size_t order = size_to_order(init_size, min_order);
[7ef2249]531
[c28413a9]532 h->b = alloc_buckets(order, false, can_block);
[7ef2249]533
534 if (!h->b)
535 return false;
536
[0b7bcb8]537 h->max_load = (max_load == 0) ? CHT_MAX_LOAD : max_load;
[14c9aa6]538 h->min_order = min_order;
[205832b]539 h->new_b = NULL;
[7ef2249]540 h->op = op;
541 atomic_set(&h->item_cnt, 0);
542 atomic_set(&h->resize_reqs, 0);
[c28413a9]543
544 if (NULL == op->remove_callback) {
545 h->op->remove_callback = dummy_remove_callback;
546 }
547
[6eaed07]548 /*
549 * Cached item hashes are stored in item->rcu_link.func. Once the item
550 * is deleted rcu_link.func will contain the value of invalid_hash.
551 */
552 h->invalid_hash = (uintptr_t)h->op->remove_callback;
553
[7ef2249]554 /* Ensure the initialization takes place before we start using the table. */
555 write_barrier();
556
557 return true;
558}
559
[b9cb911]560/** Allocates and initializes 2^order buckets.
561 *
562 * All bucket heads are initialized to point to the sentinel node.
563 *
564 * @param order The number of buckets to allocate is 2^order.
565 * @param set_invalid Bucket heads are marked invalid if true; otherwise
566 * they are marked N_NORMAL.
[c28413a9]567 * @param can_block If true memory allocation blocks until enough memory
568 * is available (possibly indefinitely). Otherwise,
569 * memory allocation does not block.
[b9cb911]570 * @return Newly allocated and initialized buckets or NULL if not enough memory.
571 */
[c28413a9]572static cht_buckets_t *alloc_buckets(size_t order, bool set_invalid, bool can_block)
[3bb732b]573{
574 size_t bucket_cnt = (1 << order);
[14c9aa6]575 size_t bytes =
576 sizeof(cht_buckets_t) + (bucket_cnt - 1) * sizeof(marked_ptr_t);
[c28413a9]577 cht_buckets_t *b = malloc(bytes, can_block ? 0 : FRAME_ATOMIC);
[3bb732b]578
579 if (!b)
[205832b]580 return NULL;
[3bb732b]581
582 b->order = order;
583
[6eaed07]584 marked_ptr_t head_link = set_invalid
585 ? make_link(&sentinel, N_INVALID)
586 : make_link(&sentinel, N_NORMAL);
[3bb732b]587
588 for (size_t i = 0; i < bucket_cnt; ++i) {
589 b->head[i] = head_link;
590 }
591
592 return b;
593}
594
[b9cb911]595/** Returns the smallest k such that bucket_cnt <= 2^k and min_order <= k.*/
[14c9aa6]596static size_t size_to_order(size_t bucket_cnt, size_t min_order)
[3bb732b]597{
[14c9aa6]598 size_t order = min_order;
[3bb732b]599
600 /* Find a power of two such that bucket_cnt <= 2^order */
601 do {
[14c9aa6]602 if (bucket_cnt <= ((size_t)1 << order))
[3bb732b]603 return order;
604
605 ++order;
606 } while (order < CHT_MAX_ORDER);
607
608 return order;
609}
610
[b9cb911]611/** Destroys a CHT successfully created via cht_create().
612 *
613 * Waits for all outstanding concurrent operations to complete and
614 * frees internal allocated resources. The table is however not cleared
615 * and items already present in the table (if any) are leaked.
616 */
[7ef2249]617void cht_destroy(cht_t *h)
[3ac5086]618{
619 cht_destroy_unsafe(h);
620
621 /* You must clear the table of items. Otherwise cht_destroy will leak. */
622 ASSERT(atomic_get(&h->item_cnt) == 0);
623}
624
625/** Destroys a successfully created CHT but does no error checking. */
626void cht_destroy_unsafe(cht_t *h)
[7ef2249]627{
[14c9aa6]628 /* Wait for resize to complete. */
629 while (0 < atomic_get(&h->resize_reqs)) {
630 rcu_barrier();
631 }
632
633 /* Wait for all remove_callback()s to complete. */
634 rcu_barrier();
635
636 free(h->b);
[205832b]637 h->b = NULL;
[b9cb911]638}
639
640/** Returns the first item equal to the search key or NULL if not found.
641 *
642 * The call must be enclosed in a rcu_read_lock() unlock() pair. The
643 * returned item is guaranteed to be allocated until rcu_read_unlock()
644 * although the item may be concurrently removed from the table by another
645 * cpu.
646 *
647 * Further items matching the key may be retrieved via cht_find_next().
648 *
649 * cht_find() sees the effects of any completed cht_remove(), cht_insert().
650 * If a concurrent remove or insert had not yet completed cht_find() may
651 * or may not see the effects of it (eg it may find an item being removed).
652 *
653 * @param h CHT to operate on.
654 * @param key Search key as defined by cht_ops_t.key_equal() and .key_hash().
655 * @return First item equal to the key or NULL if such an item does not exist.
656 */
[7ef2249]657cht_link_t *cht_find(cht_t *h, void *key)
658{
[14c9aa6]659 /* Make the most recent changes to the table visible. */
[7ef2249]660 read_barrier();
661 return cht_find_lazy(h, key);
662}
663
[b9cb911]664/** Returns the first item equal to the search key or NULL if not found.
665 *
666 * Unlike cht_find(), cht_find_lazy() may not see the effects of
667 * cht_remove() or cht_insert() even though they have already completed.
668 * It may take a couple of milliseconds for those changes to propagate
669 * and become visible to cht_find_lazy(). On the other hand, cht_find_lazy()
670 * operates a bit faster than cht_find().
671 *
672 * See cht_find() for more details.
673 */
[7ef2249]674cht_link_t *cht_find_lazy(cht_t *h, void *key)
[5e5cef3]675{
676 return find_lazy(h, key);
677}
678
[b9cb911]679/** Finds the first item equal to the search key. */
[5e5cef3]680static inline cht_link_t *find_lazy(cht_t *h, void *key)
[7ef2249]681{
682 ASSERT(h);
[b9cb911]683 /* See docs to cht_find() and cht_find_lazy(). */
[7ef2249]684 ASSERT(rcu_read_locked());
685
[6eaed07]686 size_t hash = calc_key_hash(h, key);
[7ef2249]687
688 cht_buckets_t *b = rcu_access(h->b);
689 size_t idx = calc_bucket_idx(hash, b->order);
[3bb732b]690 /*
691 * No need for access_once. b->head[idx] will point to an allocated node
692 * even if marked invalid until we exit rcu read section.
693 */
[7ef2249]694 marked_ptr_t head = b->head[idx];
695
[b9cb911]696 /* Undergoing a resize - take the slow path. */
[7ef2249]697 if (N_INVALID == get_mark(head))
698 return find_resizing(h, key, hash, head, idx);
699
700 return search_bucket(h, head, key, hash);
701}
702
[b9cb911]703/** Returns the next item matching \a item.
704 *
705 * Must be enclosed in a rcu_read_lock()/unlock() pair. Effects of
706 * completed cht_remove(), cht_insert() are guaranteed to be visible
707 * to cht_find_next().
708 *
709 * See cht_find() for more details.
710 */
[14c9aa6]711cht_link_t *cht_find_next(cht_t *h, const cht_link_t *item)
712{
713 /* Make the most recent changes to the table visible. */
714 read_barrier();
715 return cht_find_next_lazy(h, item);
716}
717
[b9cb911]718/** Returns the next item matching \a item.
719 *
720 * Must be enclosed in a rcu_read_lock()/unlock() pair. Effects of
721 * completed cht_remove(), cht_insert() may or may not be visible
722 * to cht_find_next_lazy().
723 *
724 * See cht_find_lazy() for more details.
725 */
[14c9aa6]726cht_link_t *cht_find_next_lazy(cht_t *h, const cht_link_t *item)
727{
728 ASSERT(h);
729 ASSERT(rcu_read_locked());
730 ASSERT(item);
731
[6eaed07]732 return find_duplicate(h, item, calc_node_hash(h, item), get_next(item->link));
[14c9aa6]733}
[7ef2249]734
[b9cb911]735/** Searches the bucket at head for key using search_hash. */
[5e5cef3]736static inline cht_link_t *search_bucket(cht_t *h, marked_ptr_t head, void *key,
[7ef2249]737 size_t search_hash)
738{
[6eaed07]739 /*
740 * It is safe to access nodes even outside of this bucket (eg when
741 * splitting the bucket). The resizer makes sure that any node we
742 * may find by following the next pointers is allocated.
743 */
744
[205832b]745 cht_link_t *cur = NULL;
[6eaed07]746 marked_ptr_t prev = head;
747
748try_again:
749 /* Filter out items with different hashes. */
750 do {
751 cur = get_next(prev);
752 ASSERT(cur);
753 prev = cur->link;
754 } while (node_hash(h, cur) < search_hash);
[7ef2249]755
[6eaed07]756 /*
757 * Only search for an item with an equal key if cur is not the sentinel
758 * node or a node with a different hash.
759 */
760 while (node_hash(h, cur) == search_hash) {
[5e5cef3]761 if (h->op->key_equal(key, cur)) {
762 if (!(N_DELETED & get_mark(cur->link)))
[7ef2249]763 return cur;
764 }
765
766 cur = get_next(cur->link);
[6eaed07]767 ASSERT(cur);
768 }
769
770 /*
771 * In the unlikely case that we have encountered a node whose cached
772 * hash has been overwritten due to a pending rcu_call for it, skip
773 * the node and try again.
774 */
775 if (node_hash(h, cur) == h->invalid_hash) {
776 prev = cur->link;
777 goto try_again;
[7ef2249]778 }
779
[205832b]780 return NULL;
[7ef2249]781}
782
[b9cb911]783/** Searches for the key while the table is undergoing a resize. */
[7ef2249]784static cht_link_t *find_resizing(cht_t *h, void *key, size_t hash,
785 marked_ptr_t old_head, size_t old_idx)
786{
787 ASSERT(N_INVALID == get_mark(old_head));
788 ASSERT(h->new_b);
789
790 size_t new_idx = calc_bucket_idx(hash, h->new_b->order);
791 marked_ptr_t new_head = h->new_b->head[new_idx];
792 marked_ptr_t search_head = new_head;
793
794 /* Growing. */
795 if (h->b->order < h->new_b->order) {
796 /*
797 * Old bucket head is invalid, so it must have been already
798 * moved. Make the new head visible if still not visible, ie
799 * invalid.
800 */
801 if (N_INVALID == get_mark(new_head)) {
802 /*
803 * We should be searching a newly added bucket but the old
804 * moved bucket has not yet been split (its marked invalid)
805 * or we have not yet seen the split.
806 */
807 if (grow_idx(old_idx) != new_idx) {
808 /*
809 * Search the moved bucket. It is guaranteed to contain
810 * items of the newly added bucket that were present
811 * before the moved bucket was split.
812 */
813 new_head = h->new_b->head[grow_idx(old_idx)];
814 }
815
816 /* new_head is now the moved bucket, either valid or invalid. */
817
818 /*
819 * The old bucket was definitely moved to new_head but the
820 * change of new_head had not yet propagated to this cpu.
821 */
822 if (N_INVALID == get_mark(new_head)) {
823 /*
824 * We could issue a read_barrier() and make the now valid
825 * moved bucket head new_head visible, but instead fall back
826 * on using the old bucket. Although the old bucket head is
827 * invalid, it points to a node that is allocated and in the
828 * right bucket. Before the node can be freed, it must be
829 * unlinked from the head (or another item after that item
830 * modified the new_head) and a grace period must elapse.
