1 | /*
|
---|
2 | * Copyright (c) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genericadt
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief B+tree implementation.
|
---|
36 | *
|
---|
37 | * This file implements B+tree type and operations.
|
---|
38 | *
|
---|
39 | * The B+tree has the following properties:
|
---|
40 | * @li it is a balanced 3-4-5 tree (i.e. BTREE_M = 5)
|
---|
41 | * @li values (i.e. pointers to values) are stored only in leaves
|
---|
42 | * @li leaves are linked in a list
|
---|
43 | *
|
---|
44 | * Be careful when using these trees. They need to allocate
|
---|
45 | * and deallocate memory for their index nodes and as such
|
---|
46 | * can sleep.
|
---|
47 | */
|
---|
48 |
|
---|
49 | #include <adt/btree.h>
|
---|
50 | #include <adt/list.h>
|
---|
51 | #include <assert.h>
|
---|
52 | #include <mm/slab.h>
|
---|
53 | #include <panic.h>
|
---|
54 | #include <print.h>
|
---|
55 | #include <trace.h>
|
---|
56 |
|
---|
57 | static slab_cache_t *btree_node_cache;
|
---|
58 |
|
---|
59 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
60 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
61 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
62 |
|
---|
63 | #define FILL_FACTOR ((BTREE_M - 1) / 2)
|
---|
64 |
|
---|
65 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1) / 2)
|
---|
66 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys / 2)
|
---|
67 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
68 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
69 |
|
---|
70 | /** Initialize B-trees. */
|
---|
71 | void btree_init(void)
|
---|
72 | {
|
---|
73 | btree_node_cache = slab_cache_create("btree_node_t",
|
---|
74 | sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
|
---|
75 | }
|
---|
76 |
|
---|
77 | /** Initialize B-tree node.
|
---|
78 | *
|
---|
79 | * @param node B-tree node.
|
---|
80 | *
|
---|
81 | */
|
---|
82 | NO_TRACE static void node_initialize(btree_node_t *node)
|
---|
83 | {
|
---|
84 | unsigned int i;
|
---|
85 |
|
---|
86 | node->keys = 0;
|
---|
87 |
|
---|
88 | /* Clean also space for the extra key. */
|
---|
89 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
90 | node->key[i] = 0;
|
---|
91 | node->value[i] = NULL;
|
---|
92 | node->subtree[i] = NULL;
|
---|
93 | }
|
---|
94 |
|
---|
95 | node->subtree[i] = NULL;
|
---|
96 | node->parent = NULL;
|
---|
97 |
|
---|
98 | link_initialize(&node->leaf_link);
|
---|
99 | link_initialize(&node->bfs_link);
|
---|
100 | node->depth = 0;
|
---|
101 | }
|
---|
102 |
|
---|
103 | /** Create empty B-tree.
|
---|
104 | *
|
---|
105 | * @param t B-tree.
|
---|
106 | *
|
---|
107 | */
|
---|
108 | void btree_create(btree_t *t)
|
---|
109 | {
|
---|
110 | list_initialize(&t->leaf_list);
|
---|
111 | t->root = (btree_node_t *) slab_alloc(btree_node_cache, 0);
|
---|
112 | node_initialize(t->root);
|
---|
113 | list_append(&t->root->leaf_link, &t->leaf_list);
|
---|
114 | }
|
---|
115 |
|
---|
116 | /** Destroy subtree rooted in a node.
|
---|
117 | *
|
---|
118 | * @param root Root of the subtree.
|
---|
119 | *
|
---|
120 | */
|
---|
121 | NO_TRACE static void btree_destroy_subtree(btree_node_t *root)
|
---|
122 | {
|
---|
123 | size_t i;
|
---|
124 |
|
---|
125 | if (root->keys) {
|
---|
126 | for (i = 0; i < root->keys + 1; i++) {
|
---|
127 | if (root->subtree[i])
|
---|
128 | btree_destroy_subtree(root->subtree[i]);
|
---|
129 | }
|
---|
130 | }
|
---|
131 |
|
---|
132 | slab_free(btree_node_cache, root);
|
---|
133 | }
|
---|
134 |
|
---|
135 | /** Destroy empty B-tree. */
|
---|
136 | void btree_destroy(btree_t *t)
|
---|
137 | {
|
---|
138 | btree_destroy_subtree(t->root);
|
---|
139 | }
|
---|
140 |
|
---|
141 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
142 | *
|
---|
143 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
144 | * This feature is used during splitting the node when the
|
---|
145 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
146 | * also makes use of this feature.
