1 | /*
|
---|
2 | * Copyright (c) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genericadt
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief B+tree implementation.
|
---|
36 | *
|
---|
37 | * This file implements B+tree type and operations.
|
---|
38 | *
|
---|
39 | * The B+tree has the following properties:
|
---|
40 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5)
|
---|
41 | * @li values (i.e. pointers to values) are stored only in leaves
|
---|
42 | * @li leaves are linked in a list
|
---|
43 | *
|
---|
44 | * Be carefull when using these trees. They need to allocate
|
---|
45 | * and deallocate memory for their index nodes and as such
|
---|
46 | * can sleep.
|
---|
47 | */
|
---|
48 |
|
---|
49 | #include <adt/btree.h>
|
---|
50 | #include <adt/list.h>
|
---|
51 | #include <mm/slab.h>
|
---|
52 | #include <debug.h>
|
---|
53 | #include <panic.h>
|
---|
54 | #include <typedefs.h>
|
---|
55 | #include <print.h>
|
---|
56 |
|
---|
57 | static void btree_destroy_subtree(btree_node_t *root);
|
---|
58 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
59 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node);
|
---|
60 | static void node_initialize(btree_node_t *node);
|
---|
61 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree);
|
---|
62 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
63 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key);
|
---|
64 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
|
---|
65 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
|
---|
66 | static btree_node_t *node_combine(btree_node_t *node);
|
---|
67 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
---|
68 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
69 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
70 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
71 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
72 | static bool try_rotation_from_left(btree_node_t *rnode);
|
---|
73 | static bool try_rotation_from_right(btree_node_t *lnode);
|
---|
74 |
|
---|
75 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
76 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
77 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
78 |
|
---|
79 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
---|
80 |
|
---|
81 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
82 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
83 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
84 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
85 |
|
---|
86 | static slab_cache_t *btree_node_slab;
|
---|
87 |
|
---|
88 | /** Initialize B-trees. */
|
---|
89 | void btree_init(void)
|
---|
90 | {
|
---|
91 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
|
---|
92 | }
|
---|
93 |
|
---|
94 | /** Create empty B-tree.
|
---|
95 | *
|
---|
96 | * @param t B-tree.
|
---|
97 | */
|
---|
98 | void btree_create(btree_t *t)
|
---|
99 | {
|
---|
100 | list_initialize(&t->leaf_head);
|
---|
101 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
102 | node_initialize(t->root);
|
---|
103 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
104 | }
|
---|
105 |
|
---|
106 | /** Destroy empty B-tree. */
|
---|
107 | void btree_destroy(btree_t *t)
|
---|
108 | {
|
---|
109 | btree_destroy_subtree(t->root);
|
---|
110 | }
|
---|
111 |
|
---|
112 | /** Insert key-value pair into B-tree.
|
---|
113 | *
|
---|
114 | * @param t B-tree.
|
---|
115 | * @param key Key to be inserted.
|
---|
116 | * @param value Value to be inserted.
|
---|
117 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
118 | */
|
---|
119 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node)
|
---|
120 | {
|
---|
121 | btree_node_t *lnode;
|
---|
122 |
|
---|
123 | ASSERT(value);
|
---|
124 |
|
---|
125 | lnode = leaf_node;
|
---|
126 | if (!lnode) {
|
---|
127 | if (btree_search(t, key, &lnode)) {
|
---|
128 | panic("B-tree %p already contains key %d\n", t, key);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | _btree_insert(t, key, value, NULL, lnode);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /** Destroy subtree rooted in a node.
|
---|
136 | *
|
---|
137 | * @param root Root of the subtree.
|
---|
138 | */
|
---|
139 | void btree_destroy_subtree(btree_node_t *root)
|
---|
140 | {
|
---|
141 | int i;
|
---|
142 |
|
---|
143 | if (root->keys) {
|
---|
144 | for (i = 0; i < root->keys + 1; i++) {
|
---|
145 | if (root->subtree[i])
|
---|
146 | btree_destroy_subtree(root->subtree[i]);
|
---|
147 | }
|
---|
148 | }
|
---|
149 | slab_free(btree_node_slab, root);
|
---|
150 | }
|
---|
151 |
|
---|
152 | /** Recursively insert into B-tree.
|
---|
153 | *
|
---|
154 | * @param t B-tree.
|
---|
155 | * @param key Key to be inserted.
|
---|
156 | * @param value Value to be inserted.
|
---|
157 | * @param rsubtree Right subtree of the inserted key.
|
---|
158 | * @param node Start inserting into this node.
|
---|
159 | */
|
---|
160 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
161 | {
|
---|
162 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
163 | /*
|
---|
164 | * Node conatins enough space, the key can be stored immediately.