831 * As a result had the node been already freed the grace
832 * period preceeding the free() would make the unlink and
833 * any changes to new_head visible. Therefore, it is safe
834 * to use the node pointed to from the old bucket head.
835 */
836
837 search_head = old_head;
838 } else {
839 search_head = new_head;
840 }
841 }
842
843 return search_bucket(h, search_head, key, hash);
844 } else if (h->b->order > h->new_b->order) {
845 /* Shrinking. */
846
847 /* Index of the bucket in the old table that was moved. */
848 size_t move_src_idx = grow_idx(new_idx);
849 marked_ptr_t moved_old_head = h->b->head[move_src_idx];
850
851 /*
852 * h->b->head[move_src_idx] had already been moved to new_head
853 * but the change to new_head had not yet propagated to us.
854 */
855 if (N_INVALID == get_mark(new_head)) {
856 /*
857 * new_head is definitely valid and we could make it visible
858 * to this cpu with a read_barrier(). Instead, use the bucket
859 * in the old table that was moved even though it is now marked
860 * as invalid. The node it points to must be allocated because
861 * a grace period would have to elapse before it could be freed;
862 * and the grace period would make the now valid new_head
863 * visible to all cpus.
864 *
865 * Note that move_src_idx may not be the same as old_idx.
866 * If move_src_idx != old_idx then old_idx is the bucket
867 * in the old table that is not moved but instead it is
868 * appended to the moved bucket, ie it is added at the tail
869 * of new_head. In that case an invalid old_head notes that
870 * it had already been merged into (the moved) new_head.
871 * We will try to search that bucket first because it
872 * may contain some newly added nodes after the bucket
873 * join. Moreover, the bucket joining link may already be
874 * visible even if new_head is not. Therefore, if we're
875 * lucky we'll find the item via moved_old_head. In any
876 * case, we'll retry in proper old_head if not found.
877 */
878 search_head = moved_old_head;
879 }
880
881 cht_link_t *ret = search_bucket(h, search_head, key, hash);
882
883 if (ret)
884 return ret;
885 /*
886 * Bucket old_head was already joined with moved_old_head
887 * in the new table but we have not yet seen change of the
888 * joining link (or the item is not in the table).
889 */
[6eaed07]890 if (move_src_idx != old_idx && get_next(old_head) != &sentinel) {
[7ef2249]891 /*
892 * Note that old_head (the bucket to be merged into new_head)
893 * points to an allocated join node (if non-null) even if marked
894 * invalid. Before the resizer lets join nodes to be unlinked
[205832b]895 * (and freed) it sets old_head to NULL and waits for a grace period.
[7ef2249]896 * So either the invalid old_head points to join node; or old_head
897 * is null and we would have seen a completed bucket join while
898 * traversing search_head.
899 */
900 ASSERT(N_JOIN & get_mark(get_next(old_head)->link));
901 return search_bucket(h, old_head, key, hash);
902 }
903
[205832b]904 return NULL;
[7ef2249]905 } else {
906 /*
907 * Resize is almost done. The resizer is waiting to make
908 * sure all cpus see that the new table replaced the old one.
909 */
910 ASSERT(h->b->order == h->new_b->order);
911 /*
912 * The resizer must ensure all new bucket heads are visible before
913 * replacing the old table.
914 */
915 ASSERT(N_NORMAL == get_mark(new_head));
916 return search_bucket(h, new_head, key, hash);
917 }
918}
919
[b9cb911]920/** Inserts an item. Succeeds even if an equal item is already present. */
[7ef2249]921void cht_insert(cht_t *h, cht_link_t *item)
922{
[04d66804]923 insert_impl(h, item, NULL);
[7ef2249]924}
925
[b9cb911]926/** Inserts a unique item. Returns false if an equal item was already present.
927 *
928 * Use this function to atomically check if an equal/duplicate item had
929 * not yet been inserted into the table and to insert this item into the
930 * table.
931 *
[991d2d8]932 * The following is @e NOT thread-safe, so do not use:
933 * @code
[b9cb911]934 * if (!cht_find(h, key)) {
935 * // A concurrent insert here may go unnoticed by cht_find() above.
936 * item = malloc(..);
937 * cht_insert(h, item);
938 * // Now we may have two items with equal search keys.
939 * }
[991d2d8]940 * @endcode
[b9cb911]941 *
942 * Replace such code with:
[991d2d8]943 * @code
[b9cb911]944 * item = malloc(..);
[04d66804]945 * if (!cht_insert_unique(h, item, &dup_item)) {
946 * // Whoops, someone beat us to it - an equal item 'dup_item'
947 * // had already been inserted.
[b9cb911]948 * free(item);
949 * } else {
950 * // Successfully inserted the item and we are guaranteed that
951 * // there are no other equal items.
952 * }
[991d2d8]953 * @endcode
[b9cb911]954 *
955 */
[04d66804]956bool cht_insert_unique(cht_t *h, cht_link_t *item, cht_link_t **dup_item)
[7ef2249]957{
[04d66804]958 ASSERT(rcu_read_locked());
959 ASSERT(dup_item);
960 return insert_impl(h, item, dup_item);
[7ef2249]961}
962
[04d66804]963/** Inserts the item into the table and checks for duplicates if dup_item. */
964static bool insert_impl(cht_t *h, cht_link_t *item, cht_link_t **dup_item)
[7ef2249]965{
966 rcu_read_lock();
967
[3bb732b]968 cht_buckets_t *b = rcu_access(h->b);
[6eaed07]969 memoize_node_hash(h, item);
[3bb732b]970 size_t hash = node_hash(h, item);
971 size_t idx = calc_bucket_idx(hash, b->order);
972 marked_ptr_t *phead = &b->head[idx];
973
974 bool resizing = false;
[5e5cef3]975 bool inserted = false;
[3bb732b]976
977 do {
978 walk_mode_t walk_mode = WM_NORMAL;
979 bool join_finishing;
980
981 resizing = resizing || (N_NORMAL != get_mark(*phead));
982
983 /* The table is resizing. Get the correct bucket head. */
984 if (resizing) {
[14c9aa6]985 upd_resizing_head(h, hash, &phead, &join_finishing, &walk_mode);
[3bb732b]986 }
987
988 wnd_t wnd = {
989 .ppred = phead,
990 .cur = get_next(*phead),
[205832b]991 .last = NULL
[3bb732b]992 };
993
994 if (!find_wnd_and_gc(h, hash, walk_mode, &wnd, &resizing)) {
995 /* Could not GC a node; or detected an unexpected resize. */
996 continue;
997 }
998
[04d66804]999 if (dup_item && has_duplicate(h, item, hash, wnd.cur, dup_item)) {
[3bb732b]1000 rcu_read_unlock();
1001 return false;
1002 }
1003
[14c9aa6]1004 inserted = insert_at(item, &wnd, walk_mode, &resizing);
[3bb732b]1005 } while (!inserted);
1006
[7ef2249]1007 rcu_read_unlock();
[14c9aa6]1008
1009 item_inserted(h);
[3bb732b]1010 return true;
1011}
1012
[b9cb911]1013/** Inserts item between wnd.ppred and wnd.cur.
1014 *
1015 * @param item Item to link to wnd.ppred and wnd.cur.
1016 * @param wnd The item will be inserted before wnd.cur. Wnd.ppred
1017 * must be N_NORMAL.
1018 * @param walk_mode
1019 * @param resizing Set to true only if the table is undergoing resize
1020 * and it was not expected (ie walk_mode == WM_NORMAL).
1021 * @return True if the item was successfully linked to wnd.ppred. False
1022 * if whole insert operation must be retried because the predecessor
1023 * of wnd.cur has changed.
1024 */
[5e5cef3]1025inline static bool insert_at(cht_link_t *item, const wnd_t *wnd,
1026 walk_mode_t walk_mode, bool *resizing)
[3bb732b]1027{
1028 marked_ptr_t ret;
1029
1030 if (walk_mode == WM_NORMAL) {
1031 item->link = make_link(wnd->cur, N_NORMAL);
1032 /* Initialize the item before adding it to a bucket. */
1033 memory_barrier();
1034
1035 /* Link a clean/normal predecessor to the item. */
1036 ret = cas_link(wnd->ppred, wnd->cur, N_NORMAL, item, N_NORMAL);
1037
1038 if (ret == make_link(wnd->cur, N_NORMAL)) {
1039 return true;
1040 } else {
[14c9aa6]1041 /* This includes an invalid head but not a const head. */
[3bb732b]1042 *resizing = ((N_JOIN_FOLLOWS | N_JOIN) & get_mark(ret));
1043 return false;
1044 }
1045 } else if (walk_mode == WM_MOVE_JOIN_FOLLOWS) {
1046 /* Move JOIN_FOLLOWS mark but filter out the DELETED mark. */
1047 mark_t jf_mark = get_mark(*wnd->ppred) & N_JOIN_FOLLOWS;
1048 item->link = make_link(wnd->cur, jf_mark);
1049 /* Initialize the item before adding it to a bucket. */
1050 memory_barrier();
1051
1052 /* Link the not-deleted predecessor to the item. Move its JF mark. */
1053 ret = cas_link(wnd->ppred, wnd->cur, jf_mark, item, N_NORMAL);
1054
1055 return ret == make_link(wnd->cur, jf_mark);
1056 } else {
1057 ASSERT(walk_mode == WM_LEAVE_JOIN);
1058
1059 item->link = make_link(wnd->cur, N_NORMAL);
1060 /* Initialize the item before adding it to a bucket. */
1061 memory_barrier();
1062
1063 mark_t pred_mark = get_mark(*wnd->ppred);
1064 /* If the predecessor is a join node it may be marked deleted.*/
1065 mark_t exp_pred_mark = (N_JOIN & pred_mark) ? pred_mark : N_NORMAL;
1066
1067 ret = cas_link(wnd->ppred, wnd->cur, exp_pred_mark, item, exp_pred_mark);
1068 return ret == make_link(wnd->cur, exp_pred_mark);
1069 }
1070}
1071
[04d66804]1072/** Returns true if the chain starting at cur has an item equal to \a item.
[b9cb911]1073 *
1074 * @param h CHT to operate on.
1075 * @param item Item whose duplicates the function looks for.
1076 * @param hash Hash of \a item.
[04d66804]1077 * @param[in] cur The first node with a hash greater to or equal to item's hash.
1078 * @param[out] dup_item The first duplicate item encountered.
[b9cb911]1079 * @return True if a non-deleted item equal to \a item exists in the table.
1080 */
[04d66804]1081static inline bool has_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
1082 cht_link_t *cur, cht_link_t **dup_item)
[3bb732b]1083{
[04d66804]1084 ASSERT(cur);
1085 ASSERT(cur == &sentinel || hash <= node_hash(h, cur)
1086 || node_hash(h, cur) == h->invalid_hash);
[3bb732b]1087
[04d66804]1088 /* hash < node_hash(h, cur) */
1089 if (hash != node_hash(h, cur) && h->invalid_hash != node_hash(h, cur))
[3bb732b]1090 return false;
1091
1092 /*
1093 * Load the most recent node marks. Otherwise we might pronounce a
1094 * logically deleted node for a duplicate of the item just because
1095 * the deleted node's DEL mark had not yet propagated to this cpu.