|
---|
165 | */
|
---|
166 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
167 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
|
---|
168 | /*
|
---|
169 | * The key-value-rsubtree triplet has been inserted because
|
---|
170 | * some keys could have been moved to the left sibling.
|
---|
171 | */
|
---|
172 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
|
---|
173 | /*
|
---|
174 | * The key-value-rsubtree triplet has been inserted because
|
---|
175 | * some keys could have been moved to the right sibling.
|
---|
176 | */
|
---|
177 | } else {
|
---|
178 | btree_node_t *rnode;
|
---|
179 | btree_key_t median;
|
---|
180 |
|
---|
181 | /*
|
---|
182 | * Node is full and both siblings (if both exist) are full too.
|
---|
183 | * Split the node and insert the smallest key from the node containing
|
---|
184 | * bigger keys (i.e. the new node) into its parent.
|
---|
185 | */
|
---|
186 |
|
---|
187 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
188 |
|
---|
189 | if (LEAF_NODE(node)) {
|
---|
190 | list_prepend(&rnode->leaf_link, &node->leaf_link);
|
---|
191 | }
|
---|
192 |
|
---|
193 | if (ROOT_NODE(node)) {
|
---|
194 | /*
|
---|
195 | * We split the root node. Create new root.
|
---|
196 | */
|
---|
197 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
198 | node->parent = t->root;
|
---|
199 | rnode->parent = t->root;
|
---|
200 | node_initialize(t->root);
|
---|
201 |
|
---|
202 | /*
|
---|
203 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
204 | * Right-hand side subtree will be rnode.
|
---|
205 | */
|
---|
206 | t->root->subtree[0] = node;
|
---|
207 |
|
---|
208 | t->root->depth = node->depth + 1;
|
---|
209 | }
|
---|
210 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
211 | }
|
---|
212 |
|
---|
213 | }
|
---|
214 |
|
---|
215 | /** Remove B-tree node.
|
---|
216 | *
|
---|
217 | * @param t B-tree.
|
---|
218 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
219 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
---|
220 | */
|
---|
221 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
|
---|
222 | {
|
---|
223 | btree_node_t *lnode;
|
---|
224 |
|
---|
225 | lnode = leaf_node;
|
---|
226 | if (!lnode) {
|
---|
227 | if (!btree_search(t, key, &lnode)) {
|
---|
228 | panic("B-tree %p does not contain key %d\n", t, key);
|
---|
229 | }
|
---|
230 | }
|
---|
231 |
|
---|
232 | _btree_remove(t, key, lnode);
|
---|
233 | }
|
---|
234 |
|
---|
235 | /** Recursively remove B-tree node.
|
---|
236 | *
|
---|
237 | * @param t B-tree.
|
---|
238 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
239 | * @param node Node where the key being removed resides.
|
---|
240 | */
|
---|
241 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node)
|
---|
242 | {
|
---|
243 | if (ROOT_NODE(node)) {
|
---|
244 | if (node->keys == 1 && node->subtree[0]) {
|
---|
245 | /*
|
---|
246 | * Free the current root and set new root.
|
---|
247 | */
|
---|
248 | t->root = node->subtree[0];
|
---|
249 | t->root->parent = NULL;
|
---|
250 | slab_free(btree_node_slab, node);
|
---|
251 | } else {
|
---|
252 | /*
|
---|
253 | * Remove the key from the root node.
|
---|
254 | * Note that the right subtree is removed because when
|
---|
255 | * combining two nodes, the left-side sibling is preserved
|
---|
256 | * and the right-side sibling is freed.
|
---|
257 | */
|
---|
258 | node_remove_key_and_rsubtree(node, key);
|
---|
259 | }
|
---|
260 | return;
|
---|
261 | }
|
---|
262 |
|
---|
263 | if (node->keys <= FILL_FACTOR) {
|
---|
264 | /*
|
---|
265 | * If the node is below the fill factor,
|
---|
266 | * try to borrow keys from left or right sibling.
|
---|
267 | */
|
---|
268 | if (!try_rotation_from_left(node))
|
---|
269 | try_rotation_from_right(node);
|
---|
270 | }
|
---|
271 |
|
---|
272 | if (node->keys > FILL_FACTOR) {
|
---|
273 | int i;
|
---|
274 |
|
---|
275 | /*
|
---|
276 | * The key can be immediatelly removed.
|
---|
277 | *
|
---|
278 | * Note that the right subtree is removed because when
|
---|
279 | * combining two nodes, the left-side sibling is preserved
|
---|
280 | * and the right-side sibling is freed.