1096 */
1097 read_barrier();
[04d66804]1098
1099 *dup_item = find_duplicate(h, item, hash, cur);
1100 return NULL != *dup_item;
[14c9aa6]1101}
1102
[b9cb911]1103/** Returns an item that is equal to \a item starting in a chain at \a start. */
[14c9aa6]1104static cht_link_t *find_duplicate(cht_t *h, const cht_link_t *item, size_t hash,
1105 cht_link_t *start)
1106{
[6eaed07]1107 ASSERT(hash <= node_hash(h, start) || h->invalid_hash == node_hash(h, start));
[3bb732b]1108
[14c9aa6]1109 cht_link_t *cur = start;
[3bb732b]1110
[6eaed07]1111try_again:
1112 ASSERT(cur);
1113
1114 while (node_hash(h, cur) == hash) {
1115 ASSERT(cur != &sentinel);
1116
[3bb732b]1117 bool deleted = (N_DELETED & get_mark(cur->link));
1118
1119 /* Skip logically deleted nodes. */
1120 if (!deleted && h->op->equal(item, cur))
[14c9aa6]1121 return cur;
[3bb732b]1122
1123 cur = get_next(cur->link);
[6eaed07]1124 ASSERT(cur);
[14c9aa6]1125 }
[6eaed07]1126
[b9cb911]1127 /* Skip logically deleted nodes with rcu_call() in progress. */
[6eaed07]1128 if (h->invalid_hash == node_hash(h, cur)) {
1129 cur = get_next(cur->link);
1130 goto try_again;
1131 }
[3bb732b]1132
[205832b]1133 return NULL;
[7ef2249]1134}
1135
[b9cb911]1136/** Removes all items matching the search key. Returns the number of items removed.*/
[7ef2249]1137size_t cht_remove_key(cht_t *h, void *key)
1138{
1139 ASSERT(h);
1140
[6eaed07]1141 size_t hash = calc_key_hash(h, key);
[7ef2249]1142 size_t removed = 0;
1143
1144 while (remove_pred(h, hash, h->op->key_equal, key))
1145 ++removed;
1146
1147 return removed;
1148}
1149
[b9cb911]1150/** Removes a specific item from the table.
1151 *
1152 * The called must hold rcu read lock.
1153 *
1154 * @param item Item presumably present in the table and to be removed.
1155 * @return True if the item was removed successfully; or false if it had
1156 * already been deleted.
1157 */
[7ef2249]1158bool cht_remove_item(cht_t *h, cht_link_t *item)
1159{
1160 ASSERT(h);
1161 ASSERT(item);
[b9cb911]1162 /* Otherwise a concurrent cht_remove_key might free the item. */
1163 ASSERT(rcu_read_locked());
[7ef2249]1164
1165 /*
1166 * Even though we know the node we want to delete we must unlink it
1167 * from the correct bucket and from a clean/normal predecessor. Therefore,
1168 * we search for it again from the beginning of the correct bucket.
1169 */
[6eaed07]1170 size_t hash = calc_node_hash(h, item);
[7ef2249]1171 return remove_pred(h, hash, same_node_pred, item);
1172}
1173
[b9cb911]1174/** Removes an item equal to pred_arg according to the predicate pred. */
[7ef2249]1175static bool remove_pred(cht_t *h, size_t hash, equal_pred_t pred, void *pred_arg)
1176{
1177 rcu_read_lock();
1178
1179 bool resizing = false;
1180 bool deleted = false;
1181 bool deleted_but_gc = false;
1182
1183 cht_buckets_t *b = rcu_access(h->b);
1184 size_t idx = calc_bucket_idx(hash, b->order);
1185 marked_ptr_t *phead = &b->head[idx];
1186
1187 do {
1188 walk_mode_t walk_mode = WM_NORMAL;
1189 bool join_finishing = false;
1190
1191 resizing = resizing || (N_NORMAL != get_mark(*phead));
1192
1193 /* The table is resizing. Get the correct bucket head. */
1194 if (resizing) {
[14c9aa6]1195 upd_resizing_head(h, hash, &phead, &join_finishing, &walk_mode);
[7ef2249]1196 }
1197
1198 wnd_t wnd = {
1199 .ppred = phead,
1200 .cur = get_next(*phead),
[205832b]1201 .last = NULL
[7ef2249]1202 };
1203
1204 if (!find_wnd_and_gc_pred(
1205 h, hash, walk_mode, pred, pred_arg, &wnd, &resizing)) {
1206 /* Could not GC a node; or detected an unexpected resize. */
1207 continue;
1208 }
1209
1210 /*
1211 * The item lookup is affected by a bucket join but effects of
1212 * the bucket join have not been seen while searching for the item.
1213 */
1214 if (join_finishing && !join_completed(h, &wnd)) {
1215 /*
1216 * Bucket was appended at the end of another but the next
1217 * ptr linking them together was not visible on this cpu.
1218 * join_completed() makes this appended bucket visible.
1219 */
1220 continue;
1221 }
1222
1223 /* Already deleted, but delete_at() requested one GC pass. */
1224 if (deleted_but_gc)
1225 break;
1226
[6eaed07]1227 bool found = (wnd.cur != &sentinel && pred(pred_arg, wnd.cur));
[7ef2249]1228
1229 if (!found) {
1230 rcu_read_unlock();
1231 return false;
1232 }
1233
[14c9aa6]1234 deleted = delete_at(h, &wnd, walk_mode, &deleted_but_gc, &resizing);
[7ef2249]1235 } while (!deleted || deleted_but_gc);
1236
1237 rcu_read_unlock();
1238 return true;
1239}
1240
[b9cb911]1241/** Unlinks wnd.cur from wnd.ppred and schedules a deferred free for the item.
1242 *
1243 * Ignores nodes marked N_JOIN if walk mode is WM_LEAVE_JOIN.
1244 *
1245 * @param h CHT to operate on.
1246 * @param wnd Points to the item to delete and its N_NORMAL predecessor.
1247 * @param walk_mode Bucket chaing walk mode.
1248 * @param deleted_but_gc Set to true if the item had been logically deleted,
1249 * but a garbage collecting walk of the bucket is in order for
1250 * it to be fully unlinked.
1251 * @param resizing Set to true if the table is undergoing an unexpected
1252 * resize (ie walk_mode == WM_NORMAL).
1253 * @return False if the wnd.ppred changed in the meantime and the whole
1254 * delete operation must be retried.
1255 */
[5e5cef3]1256static inline bool delete_at(cht_t *h, wnd_t *wnd, walk_mode_t walk_mode,
[7ef2249]1257 bool *deleted_but_gc, bool *resizing)
1258{
[6eaed07]1259 ASSERT(wnd->cur && wnd->cur != &sentinel);
[7ef2249]1260
1261 *deleted_but_gc = false;
1262
1263 if (!mark_deleted(wnd->cur, walk_mode, resizing)) {
1264 /* Already deleted, or unexpectedly marked as JOIN/JOIN_FOLLOWS. */
1265 return false;
1266 }
1267
1268 /* Marked deleted. Unlink from the bucket. */
1269
1270 /* Never unlink join nodes. */
1271 if (walk_mode == WM_LEAVE_JOIN && (N_JOIN & get_mark(wnd->cur->link)))
1272 return true;
1273
[14c9aa6]1274 cas_order_barrier();
1275
[7ef2249]1276 if (unlink_from_pred(wnd, walk_mode, resizing)) {
1277 free_later(h, wnd->cur);
1278 } else {
1279 *deleted_but_gc = true;
1280 }
1281
1282 return true;
1283}
1284
[b9cb911]1285/** Marks cur logically deleted. Returns false to request a retry. */
[5e5cef3]1286static inline bool mark_deleted(cht_link_t *cur, walk_mode_t walk_mode,
1287 bool *resizing)
[7ef2249]1288{
[6eaed07]1289 ASSERT(cur && cur != &sentinel);
[7ef2249]1290
1291 /*
1292 * Btw, we could loop here if the cas fails but let's not complicate
1293 * things and let's retry from the head of the bucket.
1294 */
1295
1296 cht_link_t *next = get_next(cur->link);
1297
1298 if (walk_mode == WM_NORMAL) {
1299 /* Only mark clean/normal nodes - JF/JN is used only during resize. */
[14c9aa6]1300 marked_ptr_t ret = cas_link(&cur->link, next, N_NORMAL, next, N_DELETED);
[7ef2249]1301
[14c9aa6]1302 if (ret != make_link(next, N_NORMAL)) {
1303 *resizing = (N_JOIN | N_JOIN_FOLLOWS) & get_mark(ret);
[7ef2249]1304 return false;
1305 }
1306 } else {
1307 ASSERT(N_JOIN == N_JOIN_FOLLOWS);
1308
1309 /* Keep the N_JOIN/N_JOIN_FOLLOWS mark but strip N_DELETED. */
1310 mark_t cur_mark = get_mark(cur->link) & N_JOIN_FOLLOWS;
1311
[14c9aa6]1312 marked_ptr_t ret =
1313 cas_link(&cur->link, next, cur_mark, next, cur_mark | N_DELETED);
[7ef2249]1314
[14c9aa6]1315 if (ret != make_link(next, cur_mark))
[7ef2249]1316 return false;
1317 }
1318
1319 return true;
1320}
1321
[b9cb911]1322/** Unlinks wnd.cur from wnd.ppred. Returns false if it should be retried. */
[5e5cef3]1323static inline bool unlink_from_pred(wnd_t *wnd, walk_mode_t walk_mode,
1324 bool *resizing)
[7ef2249]1325{
[6eaed07]1326 ASSERT(wnd->cur != &sentinel);
[7ef2249]1327 ASSERT(wnd->cur && (N_DELETED & get_mark(wnd->cur->link)));
1328
1329 cht_link_t *next = get_next(wnd->cur->link);
1330
1331 if (walk_mode == WM_LEAVE_JOIN) {
1332 /* Never try to unlink join nodes. */
1333 ASSERT(!(N_JOIN & get_mark(wnd->cur->link)));
1334
1335 mark_t pred_mark = get_mark(*wnd->ppred);
[14c9aa6]1336 /* Succeed only if the predecessor is clean/normal or a join node. */
[7ef2249]1337 mark_t exp_pred_mark = (N_JOIN & pred_mark) ? pred_mark : N_NORMAL;
1338
1339 marked_ptr_t pred_link = make_link(wnd->cur, exp_pred_mark);
1340 marked_ptr_t next_link = make_link(next, exp_pred_mark);
1341
[14c9aa6]1342 if (pred_link != _cas_link(wnd->ppred, pred_link, next_link))
[7ef2249]1343 return false;
1344 } else {
1345 ASSERT(walk_mode == WM_MOVE_JOIN_FOLLOWS || walk_mode == WM_NORMAL);
1346 /* Move the JF mark if set. Clear DEL mark. */
1347 mark_t cur_mark = N_JOIN_FOLLOWS & get_mark(wnd->cur->link);
1348
1349 /* The predecessor must be clean/normal. */
1350 marked_ptr_t pred_link = make_link(wnd->cur, N_NORMAL);
1351 /* Link to cur's successor keeping/copying cur's JF mark. */
1352 marked_ptr_t next_link = make_link(next, cur_mark);
1353
[14c9aa6]1354 marked_ptr_t ret = _cas_link(wnd->ppred, pred_link, next_link);
[7ef2249]1355
1356 if (pred_link != ret) {
1357 /* If we're not resizing the table there are no JF/JN nodes. */
1358 *resizing = (walk_mode == WM_NORMAL)
1359 && (N_JOIN_FOLLOWS & get_mark(ret));
1360 return false;
1361 }
1362 }
1363
1364 return true;
1365}
1366
[b9cb911]1367/** Finds the first non-deleted item equal to \a pred_arg according to \a pred.
1368 *
1369 * The function returns the candidate item in \a wnd. Logically deleted
1370 * nodes are garbage collected so the predecessor will most likely not
1371 * be marked as deleted.
1372 *
1373 * Unlike find_wnd_and_gc(), this function never returns a node that
1374 * is known to have already been marked N_DELETED.