|
---|
281 | */
|
---|
282 | node_remove_key_and_rsubtree(node, key);
|
---|
283 | for (i = 0; i < node->parent->keys; i++) {
|
---|
284 | if (node->parent->key[i] == key)
|
---|
285 | node->parent->key[i] = node->key[0];
|
---|
286 | }
|
---|
287 |
|
---|
288 | } else {
|
---|
289 | index_t idx;
|
---|
290 | btree_node_t *rnode, *parent;
|
---|
291 |
|
---|
292 | /*
|
---|
293 | * The node is below the fill factor as well as its left and right sibling.
|
---|
294 | * Resort to combining the node with one of its siblings.
|
---|
295 | * The node which is on the left is preserved and the node on the right is
|
---|
296 | * freed.
|
---|
297 | */
|
---|
298 | parent = node->parent;
|
---|
299 | node_remove_key_and_rsubtree(node, key);
|
---|
300 | rnode = node_combine(node);
|
---|
301 | if (LEAF_NODE(rnode))
|
---|
302 | list_remove(&rnode->leaf_link);
|
---|
303 | idx = find_key_by_subtree(parent, rnode, true);
|
---|
304 | ASSERT((int) idx != -1);
|
---|
305 | slab_free(btree_node_slab, rnode);
|
---|
306 | _btree_remove(t, parent->key[idx], parent);
|
---|
307 | }
|
---|
308 | }
|
---|
309 |
|
---|
310 | /** Search key in a B-tree.
|
---|
311 | *
|
---|
312 | * @param t B-tree.
|
---|
313 | * @param key Key to be searched.
|
---|
314 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
315 | *
|
---|
316 | * @return Pointer to value or NULL if there is no such key.
|
---|
317 | */
|
---|
318 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
|
---|
319 | {
|
---|
320 | btree_node_t *cur, *next;
|
---|
321 |
|
---|
322 | /*
|
---|
323 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
324 | */
|
---|
325 | for (cur = t->root; cur; cur = next) {
|
---|
326 |
|
---|
327 | /* Last iteration will set this with proper leaf node address. */
|
---|
328 | *leaf_node = cur;
|
---|
329 |
|
---|
330 | /*
|
---|
331 | * The key can be in the leftmost subtree.
|
---|
332 | * Test it separately.
|
---|
333 | */
|
---|
334 | if (key < cur->key[0]) {
|
---|
335 | next = cur->subtree[0];
|
---|
336 | continue;
|
---|
337 | } else {
|
---|
338 | void *val;
|
---|
339 | int i;
|
---|
340 |
|
---|
341 | /*
|
---|
342 | * Now if the key is smaller than cur->key[i]
|
---|
343 | * it can only mean that the value is in cur->subtree[i]
|
---|
344 | * or it is not in the tree at all.
|
---|
345 | */
|
---|
346 | for (i = 1; i < cur->keys; i++) {
|
---|
347 | if (key < cur->key[i]) {
|
---|
348 | next = cur->subtree[i];
|
---|
349 | val = cur->value[i - 1];
|
---|
350 |
|
---|
351 | if (LEAF_NODE(cur))
|
---|
352 | return key == cur->key[i - 1] ? val : NULL;
|
---|
353 |
|
---|
354 | goto descend;
|
---|
355 | }
|
---|
356 | }
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * Last possibility is that the key is in the rightmost subtree.
|
---|
360 | */
|
---|
361 | next = cur->subtree[i];
|
---|
362 | val = cur->value[i - 1];
|
---|
363 | if (LEAF_NODE(cur))
|
---|
364 | return key == cur->key[i - 1] ? val : NULL;
|
---|
365 | }
|
---|
366 | descend:
|
---|
367 | ;
|
---|
368 | }
|
---|
369 |
|
---|
370 | /*
|
---|
371 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
---|
372 | */
|
---|
373 | return NULL;
|
---|
374 | }
|
---|
375 |
|
---|
376 | /** Return pointer to B-tree leaf node's left neighbour.
|
---|
377 | *
|
---|
378 | * @param t B-tree.
|
---|
379 | * @param node Node whose left neighbour will be returned.
|
---|
380 | *
|
---|
381 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour.
|
---|
382 | */
|
---|
383 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
|
---|
384 | {
|
---|
385 | ASSERT(LEAF_NODE(node));
|
---|
386 | if (node->leaf_link.prev != &t->leaf_head)
|
---|
387 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
|
---|
388 | else
|
---|
389 | return NULL;
|
---|
390 | }
|
---|
391 |
|
---|
392 | /** Return pointer to B-tree leaf node's right neighbour.
|
---|
393 | *
|
---|
394 | * @param t B-tree.
|
---|
395 | * @param node Node whose right neighbour will be returned.
|
---|
396 | *
|
---|
397 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour.
|
---|
398 | */
|
---|
399 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
|
---|
400 | {
|
---|
401 | ASSERT(LEAF_NODE(node));
|
---|
402 | if (node->leaf_link.next != &t->leaf_head)
|
---|
403 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
|
---|
404 | else
|
---|
405 | return NULL;
|
---|
406 | }
|
---|
407 |
|
---|
408 | /** Initialize B-tree node.