1375 *
1376 * Any logically deleted nodes (ie those marked N_DELETED) are garbage
1377 * collected, ie free in the background via rcu_call (except for join-nodes
1378 * if walk_mode == WM_LEAVE_JOIN).
1379 *
1380 * @param h CHT to operate on.
1381 * @param hash Hash the search for.
1382 * @param walk_mode Bucket chain walk mode.
1383 * @param pred Predicate used to find an item equal to pred_arg.
1384 * @param pred_arg Argument to pass to the equality predicate \a pred.
1385 * @param[in,out] wnd The search starts with wnd.cur. If the desired
1386 * item is found wnd.cur will point to it.
1387 * @param resizing Set to true if the table is resizing but it was not
1388 * expected (ie walk_mode == WM_NORMAL).
1389 * @return False if the operation has to be retried. True otherwise
1390 * (even if an equal item had not been found).
1391 */
[7ef2249]1392static bool find_wnd_and_gc_pred(cht_t *h, size_t hash, walk_mode_t walk_mode,
1393 equal_pred_t pred, void *pred_arg, wnd_t *wnd, bool *resizing)
1394{
[6eaed07]1395 ASSERT(wnd->cur);
1396
1397 if (wnd->cur == &sentinel)
[7ef2249]1398 return true;
1399
1400 /*
1401 * A read barrier is not needed here to bring up the most recent
1402 * node marks (esp the N_DELETED). At worst we'll try to delete
1403 * an already deleted node; fail in delete_at(); and retry.
1404 */
1405
[6eaed07]1406 size_t cur_hash;
1407
1408try_again:
1409 cur_hash = node_hash(h, wnd->cur);
[7ef2249]1410
1411 while (cur_hash <= hash) {
[6eaed07]1412 ASSERT(wnd->cur && wnd->cur != &sentinel);
1413
[7ef2249]1414 /* GC any deleted nodes on the way. */
1415 if (N_DELETED & get_mark(wnd->cur->link)) {
1416 if (!gc_deleted_node(h, walk_mode, wnd, resizing)) {
1417 /* Retry from the head of a bucket. */
1418 return false;
1419 }
1420 } else {
1421 /* Is this the node we were looking for? */
1422 if (cur_hash == hash && pred(pred_arg, wnd->cur))
1423 return true;
1424
1425 next_wnd(wnd);
1426 }
1427
1428 cur_hash = node_hash(h, wnd->cur);
1429 }
1430
[6eaed07]1431 if (cur_hash == h->invalid_hash) {
1432 next_wnd(wnd);
1433 ASSERT(wnd->cur);
1434 goto try_again;
1435 }
1436
[7ef2249]1437 /* The searched for node is not in the current bucket. */
1438 return true;
1439}
1440
[b9cb911]1441/** Find the first item (deleted or not) with a hash greater or equal to \a hash.
1442 *
1443 * The function returns the first item with a hash that is greater or
1444 * equal to \a hash in \a wnd. Moreover it garbage collects logically
1445 * deleted node that have not yet been unlinked and freed. Therefore,
1446 * the returned node's predecessor will most likely be N_NORMAL.
1447 *
1448 * Unlike find_wnd_and_gc_pred(), this function may return a node
1449 * that is known to had been marked N_DELETED.
1450 *
1451 * @param h CHT to operate on.
1452 * @param hash Hash of the item to find.
1453 * @param walk_mode Bucket chain walk mode.
1454 * @param[in,out] wnd wnd.cur denotes the first node of the chain. If the
1455 * the operation is successful, \a wnd points to the desired
1456 * item.
1457 * @param resizing Set to true if a table resize was detected but walk_mode
1458 * suggested the table was not undergoing a resize.
1459 * @return False indicates the operation must be retried. True otherwise
1460 * (even if an item with exactly the same has was not found).
1461 */
[7ef2249]1462static bool find_wnd_and_gc(cht_t *h, size_t hash, walk_mode_t walk_mode,
1463 wnd_t *wnd, bool *resizing)
1464{
[6eaed07]1465try_again:
1466 ASSERT(wnd->cur);
1467
1468 while (node_hash(h, wnd->cur) < hash) {
[7ef2249]1469 /* GC any deleted nodes along the way to our desired node. */
1470 if (N_DELETED & get_mark(wnd->cur->link)) {
1471 if (!gc_deleted_node(h, walk_mode, wnd, resizing)) {
1472 /* Failed to remove the garbage node. Retry. */
1473 return false;
1474 }
1475 } else {
1476 next_wnd(wnd);
1477 }
[6eaed07]1478
1479 ASSERT(wnd->cur);
[7ef2249]1480 }
1481
[6eaed07]1482 if (node_hash(h, wnd->cur) == h->invalid_hash) {
1483 next_wnd(wnd);
1484 goto try_again;
1485 }
1486
[205832b]1487 /* wnd->cur may be NULL or even marked N_DELETED. */
[7ef2249]1488 return true;
1489}
1490
[b9cb911]1491/** Garbage collects the N_DELETED node at \a wnd skipping join nodes. */
[7ef2249]1492static bool gc_deleted_node(cht_t *h, walk_mode_t walk_mode, wnd_t *wnd,
1493 bool *resizing)
1494{
1495 ASSERT(N_DELETED & get_mark(wnd->cur->link));
1496
1497 /* Skip deleted JOIN nodes. */
1498 if (walk_mode == WM_LEAVE_JOIN && (N_JOIN & get_mark(wnd->cur->link))) {
1499 next_wnd(wnd);
1500 } else {
1501 /* Ordinary deleted node or a deleted JOIN_FOLLOWS. */
1502 ASSERT(walk_mode != WM_LEAVE_JOIN
1503 || !((N_JOIN | N_JOIN_FOLLOWS) & get_mark(wnd->cur->link)));
1504
1505 /* Unlink an ordinary deleted node, move JOIN_FOLLOWS mark. */
1506 if (!unlink_from_pred(wnd, walk_mode, resizing)) {
1507 /* Retry. The predecessor was deleted, invalid, const, join_follows. */
1508 return false;
1509 }
1510
1511 free_later(h, wnd->cur);
1512
1513 /* Leave ppred as is. */
1514 wnd->last = wnd->cur;
1515 wnd->cur = get_next(wnd->cur->link);
1516 }
1517
1518 return true;
1519}
1520
[b9cb911]1521/** Returns true if a bucket join had already completed.
1522 *
1523 * May only be called if upd_resizing_head() indicates a bucket join
1524 * may be in progress.
1525 *
1526 * If it returns false, the search must be retried in order to guarantee
1527 * all item that should have been encountered have been seen.
1528 */
[7ef2249]1529static bool join_completed(cht_t *h, const wnd_t *wnd)
1530{
1531 /*
1532 * The table is shrinking and the searched for item is in a bucket
1533 * appended to another. Check that the link joining these two buckets
1534 * is visible and if not, make it visible to this cpu.
1535 */
1536
1537 /*
1538 * Resizer ensures h->b->order stays the same for the duration of this
1539 * func. We got here because there was an alternative head to search.
1540 * The resizer waits for all preexisting readers to finish after
1541 * it
1542 */
1543 ASSERT(h->b->order > h->new_b->order);
[6eaed07]1544 ASSERT(wnd->cur);
[7ef2249]1545
1546 /* Either we did not need the joining link or we have already followed it.*/
[6eaed07]1547 if (wnd->cur != &sentinel)
[7ef2249]1548 return true;
1549
1550 /* We have reached the end of a bucket. */
1551
[6eaed07]1552 if (wnd->last != &sentinel) {
[7ef2249]1553 size_t last_seen_hash = node_hash(h, wnd->last);
[6eaed07]1554
1555 if (last_seen_hash == h->invalid_hash) {
1556 last_seen_hash = calc_node_hash(h, wnd->last);
1557 }
1558
[7ef2249]1559 size_t last_old_idx = calc_bucket_idx(last_seen_hash, h->b->order);
1560 size_t move_src_idx = grow_idx(shrink_idx(last_old_idx));
1561
1562 /*
[6eaed07]1563 * Last node seen was in the joining bucket - if the searched
1564 * for node is there we will find it.
[7ef2249]1565 */
1566 if (move_src_idx != last_old_idx)
1567 return true;
1568 }
1569
1570 /*
1571 * Reached the end of the bucket but no nodes from the joining bucket
1572 * were seen. There should have at least been a JOIN node so we have
1573 * definitely not seen (and followed) the joining link. Make the link
1574 * visible and retry.
1575 */
1576 read_barrier();
1577 return false;
1578}
1579
[b9cb911]1580/** When resizing returns the bucket head to start the search with in \a phead.
1581 *
1582 * If a resize had been detected (eg cht_t.b.head[idx] is marked immutable).
1583 * upd_resizing_head() moves the bucket for \a hash from the old head
1584 * to the new head. Moreover, it splits or joins buckets as necessary.
1585 *
1586 * @param h CHT to operate on.
1587 * @param hash Hash of an item whose chain we would like to traverse.
1588 * @param[out] phead Head of the bucket to search for \a hash.
1589 * @param[out] join_finishing Set to true if a bucket join might be
1590 * in progress and the bucket may have to traversed again
1591 * as indicated by join_completed().
1592 * @param[out] walk_mode Specifies how to interpret node marks.
1593 */
[7ef2249]1594static void upd_resizing_head(cht_t *h, size_t hash, marked_ptr_t **phead,
[14c9aa6]1595 bool *join_finishing, walk_mode_t *walk_mode)
[7ef2249]1596{
1597 cht_buckets_t *b = rcu_access(h->b);
1598 size_t old_idx = calc_bucket_idx(hash, b->order);
1599 size_t new_idx = calc_bucket_idx(hash, h->new_b->order);
1600
1601 marked_ptr_t *pold_head = &b->head[old_idx];
1602 marked_ptr_t *pnew_head = &h->new_b->head[new_idx];
1603
1604 /* In any case, use the bucket in the new table. */
1605 *phead = pnew_head;
1606
1607 /* Growing the table. */
1608 if (b->order < h->new_b->order) {
1609 size_t move_dest_idx = grow_idx(old_idx);
1610 marked_ptr_t *pmoved_head = &h->new_b->head[move_dest_idx];
1611
1612 /* Complete moving the bucket from the old to the new table. */
[14c9aa6]1613 help_head_move(pold_head, pmoved_head);
[7ef2249]1614
1615 /* The hash belongs to the moved bucket. */
1616 if (move_dest_idx == new_idx) {
[14c9aa6]1617 ASSERT(pmoved_head == pnew_head);
[7ef2249]1618 /*
1619 * move_head() makes the new head of the moved bucket visible.
1620 * The new head may be marked with a JOIN_FOLLOWS
1621 */
[14c9aa6]1622 ASSERT(!(N_CONST & get_mark(*pmoved_head)));
[7ef2249]1623 *walk_mode = WM_MOVE_JOIN_FOLLOWS;
1624 } else {
[14c9aa6]1625 ASSERT(pmoved_head != pnew_head);
[7ef2249]1626 /*
1627 * The hash belongs to the bucket that is the result of splitting
1628 * the old/moved bucket, ie the bucket that contains the second
1629 * half of the split/old/moved bucket.
1630 */
1631
1632 /* The moved bucket has not yet been split. */
1633 if (N_NORMAL != get_mark(*pnew_head)) {
[3bb732b]1634 size_t split_hash = calc_split_hash(new_idx, h->new_b->order);
[14c9aa6]1635 split_bucket(h, pmoved_head, pnew_head, split_hash);
[7ef2249]1636 /*
1637 * split_bucket() makes the new head visible. No
1638 * JOIN_FOLLOWS in this part of split bucket.
1639 */
1640 ASSERT(N_NORMAL == get_mark(*pnew_head));
1641 }
1642
1643 *walk_mode = WM_LEAVE_JOIN;
1644 }
1645 } else if (h->new_b->order < b->order ) {
1646 /* Shrinking the table. */
1647
1648 size_t move_src_idx = grow_idx(new_idx);
1649
1650 /*
1651 * Complete moving the bucket from the old to the new table.
1652 * Makes a valid pnew_head visible if already moved.
1653 */
[14c9aa6]1654 help_head_move(&b->head[move_src_idx], pnew_head);
[7ef2249]1655
1656 /* Hash belongs to the bucket to be joined with the moved bucket. */
1657 if (move_src_idx != old_idx) {
1658 /* Bucket join not yet completed. */
1659 if (N_INVALID != get_mark(*pold_head)) {
[3bb732b]1660 size_t split_hash = calc_split_hash(old_idx, b->order);
[14c9aa6]1661 join_buckets(h, pold_head, pnew_head, split_hash);
[7ef2249]1662 }
1663
[6eaed07]1664 /*
1665 * The resizer sets pold_head to &sentinel when all cpus are
1666 * guaranteed to see the bucket join.
1667 */
1668 *join_finishing = (&sentinel != get_next(*pold_head));
[7ef2249]1669 }
1670
1671 /* move_head() or join_buckets() makes it so or makes the mark visible.*/
1672 ASSERT(N_INVALID == get_mark(*pold_head));
1673 /* move_head() makes it visible. No JOIN_FOLLOWS used when shrinking. */
1674 ASSERT(N_NORMAL == get_mark(*pnew_head));
1675
1676 *walk_mode = WM_LEAVE_JOIN;
1677 } else {
1678 /*
1679 * Final stage of resize. The resizer is waiting for all
1680 * readers to notice that the old table had been replaced.
1681 */
1682 ASSERT(b == h->new_b);
1683 *walk_mode = WM_NORMAL;
1684 }
1685}
1686
1687
[3bb732b]1688#if 0
[7ef2249]1689static void move_head(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head)
1690{
1691 start_head_move(psrc_head);
[14c9aa6]1692 cas_order_barrier();
[7ef2249]1693 complete_head_move(psrc_head, pdest_head);
1694}
[3bb732b]1695#endif
[7ef2249]1696
[b9cb911]1697/** Moves an immutable head \a psrc_head of cht_t.b to \a pdest_head of cht_t.new_b.
1698 *
1699 * The function guarantees the move will be visible on this cpu once
1700 * it completes. In particular, *pdest_head will not be N_INVALID.
1701 *
1702 * Unlike complete_head_move(), help_head_move() checks if the head had already
1703 * been moved and tries to avoid moving the bucket heads if possible.
1704 */
[5e5cef3]1705static inline void help_head_move(marked_ptr_t *psrc_head,
1706 marked_ptr_t *pdest_head)
[7ef2249]1707{
1708 /* Head move has to in progress already when calling this func. */
1709 ASSERT(N_CONST & get_mark(*psrc_head));
1710
1711 /* Head already moved. */
1712 if (N_INVALID == get_mark(*psrc_head)) {
1713 /* Effects of the head move have not yet propagated to this cpu. */
1714 if (N_INVALID == get_mark(*pdest_head)) {
1715 /* Make the move visible on this cpu. */
1716 read_barrier();
1717 }
1718 } else {
1719 complete_head_move(psrc_head, pdest_head);
1720 }
[14c9aa6]1721
1722 ASSERT(!(N_CONST & get_mark(*pdest_head)));
[7ef2249]1723}
1724
[b9cb911]1725/** Initiates the move of the old head \a psrc_head.
1726 *
1727 * The move may be completed with help_head_move().
1728 */
[7ef2249]1729static void start_head_move(marked_ptr_t *psrc_head)
1730{
1731 /* Mark src head immutable. */
1732 mark_const(psrc_head);
1733}
1734
[b9cb911]1735/** Marks the head immutable. */
[7ef2249]1736static void mark_const(marked_ptr_t *psrc_head)
1737{
1738 marked_ptr_t ret, src_link;
1739
1740 /* Mark src head immutable. */
1741 do {
1742 cht_link_t *next = get_next(*psrc_head);
1743 src_link = make_link(next, N_NORMAL);
1744
1745 /* Mark the normal/clean src link immutable/const. */
1746 ret = cas_link(psrc_head, next, N_NORMAL, next, N_CONST);
1747 } while(ret != src_link && !(N_CONST & get_mark(ret)));
1748}
1749
[b9cb911]1750/** Completes moving head psrc_head to pdest_head (started by start_head_move()).*/
[7ef2249]1751static void complete_head_move(marked_ptr_t *psrc_head, marked_ptr_t *pdest_head)
1752{
1753 ASSERT(N_JOIN_FOLLOWS != get_mark(*psrc_head));
1754 ASSERT(N_CONST & get_mark(*psrc_head));
1755
1756 cht_link_t *next = get_next(*psrc_head);
[14c9aa6]1757 marked_ptr_t ret;
1758
[6eaed07]1759 ret = cas_link(pdest_head, &sentinel, N_INVALID, next, N_NORMAL);
1760 ASSERT(ret == make_link(&sentinel, N_INVALID) || (N_NORMAL == get_mark(ret)));
[14c9aa6]1761 cas_order_barrier();
1762
1763 ret = cas_link(psrc_head, next, N_CONST, next, N_INVALID);
1764 ASSERT(ret == make_link(next, N_CONST) || (N_INVALID == get_mark(ret)));
1765 cas_order_barrier();
[7ef2249]1766}
1767
[b9cb911]1768/** Splits the bucket at psrc_head and links to the remainder from pdest_head.
1769 *
1770 * Items with hashes greater or equal to \a split_hash are moved to bucket
1771 * with head at \a pdest_head.
1772 *
1773 * @param h CHT to operate on.
1774 * @param psrc_head Head of the bucket to split (in cht_t.new_b).
1775 * @param pdest_head Head of the bucket that points to the second part
1776 * of the split bucket in psrc_head. (in cht_t.new_b)
1777 * @param split_hash Hash of the first possible item in the remainder of
1778 * psrc_head, ie the smallest hash pdest_head is allowed
1779 * to point to..
1780 */
[7ef2249]1781static void split_bucket(cht_t *h, marked_ptr_t *psrc_head,
1782 marked_ptr_t *pdest_head, size_t split_hash)
1783{
1784 /* Already split. */
1785 if (N_NORMAL == get_mark(*pdest_head))
1786 return;
1787
1788 /*
1789 * L == Last node of the first part of the split bucket. That part
1790 * remains in the original/src bucket.
1791 * F == First node of the second part of the split bucket. That part
1792 * will be referenced from the dest bucket head.
1793 *
1794 * We want to first mark a clean L as JF so that updaters unaware of
1795 * the split (or table resize):
1796 * - do not insert a new node between L and F
1797 * - do not unlink L (that is why it has to be clean/normal)
1798 * - do not unlink F
1799 *
1800 * Then we can safely mark F as JN even if it has been marked deleted.
1801 * Once F is marked as JN updaters aware of table resize will not
1802 * attempt to unlink it (JN will have two predecessors - we cannot
1803 * safely unlink from both at the same time). Updaters unaware of
1804 * ongoing resize can reach F only via L and that node is already
1805 * marked JF, so they won't unlink F.
1806 *
1807 * Last, link the new/dest head to F.
1808 *
1809 *
1810 * 0) ,-- split_hash, first hash of the dest bucket
1811 * v
1812 * [src_head | N] -> .. -> [L] -> [F]
1813 * [dest_head | Inv]
1814 *
1815 * 1) ,-- split_hash
1816 * v
1817 * [src_head | N] -> .. -> [JF] -> [F]
1818 * [dest_head | Inv]
1819 *
1820 * 2) ,-- split_hash
1821 * v
1822 * [src_head | N] -> .. -> [JF] -> [JN]
1823 * [dest_head | Inv]
1824 *
[991d2d8]1825 * 3) ,-- split_hash
[7ef2249]1826 * v
1827 * [src_head | N] -> .. -> [JF] -> [JN]
1828 * ^
1829 * [dest_head | N] -----------------'
1830 */
1831 wnd_t wnd;
1832
[3bb732b]1833 rcu_read_lock();
1834
[7ef2249]1835 /* Mark the last node of the first part of the split bucket as JF. */
1836 mark_join_follows(h, psrc_head, split_hash, &wnd);
[14c9aa6]1837 cas_order_barrier();
[7ef2249]1838
1839 /* There are nodes in the dest bucket, ie the second part of the split. */
[6eaed07]1840 if (wnd.cur != &sentinel) {
[7ef2249]1841 /*
1842 * Mark the first node of the dest bucket as a join node so
1843 * updaters do not attempt to unlink it if it is deleted.
1844 */
1845 mark_join_node(wnd.cur);
[14c9aa6]1846 cas_order_barrier();
[7ef2249]1847 } else {
1848 /*
1849 * Second part of the split bucket is empty. There are no nodes
1850 * to mark as JOIN nodes and there never will be.
1851 */
1852 }
1853
1854 /* Link the dest head to the second part of the split. */
[6eaed07]1855 marked_ptr_t ret =
1856 cas_link(pdest_head, &sentinel, N_INVALID, wnd.cur, N_NORMAL);
1857 ASSERT(ret == make_link(&sentinel, N_INVALID) || (N_NORMAL == get_mark(ret)));
[14c9aa6]1858 cas_order_barrier();
[3bb732b]1859
1860 rcu_read_unlock();
[7ef2249]1861}
1862
[b9cb911]1863/** Finds and marks the last node of psrc_head w/ hash less than split_hash.
1864 *
1865 * Finds a node in psrc_head with the greatest hash that is strictly less
1866 * than split_hash and marks it with N_JOIN_FOLLOWS.
1867 *
1868 * Returns a window pointing to that node.
1869 *
1870 * Any logically deleted nodes along the way are
1871 * garbage collected; therefore, the predecessor node (if any) will most
1872 * likely not be marked N_DELETED.
1873 *
1874 * @param h CHT to operate on.
1875 * @param psrc_head Bucket head.
1876 * @param split_hash The smallest hash a join node (ie the node following
1877 * the desired join-follows node) may have.
1878 * @param[out] wnd Points to the node marked with N_JOIN_FOLLOWS.
1879 */
[7ef2249]1880static void mark_join_follows(cht_t *h, marked_ptr_t *psrc_head,
1881 size_t split_hash, wnd_t *wnd)
1882{
1883 /* See comment in split_bucket(). */
1884
1885 bool done;
1886 do {
[14c9aa6]1887 bool resizing = false;
[7ef2249]1888 wnd->ppred = psrc_head;
1889 wnd->cur = get_next(*psrc_head);
1890
1891 /*
1892 * Find the split window, ie the last node of the first part of
1893 * the split bucket and the its successor - the first node of
1894 * the second part of the split bucket. Retry if GC failed.
1895 */
[14c9aa6]1896 if (!find_wnd_and_gc(h, split_hash, WM_MOVE_JOIN_FOLLOWS, wnd, &resizing))
[7ef2249]1897 continue;
1898
[14c9aa6]1899 /* Must not report that the table is resizing if WM_MOVE_JOIN_FOLLOWS.*/
1900 ASSERT(!resizing);
[7ef2249]1901 /*
1902 * Mark the last node of the first half of the split bucket
1903 * that a join node follows. It must be clean/normal.