|
---|
409 | *
|
---|
410 | * @param node B-tree node.
|
---|
411 | */
|
---|
412 | void node_initialize(btree_node_t *node)
|
---|
413 | {
|
---|
414 | int i;
|
---|
415 |
|
---|
416 | node->keys = 0;
|
---|
417 |
|
---|
418 | /* Clean also space for the extra key. */
|
---|
419 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
420 | node->key[i] = 0;
|
---|
421 | node->value[i] = NULL;
|
---|
422 | node->subtree[i] = NULL;
|
---|
423 | }
|
---|
424 | node->subtree[i] = NULL;
|
---|
425 |
|
---|
426 | node->parent = NULL;
|
---|
427 |
|
---|
428 | link_initialize(&node->leaf_link);
|
---|
429 |
|
---|
430 | link_initialize(&node->bfs_link);
|
---|
431 | node->depth = 0;
|
---|
432 | }
|
---|
433 |
|
---|
434 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
435 | *
|
---|
436 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
437 | * This feature is used during insert by right rotation.
|
---|
438 | *
|
---|
439 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
440 | * @param key The key to be inserted.
|
---|
441 | * @param value Pointer to value to be inserted.
|
---|
442 | * @param lsubtree Pointer to the left subtree.
|
---|
443 | */
|
---|
444 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
|
---|
445 | {
|
---|
446 | int i;
|
---|
447 |
|
---|
448 | for (i = 0; i < node->keys; i++) {
|
---|
449 | if (key < node->key[i]) {
|
---|
450 | int j;
|
---|
451 |
|
---|
452 | for (j = node->keys; j > i; j--) {
|
---|
453 | node->key[j] = node->key[j - 1];
|
---|
454 | node->value[j] = node->value[j - 1];
|
---|
455 | node->subtree[j + 1] = node->subtree[j];
|
---|
456 | }
|
---|
457 | node->subtree[j + 1] = node->subtree[j];
|
---|
458 | break;
|
---|
459 | }
|
---|
460 | }
|
---|
461 | node->key[i] = key;
|
---|
462 | node->value[i] = value;
|
---|
463 | node->subtree[i] = lsubtree;
|
---|
464 |
|
---|
465 | node->keys++;
|
---|
466 | }
|
---|
467 |
|
---|
468 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
469 | *
|
---|
470 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
471 | * This feature is used during splitting the node when the
|
---|
472 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
473 | * also makes use of this feature.
|
---|
474 | *
|
---|
475 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
476 | * @param key The key to be inserted.
|
---|
477 | * @param value Pointer to value to be inserted.
|
---|
478 | * @param rsubtree Pointer to the right subtree.
|
---|
479 | */
|
---|
480 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
|
---|
481 | {
|
---|
482 | int i;
|
---|
483 |
|
---|
484 | for (i = 0; i < node->keys; i++) {
|
---|
485 | if (key < node->key[i]) {
|
---|
486 | int j;
|
---|
487 |
|
---|
488 | for (j = node->keys; j > i; j--) {
|
---|
489 | node->key[j] = node->key[j - 1];
|
---|
490 | node->value[j] = node->value[j - 1];
|
---|
491 | node->subtree[j + 1] = node->subtree[j];
|
---|
492 | }
|
---|
493 | break;
|
---|
494 | }
|
---|
495 | }
|
---|
496 | node->key[i] = key;
|
---|
497 | node->value[i] = value;
|
---|
498 | node->subtree[i + 1] = rsubtree;
|
---|
499 |
|
---|
500 | node->keys++;
|
---|
501 | }
|
---|
502 |
|
---|
503 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
504 | *
|
---|
505 | * Remove the key and eliminate gaps in node->key array.
|
---|
506 | * Note that the value pointer and the left subtree pointer
|
---|
507 | * is removed from the node as well.
|
---|
508 | *
|
---|
509 | * @param node B-tree node.
|
---|
510 | * @param key Key to be removed.
|
---|
511 | */
|
---|
512 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
|
---|
513 | {
|
---|
514 | int i, j;
|
---|
515 |
|
---|
516 | for (i = 0; i < node->keys; i++) {
|
---|
517 | if (key == node->key[i]) {
|
---|
518 | for (j = i + 1; j < node->keys; j++) {
|
---|
519 | node->key[j - 1] = node->key[j];
|
---|
520 | node->value[j - 1] = node->value[j];
|
---|
521 | node->subtree[j - 1] = node->subtree[j];
|
---|
522 | }
|
---|
523 | node->subtree[j - 1] = node->subtree[j];
|
---|
524 | node->keys--;
|
---|
525 | return;
|
---|
526 | }
|
---|
527 | }
|
---|
528 | panic("node %p does not contain key %d\n", node, key);
|
---|
529 | }
|
---|
530 |
|
---|
531 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
532 | *
|
---|
533 | * Remove the key and eliminate gaps in node->key array.
|
---|
534 | * Note that the value pointer and the right subtree pointer
|
---|
535 | * is removed from the node as well.
|
---|
536 | *
|
---|
537 | * @param node B-tree node.
|
---|
538 | * @param key Key to be removed.
|
---|
539 | */
|
---|
540 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
|
---|
541 | {
|
---|
542 | int i, j;
|
---|
543 |
|
---|
544 | for (i = 0; i < node->keys; i++) {
|
---|
545 | if (key == node->key[i]) {
|
---|
546 | for (j = i + 1; j < node->keys; j++) {
|
---|
547 | node->key[j - 1] = node->key[j];
|
---|
548 | node->value[j - 1] = node->value[j];
|
---|
549 | node->subtree[j] = node->subtree[j + 1];
|
---|
550 | }
|
---|
551 | node->keys--;
|
---|
552 | return;
|
---|
553 | }
|
---|
554 | }
|
---|
555 | panic("node %p does not contain key %d\n", node, key);
|
---|
556 | }
|
---|
557 |
|
---|
558 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
559 | *
|
---|
560 | * This function will split a node and return a pointer to a newly created
|
---|
561 | * node containing keys greater than or equal to the greater of medians
|
---|
562 | * (or median) of the old keys and the newly added key. It will also write
|
---|
563 | * the median key to a memory address supplied by the caller.
|
---|
564 | *
|
---|
565 | * If the node being split is an index node, the median will not be
|
---|
566 | * included in the new node. If the node is a leaf node,
|
---|
567 | * the median will be copied there.
|
---|
568 | *
|
---|
569 | * @param node B-tree node wich is going to be split.
|
---|
570 | * @param key The key to be inserted.
|
---|
571 | * @param value Pointer to the value to be inserted.
|
---|
572 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
573 | * @param median Address in memory, where the median key will be stored.
|
---|
574 | *
|
---|
575 | * @return Newly created right sibling of node.
|
---|
576 | */
|
---|
577 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
|
---|
578 | {
|
---|
579 | btree_node_t *rnode;
|
---|
580 | int i, j;
|
---|
581 |
|
---|
582 | ASSERT(median);
|
---|
583 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
584 |
|
---|
585 | /*
|
---|
586 | * Use the extra space to store the extra node.
|
---|
587 | */
|
---|
588 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
589 |
|
---|
590 | /*
|
---|
591 | * Compute median of keys.
|
---|
592 | */
|
---|
593 | *median = MEDIAN_HIGH(node);
|
---|
594 |
|
---|
595 | /*
|
---|
596 | * Allocate and initialize new right sibling.
|
---|
597 | */
|
---|
598 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
599 | node_initialize(rnode);
|
---|
600 | rnode->parent = node->parent;
|
---|
601 | rnode->depth = node->depth;
|
---|
602 |
|
---|
603 | /*
|
---|
604 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
605 | * If this is an index node, do not copy the median.
|
---|
606 | */
|
---|
607 | i = (int) INDEX_NODE(node);
|
---|
608 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
609 | rnode->key[j] = node->key[i];
|
---|
610 | rnode->value[j] = node->value[i];
|
---|
611 | rnode->subtree[j] = node->subtree[i];
|
---|
612 |
|
---|
613 | /*
|
---|
614 | * Fix parent links in subtrees.
|
---|
615 | */
|
---|
616 | if (rnode->subtree[j])
|
---|
617 | rnode->subtree[j]->parent = rnode;
|
---|
618 |
|
---|
619 | }
|
---|
620 | rnode->subtree[j] = node->subtree[i];
|
---|
621 | if (rnode->subtree[j])
|
---|
622 | rnode->subtree[j]->parent = rnode;
|
---|
623 |
|
---|
624 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
625 | node->keys /= 2; /* Shrink the old node. */
|
---|
626 |
|
---|
627 | return rnode;
|
---|
628 | }
|
---|
629 |
|
---|
630 | /** Combine node with any of its siblings.
|
---|
631 | *
|
---|
632 | * The siblings are required to be below the fill factor.
|
---|
633 | *
|
---|
634 | * @param node Node to combine with one of its siblings.
|
---|
635 | *
|
---|
636 | * @return Pointer to the rightmost of the two nodes.
|
---|
637 | */
|
---|
638 | btree_node_t *node_combine(btree_node_t *node)
|
---|
639 | {
|
---|
640 | index_t idx;
|
---|
641 | btree_node_t *rnode;
|
---|
642 | int i;
|
---|
643 |
|
---|
644 | ASSERT(!ROOT_NODE(node));
|
---|
645 |
|
---|
646 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
647 | if (idx == node->parent->keys) {
|
---|
648 | /*
|
---|
649 | * Rightmost subtree of its parent, combine with the left sibling.