1904 */
1905 marked_ptr_t ret
1906 = cas_link(wnd->ppred, wnd->cur, N_NORMAL, wnd->cur, N_JOIN_FOLLOWS);
1907
[14c9aa6]1908 /*
1909 * Successfully marked as a JF node or already marked that way (even
1910 * if also marked deleted - unlinking the node will move the JF mark).
1911 */
[7ef2249]1912 done = (ret == make_link(wnd->cur, N_NORMAL))
1913 || (N_JOIN_FOLLOWS & get_mark(ret));
1914 } while (!done);
1915}
1916
[b9cb911]1917/** Marks join_node with N_JOIN. */
[7ef2249]1918static void mark_join_node(cht_link_t *join_node)
1919{
1920 /* See comment in split_bucket(). */
1921
1922 bool done;
1923 do {
[14c9aa6]1924 cht_link_t *next = get_next(join_node->link);
1925 mark_t mark = get_mark(join_node->link);
[7ef2249]1926
1927 /*
1928 * May already be marked as deleted, but it won't be unlinked
1929 * because its predecessor is marked with JOIN_FOLLOWS or CONST.
1930 */
1931 marked_ptr_t ret
1932 = cas_link(&join_node->link, next, mark, next, mark | N_JOIN);
1933
1934 /* Successfully marked or already marked as a join node. */
1935 done = (ret == make_link(next, mark))
1936 || (N_JOIN & get_mark(ret));
1937 } while(!done);
1938}
1939
[b9cb911]1940/** Appends the bucket at psrc_head to the bucket at pdest_head.
1941 *
1942 * @param h CHT to operate on.
1943 * @param psrc_head Bucket to merge with pdest_head.
1944 * @param pdest_head Bucket to be joined by psrc_head.
1945 * @param split_hash The smallest hash psrc_head may contain.
1946 */
[7ef2249]1947static void join_buckets(cht_t *h, marked_ptr_t *psrc_head,
[3bb732b]1948 marked_ptr_t *pdest_head, size_t split_hash)
[7ef2249]1949{
1950 /* Buckets already joined. */
1951 if (N_INVALID == get_mark(*psrc_head))
1952 return;
1953 /*
1954 * F == First node of psrc_head, ie the bucket we want to append
1955 * to (ie join with) the bucket starting at pdest_head.
1956 * L == Last node of pdest_head, ie the bucket that psrc_head will
1957 * be appended to.
1958 *
1959 * (1) We first mark psrc_head immutable to signal that a join is
1960 * in progress and so that updaters unaware of the join (or table
1961 * resize):
1962 * - do not insert new nodes between the head psrc_head and F
1963 * - do not unlink F (it may already be marked deleted)
1964 *
1965 * (2) Next, F is marked as a join node. Updaters aware of table resize
1966 * will not attempt to unlink it. We cannot safely/atomically unlink
1967 * the join node because it will be pointed to from two different
1968 * buckets. Updaters unaware of resize will fail to unlink the join
1969 * node due to the head being marked immutable.
1970 *
1971 * (3) Then the tail of the bucket at pdest_head is linked to the join
1972 * node. From now on, nodes in both buckets can be found via pdest_head.
1973 *
1974 * (4) Last, mark immutable psrc_head as invalid. It signals updaters
1975 * that the join is complete and they can insert new nodes (originally
1976 * destined for psrc_head) into pdest_head.
1977 *
1978 * Note that pdest_head keeps pointing at the join node. This allows
1979 * lookups and updaters to determine if they should see a link between
1980 * the tail L and F when searching for nodes originally in psrc_head
1981 * via pdest_head. If they reach the tail of pdest_head without
1982 * encountering any nodes of psrc_head, either there were no nodes
1983 * in psrc_head to begin with or the link between L and F did not
1984 * yet propagate to their cpus. If psrc_head was empty, it remains
1985 * NULL. Otherwise psrc_head points to a join node (it will not be
1986 * unlinked until table resize completes) and updaters/lookups
1987 * should issue a read_barrier() to make the link [L]->[JN] visible.
1988 *
1989 * 0) ,-- split_hash, first hash of the src bucket
1990 * v
1991 * [dest_head | N]-> .. -> [L]
1992 * [src_head | N]--> [F] -> ..
1993 * ^
1994 * ` split_hash, first hash of the src bucket
1995 *
1996 * 1) ,-- split_hash
1997 * v
1998 * [dest_head | N]-> .. -> [L]
1999 * [src_head | C]--> [F] -> ..
2000 *
2001 * 2) ,-- split_hash
2002 * v
2003 * [dest_head | N]-> .. -> [L]
2004 * [src_head | C]--> [JN] -> ..
2005 *
2006 * 3) ,-- split_hash
2007 * v
2008 * [dest_head | N]-> .. -> [L] --+
2009 * v
2010 * [src_head | C]-------------> [JN] -> ..
2011 *
2012 * 4) ,-- split_hash
2013 * v
2014 * [dest_head | N]-> .. -> [L] --+
2015 * v
2016 * [src_head | Inv]-----------> [JN] -> ..
2017 */
2018
[3bb732b]2019 rcu_read_lock();
2020
[14c9aa6]2021 /* Mark src_head immutable - signals updaters that bucket join started. */
[7ef2249]2022 mark_const(psrc_head);
[14c9aa6]2023 cas_order_barrier();
[7ef2249]2024
2025 cht_link_t *join_node = get_next(*psrc_head);
2026
[6eaed07]2027 if (join_node != &sentinel) {
[7ef2249]2028 mark_join_node(join_node);
[14c9aa6]2029 cas_order_barrier();
[7ef2249]2030
2031 link_to_join_node(h, pdest_head, join_node, split_hash);
[14c9aa6]2032 cas_order_barrier();
[7ef2249]2033 }
2034
[14c9aa6]2035 marked_ptr_t ret =
2036 cas_link(psrc_head, join_node, N_CONST, join_node, N_INVALID);
2037 ASSERT(ret == make_link(join_node, N_CONST) || (N_INVALID == get_mark(ret)));
2038 cas_order_barrier();
[3bb732b]2039
2040 rcu_read_unlock();
[7ef2249]2041}
2042
[b9cb911]2043/** Links the tail of pdest_head to join_node.
2044 *
2045 * @param h CHT to operate on.
2046 * @param pdest_head Head of the bucket whose tail is to be linked to join_node.
2047 * @param join_node A node marked N_JOIN with a hash greater or equal to
2048 * split_hash.
2049 * @param split_hash The least hash that is greater than the hash of any items
2050 * (originally) in pdest_head.
2051 */
[7ef2249]2052static void link_to_join_node(cht_t *h, marked_ptr_t *pdest_head,
2053 cht_link_t *join_node, size_t split_hash)
2054{
2055 bool done;
2056 do {
2057 wnd_t wnd = {
2058 .ppred = pdest_head,
2059 .cur = get_next(*pdest_head)
2060 };
2061
[14c9aa6]2062 bool resizing = false;
[7ef2249]2063
[14c9aa6]2064 if (!find_wnd_and_gc(h, split_hash, WM_LEAVE_JOIN, &wnd, &resizing))
[7ef2249]2065 continue;
2066
[14c9aa6]2067 ASSERT(!resizing);
2068
[6eaed07]2069 if (wnd.cur != &sentinel) {
[7ef2249]2070 /* Must be from the new appended bucket. */
[6eaed07]2071 ASSERT(split_hash <= node_hash(h, wnd.cur)
2072 || h->invalid_hash == node_hash(h, wnd.cur));
[7ef2249]2073 return;
2074 }
2075
2076 /* Reached the tail of pdest_head - link it to the join node. */
[6eaed07]2077 marked_ptr_t ret =
2078 cas_link(wnd.ppred, &sentinel, N_NORMAL, join_node, N_NORMAL);
[7ef2249]2079
[6eaed07]2080 done = (ret == make_link(&sentinel, N_NORMAL));
[7ef2249]2081 } while (!done);
2082}
2083
[b9cb911]2084/** Instructs RCU to free the item once all preexisting references are dropped.
2085 *
2086 * The item is freed via op->remove_callback().
2087 */
[7ef2249]2088static void free_later(cht_t *h, cht_link_t *item)
2089{
[6eaed07]2090 ASSERT(item != &sentinel);
2091
[7ef2249]2092 /*
2093 * remove_callback only works as rcu_func_t because rcu_link is the first
2094 * field in cht_link_t.
2095 */
2096 rcu_call(&item->rcu_link, (rcu_func_t)h->op->remove_callback);
2097
[3bb732b]2098 item_removed(h);
[7ef2249]2099}
2100
[b9cb911]2101/** Notes that an item had been unlinked from the table and shrinks it if needed.
2102 *
2103 * If the number of items in the table drops below 1/4 of the maximum
2104 * allowed load the table is shrunk in the background.
2105 */
[5e5cef3]2106static inline void item_removed(cht_t *h)
[7ef2249]2107{
[14c9aa6]2108 size_t items = (size_t) atomic_predec(&h->item_cnt);
2109 size_t bucket_cnt = (1 << h->b->order);
2110
[0b7bcb8]2111 bool need_shrink = (items == h->max_load * bucket_cnt / 4);
2112 bool missed_shrink = (items == h->max_load * bucket_cnt / 8);
[14c9aa6]2113
2114 if ((need_shrink || missed_shrink) && h->b->order > h->min_order) {
2115 atomic_count_t resize_reqs = atomic_preinc(&h->resize_reqs);
2116 /* The first resize request. Start the resizer. */
2117 if (1 == resize_reqs) {
2118 workq_global_enqueue_noblock(&h->resize_work, resize_table);
2119 }
2120 }
[7ef2249]2121}
2122
[b9cb911]2123/** Notes an item had been inserted and grows the table if needed.
2124 *
2125 * The table is resized in the background.
2126 */
[5e5cef3]2127static inline void item_inserted(cht_t *h)
[7ef2249]2128{
[14c9aa6]2129 size_t items = (size_t) atomic_preinc(&h->item_cnt);
2130 size_t bucket_cnt = (1 << h->b->order);
2131
[0b7bcb8]2132 bool need_grow = (items == h->max_load * bucket_cnt);
2133 bool missed_grow = (items == 2 * h->max_load * bucket_cnt);
[14c9aa6]2134
2135 if ((need_grow || missed_grow) && h->b->order < CHT_MAX_ORDER) {
2136 atomic_count_t resize_reqs = atomic_preinc(&h->resize_reqs);
2137 /* The first resize request. Start the resizer. */
2138 if (1 == resize_reqs) {
2139 workq_global_enqueue_noblock(&h->resize_work, resize_table);
2140 }
2141 }
[3bb732b]2142}
2143
[b9cb911]2144/** Resize request handler. Invoked on the system work queue. */
[14c9aa6]2145static void resize_table(work_t *arg)
[3bb732b]2146{
[14c9aa6]2147 cht_t *h = member_to_inst(arg, cht_t, resize_work);
[7ef2249]2148
[14c9aa6]2149#ifdef CONFIG_DEBUG
[3bb732b]2150 ASSERT(h->b);
[14c9aa6]2151 /* Make resize_reqs visible. */
[3bb732b]2152 read_barrier();
[14c9aa6]2153 ASSERT(0 < atomic_get(&h->resize_reqs));
2154#endif
2155
2156 bool done;
[3bb732b]2157 do {
[14c9aa6]2158 /* Load the most recent h->item_cnt. */
2159 read_barrier();
2160 size_t cur_items = (size_t) atomic_get(&h->item_cnt);
[3bb732b]2161 size_t bucket_cnt = (1 << h->b->order);
[0b7bcb8]2162 size_t max_items = h->max_load * bucket_cnt;
[3bb732b]2163
[14c9aa6]2164 if (cur_items >= max_items && h->b->order < CHT_MAX_ORDER) {
[3bb732b]2165 grow_table(h);
[14c9aa6]2166 } else if (cur_items <= max_items / 4 && h->b->order > h->min_order) {
[3bb732b]2167 shrink_table(h);
[14c9aa6]2168 } else {
2169 /* Table is just the right size. */
2170 atomic_count_t reqs = atomic_predec(&h->resize_reqs);
2171 done = (reqs == 0);
[3bb732b]2172 }
[14c9aa6]2173 } while (!done);
[3bb732b]2174}
2175
[b9cb911]2176/** Increases the number of buckets two-fold. Blocks until done. */
[3bb732b]2177static void grow_table(cht_t *h)
2178{
2179 if (h->b->order >= CHT_MAX_ORDER)
2180 return;
[7ef2249]2181
[c28413a9]2182 h->new_b = alloc_buckets(h->b->order + 1, true, false);
[3bb732b]2183
2184 /* Failed to alloc a new table - try next time the resizer is run. */
2185 if (!h->new_b)
2186 return;
2187
2188 /* Wait for all readers and updaters to see the initialized new table. */
2189 rcu_synchronize();
2190 size_t old_bucket_cnt = (1 << h->b->order);
[7ef2249]2191
[3bb732b]2192 /*
2193 * Give updaters a chance to help out with the resize. Do the minimum
2194 * work needed to announce a resize is in progress, ie start moving heads.