|
---|
650 | */
|
---|
651 | idx--;
|
---|
652 | rnode = node;
|
---|
653 | node = node->parent->subtree[idx];
|
---|
654 | } else {
|
---|
655 | rnode = node->parent->subtree[idx + 1];
|
---|
656 | }
|
---|
657 |
|
---|
658 | /* Index nodes need to insert parent node key in between left and right node. */
|
---|
659 | if (INDEX_NODE(node))
|
---|
660 | node->key[node->keys++] = node->parent->key[idx];
|
---|
661 |
|
---|
662 | /* Copy the key-value-subtree triplets from the right node. */
|
---|
663 | for (i = 0; i < rnode->keys; i++) {
|
---|
664 | node->key[node->keys + i] = rnode->key[i];
|
---|
665 | node->value[node->keys + i] = rnode->value[i];
|
---|
666 | if (INDEX_NODE(node)) {
|
---|
667 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
668 | rnode->subtree[i]->parent = node;
|
---|
669 | }
|
---|
670 | }
|
---|
671 | if (INDEX_NODE(node)) {
|
---|
672 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
673 | rnode->subtree[i]->parent = node;
|
---|
674 | }
|
---|
675 |
|
---|
676 | node->keys += rnode->keys;
|
---|
677 |
|
---|
678 | return rnode;
|
---|
679 | }
|
---|
680 |
|
---|
681 | /** Find key by its left or right subtree.
|
---|
682 | *
|
---|
683 | * @param node B-tree node.
|
---|
684 | * @param subtree Left or right subtree of a key found in node.
|
---|
685 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
---|
686 | *
|
---|
687 | * @return Index of the key associated with the subtree.
|
---|
688 | */
|
---|
689 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
---|
690 | {
|
---|
691 | int i;
|
---|
692 |
|
---|
693 | for (i = 0; i < node->keys + 1; i++) {
|
---|
694 | if (subtree == node->subtree[i])
|
---|
695 | return i - (int) (right != false);
|
---|
696 | }
|
---|
697 | panic("node %p does not contain subtree %p\n", node, subtree);
|
---|
698 | }
|
---|
699 |
|
---|
700 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
|
---|
701 | *
|
---|
702 | * The biggest key and its value and right subtree is rotated from the left node
|
---|
703 | * to the right. If the node is an index node, than the parent node key belonging to
|
---|
704 | * the left node takes part in the rotation.
|
---|
705 | *
|
---|
706 | * @param lnode Left sibling.
|
---|
707 | * @param rnode Right sibling.
|
---|
708 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
709 | */
|
---|
710 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
711 | {
|
---|
712 | btree_key_t key;
|
---|
713 |
|
---|
714 | key = lnode->key[lnode->keys - 1];
|
---|
715 |
|
---|
716 | if (LEAF_NODE(lnode)) {
|
---|
717 | void *value;
|
---|
718 |
|
---|
719 | value = lnode->value[lnode->keys - 1];
|
---|
720 | node_remove_key_and_rsubtree(lnode, key);
|
---|
721 | node_insert_key_and_lsubtree(rnode, key, value, NULL);
|
---|
722 | lnode->parent->key[idx] = key;
|
---|
723 | } else {
|
---|
724 | btree_node_t *rsubtree;
|
---|
725 |
|
---|
726 | rsubtree = lnode->subtree[lnode->keys];
|
---|
727 | node_remove_key_and_rsubtree(lnode, key);
|
---|
728 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
|
---|
729 | lnode->parent->key[idx] = key;
|
---|
730 |
|
---|
731 | /* Fix parent link of the reconnected right subtree. */
|
---|
732 | rsubtree->parent = rnode;
|
---|
733 | }
|
---|
734 |
|
---|
735 | }
|
---|
736 |
|
---|
737 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
|
---|
738 | *
|
---|
739 | * The smallest key and its value and left subtree is rotated from the right node
|
---|
740 | * to the left. If the node is an index node, than the parent node key belonging to
|
---|
741 | * the right node takes part in the rotation.
|
---|
742 | *
|
---|
743 | * @param lnode Left sibling.
|
---|
744 | * @param rnode Right sibling.
|
---|
745 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
746 | */
|
---|
747 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
748 | {
|
---|
749 | btree_key_t key;
|
---|
750 |
|
---|
751 | key = rnode->key[0];
|
---|
752 |
|
---|
753 | if (LEAF_NODE(rnode)) {
|
---|
754 | void *value;
|
---|
755 |
|
---|
756 | value = rnode->value[0];
|
---|
757 | node_remove_key_and_lsubtree(rnode, key);
|
---|
758 | node_insert_key_and_rsubtree(lnode, key, value, NULL);
|
---|
759 | rnode->parent->key[idx] = rnode->key[0];
|
---|
760 | } else {
|
---|
761 | btree_node_t *lsubtree;
|
---|
762 |
|
---|
763 | lsubtree = rnode->subtree[0];
|
---|
764 | node_remove_key_and_lsubtree(rnode, key);
|
---|
765 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
|
---|
766 | rnode->parent->key[idx] = key;
|
---|
767 |
|
---|
768 | /* Fix parent link of the reconnected left subtree. */
|
---|
769 | lsubtree->parent = lnode;
|
---|
770 | }
|
---|
771 |
|
---|
772 | }
|
---|
773 |
|
---|
774 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
775 | *
|
---|
776 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
777 | * If there is free space, the key is inserted and the smallest key of
|
---|
778 | * the node is moved there. The index node which is the parent of both
|
---|
779 | * nodes is fixed.
|
---|
780 | *
|
---|
781 | * @param node B-tree node.
|
---|
782 | * @param inskey Key to be inserted.
|
---|
783 | * @param insvalue Value to be inserted.
|
---|
784 | * @param rsubtree Right subtree of inskey.
|
---|
785 | *
|
---|
786 | * @return True if the rotation was performed, false otherwise.
|
---|
787 | */
|
---|
788 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
789 | {
|
---|
790 | index_t idx;
|
---|
791 | btree_node_t *lnode;
|
---|
792 |
|
---|
793 | /*
|
---|
794 | * If this is root node, the rotation can not be done.
|
---|
795 | */
|
---|
796 | if (ROOT_NODE(node))
|
---|
797 | return false;
|
---|
798 |
|
---|
799 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
800 | if ((int) idx == -1) {
|
---|
801 | /*
|
---|
802 | * If this node is the leftmost subtree of its parent,
|
---|
803 | * the rotation can not be done.
|
---|
804 | */
|
---|
805 | return false;
|
---|
806 | }
|
---|
807 |
|
---|
808 | lnode = node->parent->subtree[idx];
|
---|
809 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
810 | /*
|
---|
811 | * The rotaion can be done. The left sibling has free space.
|
---|
812 | */
|
---|
813 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
814 | rotate_from_right(lnode, node, idx);
|
---|
815 | return true;
|
---|
816 | }
|
---|
817 |
|
---|
818 | return false;
|
---|
819 | }
|
---|
820 |
|
---|
821 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
822 | *
|
---|
823 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
824 | * If there is free space, the key is inserted and the biggest key of
|
---|
825 | * the node is moved there. The index node which is the parent of both
|
---|
826 | * nodes is fixed.
|
---|
827 | *
|
---|
828 | * @param node B-tree node.
|
---|
829 | * @param inskey Key to be inserted.
|
---|
830 | * @param insvalue Value to be inserted.
|
---|
831 | * @param rsubtree Right subtree of inskey.
|
---|
832 | *
|
---|
833 | * @return True if the rotation was performed, false otherwise.
|
---|
834 | */
|
---|
835 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
836 | {
|
---|
837 | index_t idx;
|
---|
838 | btree_node_t *rnode;
|
---|
839 |
|
---|
840 | /*
|
---|
841 | * If this is root node, the rotation can not be done.
|
---|
842 | */
|
---|
843 | if (ROOT_NODE(node))
|
---|
844 | return false;
|
---|
845 |
|
---|
846 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
847 | if (idx == node->parent->keys) {
|
---|
848 | /*
|
---|
849 | * If this node is the rightmost subtree of its parent,
|
---|
850 | * the rotation can not be done.
|
---|
851 | */
|
---|
852 | return false;
|
---|
853 | }
|
---|
854 |
|
---|
855 | rnode = node->parent->subtree[idx + 1];
|
---|
856 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
857 | /*
|
---|
858 | * The rotaion can be done. The right sibling has free space.
|
---|
859 | */
|
---|
860 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
861 | rotate_from_left(node, rnode, idx);
|
---|
862 | return true;
|
---|
863 | }
|
---|
864 |
|
---|
865 | return false;
|
---|
866 | }
|
---|
867 |
|
---|
868 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
|
---|
869 | *
|
---|
870 | * @param rnode Node into which to add key from its left sibling or from the index node.
|
---|
871 | *
|
---|
872 | * @return True if the rotation was performed, false otherwise.
|
---|
873 | */
|
---|
874 | bool try_rotation_from_left(btree_node_t *rnode)
|
---|
875 | {
|
---|
876 | index_t idx;
|
---|
877 | btree_node_t *lnode;
|
---|
878 |
|
---|
879 | /*
|
---|
880 | * If this is root node, the rotation can not be done.