2195 */
2196 for (size_t idx = 0; idx < old_bucket_cnt; ++idx) {
2197 start_head_move(&h->b->head[idx]);
[7ef2249]2198 }
2199
[14c9aa6]2200 /* Order start_head_move() wrt complete_head_move(). */
2201 cas_order_barrier();
2202
[3bb732b]2203 /* Complete moving heads and split any buckets not yet split by updaters. */
2204 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2205 marked_ptr_t *move_dest_head = &h->new_b->head[grow_idx(old_idx)];
2206 marked_ptr_t *move_src_head = &h->b->head[old_idx];
2207
2208 /* Head move not yet completed. */
2209 if (N_INVALID != get_mark(*move_src_head)) {
2210 complete_head_move(move_src_head, move_dest_head);
2211 }
2212
2213 size_t split_idx = grow_to_split_idx(old_idx);
2214 size_t split_hash = calc_split_hash(split_idx, h->new_b->order);
2215 marked_ptr_t *split_dest_head = &h->new_b->head[split_idx];
2216
2217 split_bucket(h, move_dest_head, split_dest_head, split_hash);
2218 }
2219
2220 /*
2221 * Wait for all updaters to notice the new heads. Once everyone sees
2222 * the invalid old bucket heads they will know a resize is in progress
2223 * and updaters will modify the correct new buckets.
2224 */
2225 rcu_synchronize();
2226
2227 /* Clear the JOIN_FOLLOWS mark and remove the link between the split buckets.*/
2228 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2229 size_t new_idx = grow_idx(old_idx);
2230
[14c9aa6]2231 cleanup_join_follows(h, &h->new_b->head[new_idx]);
[3bb732b]2232 }
[14c9aa6]2233
[3bb732b]2234 /*
2235 * Wait for everyone to notice that buckets were split, ie link connecting
2236 * the join follows and join node has been cut.
2237 */
2238 rcu_synchronize();
2239
2240 /* Clear the JOIN mark and GC any deleted join nodes. */
2241 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2242 size_t new_idx = grow_to_split_idx(old_idx);
2243
[14c9aa6]2244 cleanup_join_node(h, &h->new_b->head[new_idx]);
[3bb732b]2245 }
[14c9aa6]2246
[3bb732b]2247 /* Wait for everyone to see that the table is clear of any resize marks. */
2248 rcu_synchronize();
2249
2250 cht_buckets_t *old_b = h->b;
2251 rcu_assign(h->b, h->new_b);
[14c9aa6]2252
[3bb732b]2253 /* Wait for everyone to start using the new table. */
2254 rcu_synchronize();
2255
2256 free(old_b);
2257
2258 /* Not needed; just for increased readability. */
[205832b]2259 h->new_b = NULL;
[3bb732b]2260}
2261
[b9cb911]2262/** Halfs the number of buckets. Blocks until done. */
[3bb732b]2263static void shrink_table(cht_t *h)
2264{
[14c9aa6]2265 if (h->b->order <= h->min_order)
[3bb732b]2266 return;
2267
[c28413a9]2268 h->new_b = alloc_buckets(h->b->order - 1, true, false);
[3bb732b]2269
2270 /* Failed to alloc a new table - try next time the resizer is run. */
2271 if (!h->new_b)
2272 return;
2273
2274 /* Wait for all readers and updaters to see the initialized new table. */
2275 rcu_synchronize();
2276
2277 size_t old_bucket_cnt = (1 << h->b->order);
2278
2279 /*
2280 * Give updaters a chance to help out with the resize. Do the minimum
2281 * work needed to announce a resize is in progress, ie start moving heads.
2282 */
2283 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2284 size_t new_idx = shrink_idx(old_idx);
2285
2286 /* This bucket should be moved. */
2287 if (grow_idx(new_idx) == old_idx) {
2288 start_head_move(&h->b->head[old_idx]);
2289 } else {
2290 /* This bucket should join the moved bucket once the move is done.*/
2291 }
2292 }
2293
[14c9aa6]2294 /* Order start_head_move() wrt to complete_head_move(). */
2295 cas_order_barrier();
2296
[3bb732b]2297 /* Complete moving heads and join buckets with the moved buckets. */
2298 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2299 size_t new_idx = shrink_idx(old_idx);
[14c9aa6]2300 size_t move_src_idx = grow_idx(new_idx);
[3bb732b]2301
2302 /* This bucket should be moved. */
[14c9aa6]2303 if (move_src_idx == old_idx) {
[3bb732b]2304 /* Head move not yet completed. */
2305 if (N_INVALID != get_mark(h->b->head[old_idx])) {
2306 complete_head_move(&h->b->head[old_idx], &h->new_b->head[new_idx]);
2307 }
2308 } else {
2309 /* This bucket should join the moved bucket. */
2310 size_t split_hash = calc_split_hash(old_idx, h->b->order);
2311 join_buckets(h, &h->b->head[old_idx], &h->new_b->head[new_idx],
2312 split_hash);
2313 }
2314 }
2315
2316 /*
2317 * Wait for all updaters to notice the new heads. Once everyone sees
2318 * the invalid old bucket heads they will know a resize is in progress
2319 * and updaters will modify the correct new buckets.
2320 */
2321 rcu_synchronize();
2322
2323 /* Let everyone know joins are complete and fully visible. */
2324 for (size_t old_idx = 0; old_idx < old_bucket_cnt; ++old_idx) {
2325 size_t move_src_idx = grow_idx(shrink_idx(old_idx));
2326
2327 /* Set the invalid joinee head to NULL. */
2328 if (old_idx != move_src_idx) {
[14c9aa6]2329 ASSERT(N_INVALID == get_mark(h->b->head[old_idx]));
[3bb732b]2330
[6eaed07]2331 if (&sentinel != get_next(h->b->head[old_idx]))
2332 h->b->head[old_idx] = make_link(&sentinel, N_INVALID);
[3bb732b]2333 }
2334 }
2335
2336 /* todo comment join node vs reset joinee head*/
2337 rcu_synchronize();
2338
2339 size_t new_bucket_cnt = (1 << h->new_b->order);
2340
2341 /* Clear the JOIN mark and GC any deleted join nodes. */
2342 for (size_t new_idx = 0; new_idx < new_bucket_cnt; ++new_idx) {
[14c9aa6]2343 cleanup_join_node(h, &h->new_b->head[new_idx]);
[3bb732b]2344 }
2345
2346 /* Wait for everyone to see that the table is clear of any resize marks. */
2347 rcu_synchronize();
2348
2349 cht_buckets_t *old_b = h->b;
2350 rcu_assign(h->b, h->new_b);
2351
2352 /* Wait for everyone to start using the new table. */
2353 rcu_synchronize();
2354
2355 free(old_b);
2356
2357 /* Not needed; just for increased readability. */
[205832b]2358 h->new_b = NULL;
[3bb732b]2359}
2360
[b9cb911]2361/** Finds and clears the N_JOIN mark from a node in new_head (if present). */
[3bb732b]2362static void cleanup_join_node(cht_t *h, marked_ptr_t *new_head)
2363{
2364 rcu_read_lock();
2365
2366 cht_link_t *cur = get_next(*new_head);
2367
[6eaed07]2368 while (cur != &sentinel) {
[3bb732b]2369 /* Clear the join node's JN mark - even if it is marked as deleted. */
2370 if (N_JOIN & get_mark(cur->link)) {
2371 clear_join_and_gc(h, cur, new_head);
2372 break;
2373 }
2374
2375 cur = get_next(cur->link);
2376 }
2377
2378 rcu_read_unlock();
2379}
2380
[b9cb911]2381/** Clears the join_node's N_JOIN mark frees it if marked N_DELETED as well. */
[3bb732b]2382static void clear_join_and_gc(cht_t *h, cht_link_t *join_node,
2383 marked_ptr_t *new_head)
2384{
[6eaed07]2385 ASSERT(join_node != &sentinel);
[3bb732b]2386 ASSERT(join_node && (N_JOIN & get_mark(join_node->link)));
2387
2388 bool done;
2389
2390 /* Clear the JN mark. */
2391 do {
2392 marked_ptr_t jn_link = join_node->link;
2393 cht_link_t *next = get_next(jn_link);
2394 /* Clear the JOIN mark but keep the DEL mark if present. */
2395 mark_t cleared_mark = get_mark(jn_link) & N_DELETED;
2396
2397 marked_ptr_t ret =
2398 _cas_link(&join_node->link, jn_link, make_link(next, cleared_mark));
2399
2400 /* Done if the mark was cleared. Retry if a new node was inserted. */
2401 done = (ret == jn_link);
[14c9aa6]2402 ASSERT(ret == jn_link || (get_mark(ret) & N_JOIN));
[3bb732b]2403 } while (!done);
2404
2405 if (!(N_DELETED & get_mark(join_node->link)))
2406 return;
2407
2408 /* The join node had been marked as deleted - GC it. */
[14c9aa6]2409
2410 /* Clear the JOIN mark before trying to unlink the deleted join node.*/
2411 cas_order_barrier();
[3bb732b]2412
2413 size_t jn_hash = node_hash(h, join_node);
2414 do {
[14c9aa6]2415 bool resizing = false;
[3bb732b]2416
2417 wnd_t wnd = {
2418 .ppred = new_head,
2419 .cur = get_next(*new_head)
2420 };
2421
2422 done = find_wnd_and_gc_pred(h, jn_hash, WM_NORMAL, same_node_pred,
2423 join_node, &wnd, &resizing);
2424
2425 ASSERT(!resizing);
2426 } while (!done);
2427}
2428
[b9cb911]2429/** Finds a non-deleted node with N_JOIN_FOLLOWS and clears the mark. */
[3bb732b]2430static void cleanup_join_follows(cht_t *h, marked_ptr_t *new_head)
2431{
2432 ASSERT(new_head);
2433
2434 rcu_read_lock();
2435
2436 wnd_t wnd = {
[205832b]2437 .ppred = NULL,
2438 .cur = NULL
[3bb732b]2439 };
2440 marked_ptr_t *cur_link = new_head;
2441
2442 /*
2443 * Find the non-deleted node with a JF mark and clear the JF mark.
2444 * The JF node may be deleted and/or the mark moved to its neighbors
2445 * at any time. Therefore, we GC deleted nodes until we find the JF
2446 * node in order to remove stale/deleted JF nodes left behind eg by
2447 * delayed threads that did not yet get a chance to unlink the deleted
2448 * JF node and move its mark.