|
---|
881 | */
|
---|
882 | if (ROOT_NODE(rnode))
|
---|
883 | return false;
|
---|
884 |
|
---|
885 | idx = find_key_by_subtree(rnode->parent, rnode, true);
|
---|
886 | if ((int) idx == -1) {
|
---|
887 | /*
|
---|
888 | * If this node is the leftmost subtree of its parent,
|
---|
889 | * the rotation can not be done.
|
---|
890 | */
|
---|
891 | return false;
|
---|
892 | }
|
---|
893 |
|
---|
894 | lnode = rnode->parent->subtree[idx];
|
---|
895 | if (lnode->keys > FILL_FACTOR) {
|
---|
896 | rotate_from_left(lnode, rnode, idx);
|
---|
897 | return true;
|
---|
898 | }
|
---|
899 |
|
---|
900 | return false;
|
---|
901 | }
|
---|
902 |
|
---|
903 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
|
---|
904 | *
|
---|
905 | * @param lnode Node into which to add key from its right sibling or from the index node.
|
---|
906 | *
|
---|
907 | * @return True if the rotation was performed, false otherwise.
|
---|
908 | */
|
---|
909 | bool try_rotation_from_right(btree_node_t *lnode)
|
---|
910 | {
|
---|
911 | index_t idx;
|
---|
912 | btree_node_t *rnode;
|
---|
913 |
|
---|
914 | /*
|
---|
915 | * If this is root node, the rotation can not be done.
|
---|
916 | */
|
---|
917 | if (ROOT_NODE(lnode))
|
---|
918 | return false;
|
---|
919 |
|
---|
920 | idx = find_key_by_subtree(lnode->parent, lnode, false);
|
---|
921 | if (idx == lnode->parent->keys) {
|
---|
922 | /*
|
---|
923 | * If this node is the rightmost subtree of its parent,
|
---|
924 | * the rotation can not be done.
|
---|
925 | */
|
---|
926 | return false;
|
---|
927 | }
|
---|
928 |
|
---|
929 | rnode = lnode->parent->subtree[idx + 1];
|
---|
930 | if (rnode->keys > FILL_FACTOR) {
|
---|
931 | rotate_from_right(lnode, rnode, idx);
|
---|
932 | return true;
|
---|
933 | }
|
---|
934 |
|
---|
935 | return false;
|
---|
936 | }
|
---|
937 |
|
---|
938 | /** Print B-tree.
|
---|
939 | *
|
---|
940 | * @param t Print out B-tree.
|
---|
941 | */
|
---|
942 | void btree_print(btree_t *t)
|
---|
943 | {
|
---|
944 | int i, depth = t->root->depth;
|
---|
945 | link_t head, *cur;
|
---|
946 |
|
---|
947 | printf("Printing B-tree:\n");
|
---|
948 | list_initialize(&head);
|
---|
949 | list_append(&t->root->bfs_link, &head);
|
---|
950 |
|
---|
951 | /*
|
---|
952 | * Use BFS search to print out the tree.
|
---|
953 | * Levels are distinguished from one another by node->depth.
|
---|
954 | */
|
---|
955 | while (!list_empty(&head)) {
|
---|
956 | link_t *hlp;
|
---|
957 | btree_node_t *node;
|
---|
958 |
|
---|
959 | hlp = head.next;
|
---|
960 | ASSERT(hlp != &head);
|
---|
961 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
962 | list_remove(hlp);
|
---|
963 |
|
---|
964 | ASSERT(node);
|
---|
965 |
|
---|
966 | if (node->depth != depth) {
|
---|
967 | printf("\n");
|
---|
968 | depth = node->depth;
|
---|
969 | }
|
---|
970 |
|
---|
971 | printf("(");
|
---|
972 | for (i = 0; i < node->keys; i++) {
|
---|
973 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
974 | if (node->depth && node->subtree[i]) {
|
---|
975 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
976 | }
|
---|
977 | }
|
---|
978 | if (node->depth && node->subtree[i]) {
|
---|
979 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
980 | }
|
---|
981 | printf(")");
|
---|
982 | }
|
---|
983 | printf("\n");
|
---|
984 |
|
---|
985 | printf("Printing list of leaves:\n");
|
---|
986 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
|
---|
987 | btree_node_t *node;
|
---|
988 |
|
---|
989 | node = list_get_instance(cur, btree_node_t, leaf_link);
|
---|
990 |
|
---|
991 | ASSERT(node);
|
---|
992 |
|
---|
993 | printf("(");
|
---|
994 | for (i = 0; i < node->keys; i++)
|
---|
995 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
996 | printf(")");
|
---|
997 | }
|
---|
998 | printf("\n");
|
---|
999 | }
|
---|
1000 |
|
---|
1001 | /** @}
|
---|
1002 | */
|
---|