2449 *
2450 * Note that the head may be marked JF (but never DELETED).
2451 */
2452 while (true) {
2453 bool is_jf_node = N_JOIN_FOLLOWS & get_mark(*cur_link);
2454
2455 /* GC any deleted nodes on the way - even deleted JOIN_FOLLOWS. */
2456 if (N_DELETED & get_mark(*cur_link)) {
2457 ASSERT(cur_link != new_head);
[6eaed07]2458 ASSERT(wnd.ppred && wnd.cur && wnd.cur != &sentinel);
[3bb732b]2459 ASSERT(cur_link == &wnd.cur->link);
2460
2461 bool dummy;
2462 bool deleted = gc_deleted_node(h, WM_MOVE_JOIN_FOLLOWS, &wnd, &dummy);
2463
2464 /* Failed to GC or collected a deleted JOIN_FOLLOWS. */
2465 if (!deleted || is_jf_node) {
2466 /* Retry from the head of the bucket. */
2467 cur_link = new_head;
2468 continue;
2469 }
2470 } else {
2471 /* Found a non-deleted JF. Clear its JF mark. */
2472 if (is_jf_node) {
2473 cht_link_t *next = get_next(*cur_link);
[6eaed07]2474 marked_ptr_t ret =
2475 cas_link(cur_link, next, N_JOIN_FOLLOWS, &sentinel, N_NORMAL);
[14c9aa6]2476
[6eaed07]2477 ASSERT(next == &sentinel
2478 || ((N_JOIN | N_JOIN_FOLLOWS) & get_mark(ret)));
[3bb732b]2479
2480 /* Successfully cleared the JF mark of a non-deleted node. */
2481 if (ret == make_link(next, N_JOIN_FOLLOWS)) {
2482 break;
2483 } else {
2484 /*
2485 * The JF node had been deleted or a new node inserted
2486 * right after it. Retry from the head.
2487 */
2488 cur_link = new_head;
2489 continue;
2490 }
2491 } else {
2492 wnd.ppred = cur_link;
2493 wnd.cur = get_next(*cur_link);
2494 }
2495 }
2496
2497 /* We must encounter a JF node before we reach the end of the bucket. */
[6eaed07]2498 ASSERT(wnd.cur && wnd.cur != &sentinel);
[3bb732b]2499 cur_link = &wnd.cur->link;
2500 }
2501
2502 rcu_read_unlock();
2503}
2504
[b9cb911]2505/** Returns the first possible hash following a bucket split point.
2506 *
2507 * In other words the returned hash is the smallest possible hash
2508 * the remainder of the split bucket may contain.
2509 */
[5e5cef3]2510static inline size_t calc_split_hash(size_t split_idx, size_t order)
[3bb732b]2511{
2512 ASSERT(1 <= order && order <= 8 * sizeof(size_t));
2513 return split_idx << (8 * sizeof(size_t) - order);
2514}
2515
[b9cb911]2516/** Returns the bucket head index given the table size order and item hash. */
[5e5cef3]2517static inline size_t calc_bucket_idx(size_t hash, size_t order)
[3bb732b]2518{
2519 ASSERT(1 <= order && order <= 8 * sizeof(size_t));
2520 return hash >> (8 * sizeof(size_t) - order);
2521}
2522
[b9cb911]2523/** Returns the bucket index of destination*/
[5e5cef3]2524static inline size_t grow_to_split_idx(size_t old_idx)
[3bb732b]2525{
2526 return grow_idx(old_idx) | 1;
2527}
2528
[b9cb911]2529/** Returns the destination index of a bucket head when the table is growing. */
[5e5cef3]2530static inline size_t grow_idx(size_t idx)
[3bb732b]2531{
2532 return idx << 1;
2533}
2534
[b9cb911]2535/** Returns the destination index of a bucket head when the table is shrinking.*/
[5e5cef3]2536static inline size_t shrink_idx(size_t idx)
[3bb732b]2537{
2538 return idx >> 1;
[7ef2249]2539}
2540
[b9cb911]2541/** Returns a mixed hash of the search key.*/
[6eaed07]2542static inline size_t calc_key_hash(cht_t *h, void *key)
[7ef2249]2543{
[85d31de9]2544 /* Mimic calc_node_hash. */
[30c0826]2545 return hash_mix(h->op->key_hash(key)) & ~(size_t)1;
[7ef2249]2546}
2547
[b9cb911]2548/** Returns a memoized mixed hash of the item. */
[5e5cef3]2549static inline size_t node_hash(cht_t *h, const cht_link_t *item)
[7ef2249]2550{
[6eaed07]2551 ASSERT(item->hash == h->invalid_hash
2552 || item->hash == sentinel.hash
2553 || item->hash == calc_node_hash(h, item));
2554
2555 return item->hash;
[7ef2249]2556}
2557
[b9cb911]2558/** Calculates and mixed the hash of the item. */
[6eaed07]2559static inline size_t calc_node_hash(cht_t *h, const cht_link_t *item)
2560{
2561 ASSERT(item != &sentinel);
2562 /*
2563 * Clear the lowest order bit in order for sentinel's node hash
2564 * to be the greatest possible.
2565 */
[30c0826]2566 return hash_mix(h->op->hash(item)) & ~(size_t)1;
[6eaed07]2567}
2568
[b9cb911]2569/** Computes and memoizes the hash of the item. */
[6eaed07]2570static inline void memoize_node_hash(cht_t *h, cht_link_t *item)
2571{
2572 item->hash = calc_node_hash(h, item);
2573}
[7ef2249]2574
[b9cb911]2575/** Packs the next pointer address and the mark into a single pointer. */
[5e5cef3]2576static inline marked_ptr_t make_link(const cht_link_t *next, mark_t mark)
[7ef2249]2577{
2578 marked_ptr_t ptr = (marked_ptr_t) next;
2579
2580 ASSERT(!(ptr & N_MARK_MASK));
2581 ASSERT(!((unsigned)mark & ~N_MARK_MASK));
2582
2583 return ptr | mark;
2584}
2585
[b9cb911]2586/** Strips any marks from the next item link and returns the next item's address.*/
[5e5cef3]2587static inline cht_link_t * get_next(marked_ptr_t link)
[7ef2249]2588{
2589 return (cht_link_t*)(link & ~N_MARK_MASK);
2590}
2591
[b9cb911]2592/** Returns the current node's mark stored in the next item link. */
[5e5cef3]2593static inline mark_t get_mark(marked_ptr_t link)
[7ef2249]2594{
2595 return (mark_t)(link & N_MARK_MASK);
2596}
2597
[b9cb911]2598/** Moves the window by one item so that is points to the next item. */
[5e5cef3]2599static inline void next_wnd(wnd_t *wnd)
[7ef2249]2600{
2601 ASSERT(wnd);
2602 ASSERT(wnd->cur);
2603
2604 wnd->last = wnd->cur;
2605 wnd->ppred = &wnd->cur->link;
2606 wnd->cur = get_next(wnd->cur->link);
2607}
2608
[b9cb911]2609/** Predicate that matches only exactly the same node. */
[7ef2249]2610static bool same_node_pred(void *node, const cht_link_t *item2)
2611{
2612 const cht_link_t *item1 = (const cht_link_t*) node;
2613 return item1 == item2;
2614}
2615
[b9cb911]2616/** Compare-and-swaps a next item link. */
[5e5cef3]2617static inline marked_ptr_t cas_link(marked_ptr_t *link, const cht_link_t *cur_next,
[3bb732b]2618 mark_t cur_mark, const cht_link_t *new_next, mark_t new_mark)
[7ef2249]2619{
2620 return _cas_link(link, make_link(cur_next, cur_mark),
2621 make_link(new_next, new_mark));
2622}
2623
[b9cb911]2624/** Compare-and-swaps a next item link. */
[5e5cef3]2625static inline marked_ptr_t _cas_link(marked_ptr_t *link, marked_ptr_t cur,
[7ef2249]2626 marked_ptr_t new)
2627{
[6eaed07]2628 ASSERT(link != &sentinel.link);
[3bb732b]2629 /*
2630 * cas(x) on the same location x on one cpu must be ordered, but do not
2631 * have to be ordered wrt to other cas(y) to a different location y
2632 * on the same cpu.
2633 *
2634 * cas(x) must act as a write barrier on x, ie if cas(x) succeeds
2635 * and is observed by another cpu, then all cpus must be able to
2636 * make the effects of cas(x) visible just by issuing a load barrier.
2637 * For example:
2638 * cpu1 cpu2 cpu3
2639 * cas(x, 0 -> 1), succeeds
2640 * cas(x, 0 -> 1), fails
[c8fccf5]2641 * MB, to order load of x in cas and store to y
[3bb732b]2642 * y = 7
2643 * sees y == 7
2644 * loadMB must be enough to make cas(x) on cpu3 visible to cpu1, ie x == 1.
2645 *
2646 * If cas() did not work this way:
[c8fccf5]2647 * a) our head move protocol would not be correct.
2648 * b) freeing an item linked to a moved head after another item was
[3bb732b]2649 * inserted in front of it, would require more than one grace period.
[c8fccf5]2650 *
2651 * Ad (a): In the following example, cpu1 starts moving old_head
2652 * to new_head, cpu2 completes the move and cpu3 notices cpu2
2653 * completed the move before cpu1 gets a chance to notice cpu2
2654 * had already completed the move. Our requirements for cas()
2655 * assume cpu3 will see a valid and mutable value in new_head
2656 * after issuing a load memory barrier once it has determined
2657 * the old_head's value had been successfully moved to new_head
2658 * (because it sees old_head marked invalid).
2659 *
2660 * cpu1 cpu2 cpu3
2661 * cas(old_head, <addr, N>, <addr, Const>), succeeds
2662 * cas-order-barrier
2663 * // Move from old_head to new_head started, now the interesting stuff:
2664 * cas(new_head, <0, Inv>, <addr, N>), succeeds
2665 *
2666 * cas(new_head, <0, Inv>, <addr, N>), but fails
2667 * cas-order-barrier
2668 * cas(old_head, <addr, Const>, <addr, Inv>), succeeds
2669 *
2670 * Sees old_head marked Inv (by cpu2)
2671 * load-MB
2672 * assert(new_head == <addr, N>)
2673 *
2674 * cas-order-barrier
2675 *
2676 * Even though cpu1 did not yet issue a cas-order-barrier, cpu1's store
2677 * to new_head (successful cas()) must be made visible to cpu3 with
2678 * a load memory barrier if cpu1's store to new_head is visible
2679 * on another cpu (cpu2) and that cpu's (cpu2's) store to old_head
2680 * is already visible to cpu3. *
[3bb732b]2681 */
[c8fccf5]2682 void *expected = (void*)cur;
2683
2684 /*
2685 * Use the acquire-release model, although we could probably
2686 * get away even with the relaxed memory model due to our use
2687 * of explicit memory barriers.
2688 */
2689 __atomic_compare_exchange_n((void**)link, &expected, (void *)new, false,
2690 __ATOMIC_ACQ_REL, __ATOMIC_ACQUIRE);
2691
2692 return (marked_ptr_t) expected;
[14c9aa6]2693}
2694
[b9cb911]2695/** Orders compare-and-swaps to different memory locations. */
[5e5cef3]2696static inline void cas_order_barrier(void)
[14c9aa6]2697{
2698 /* Make sure CAS to different memory locations are ordered. */
2699 write_barrier();
[7ef2249]2700}
2701
[14c9aa6]2702
[7ef2249]2703/** @}
2704 */
Note: See TracBrowser for help on using the repository browser.