|
---|
147 | *
|
---|
148 | * @param node B-tree node into which the new key is to be inserted.
|
---|
149 | * @param key The key to be inserted.
|
---|
150 | * @param value Pointer to value to be inserted.
|
---|
151 | * @param rsubtree Pointer to the right subtree.
|
---|
152 | *
|
---|
153 | */
|
---|
154 | NO_TRACE static void node_insert_key_and_rsubtree(btree_node_t *node,
|
---|
155 | btree_key_t key, void *value, btree_node_t *rsubtree)
|
---|
156 | {
|
---|
157 | size_t i;
|
---|
158 |
|
---|
159 | for (i = 0; i < node->keys; i++) {
|
---|
160 | if (key < node->key[i]) {
|
---|
161 | size_t j;
|
---|
162 |
|
---|
163 | for (j = node->keys; j > i; j--) {
|
---|
164 | node->key[j] = node->key[j - 1];
|
---|
165 | node->value[j] = node->value[j - 1];
|
---|
166 | node->subtree[j + 1] = node->subtree[j];
|
---|
167 | }
|
---|
168 |
|
---|
169 | break;
|
---|
170 | }
|
---|
171 | }
|
---|
172 |
|
---|
173 | node->key[i] = key;
|
---|
174 | node->value[i] = value;
|
---|
175 | node->subtree[i + 1] = rsubtree;
|
---|
176 | node->keys++;
|
---|
177 | }
|
---|
178 |
|
---|
179 | /** Find key by its left or right subtree.
|
---|
180 | *
|
---|
181 | * @param node B-tree node.
|
---|
182 | * @param subtree Left or right subtree of a key found in node.
|
---|
183 | * @param right If true, subtree is a right subtree. If false,
|
---|
184 | * subtree is a left subtree.
|
---|
185 | *
|
---|
186 | * @return Index of the key associated with the subtree.
|
---|
187 | *
|
---|
188 | */
|
---|
189 | NO_TRACE static size_t find_key_by_subtree(btree_node_t *node,
|
---|
190 | btree_node_t *subtree, bool right)
|
---|
191 | {
|
---|
192 | size_t i;
|
---|
193 |
|
---|
194 | for (i = 0; i < node->keys + 1; i++) {
|
---|
195 | if (subtree == node->subtree[i])
|
---|
196 | return i - (int) (right != false);
|
---|
197 | }
|
---|
198 |
|
---|
199 | panic("Node %p does not contain subtree %p.", node, subtree);
|
---|
200 | }
|
---|
201 |
|
---|
202 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
203 | *
|
---|
204 | * Remove the key and eliminate gaps in node->key array.
|
---|
205 | * Note that the value pointer and the left subtree pointer
|
---|
206 | * is removed from the node as well.
|
---|
207 | *
|
---|
208 | * @param node B-tree node.
|
---|
209 | * @param key Key to be removed.
|
---|
210 | *
|
---|
211 | */
|
---|
212 | NO_TRACE static void node_remove_key_and_lsubtree(btree_node_t *node,
|
---|
213 | btree_key_t key)
|
---|
214 | {
|
---|
215 | size_t i;
|
---|
216 | size_t j;
|
---|
217 |
|
---|
218 | for (i = 0; i < node->keys; i++) {
|
---|
219 | if (key == node->key[i]) {
|
---|
220 | for (j = i + 1; j < node->keys; j++) {
|
---|
221 | node->key[j - 1] = node->key[j];
|
---|
222 | node->value[j - 1] = node->value[j];
|
---|
223 | node->subtree[j - 1] = node->subtree[j];
|
---|
224 | }
|
---|
225 |
|
---|
226 | node->subtree[j - 1] = node->subtree[j];
|
---|
227 | node->keys--;
|
---|
228 |
|
---|
229 | return;
|
---|
230 | }
|
---|
231 | }
|
---|
232 |
|
---|
233 | panic("Node %p does not contain key %" PRIu64 ".", node, key);
|
---|
234 | }
|
---|
235 |
|
---|
236 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
237 | *
|
---|
238 | * Remove the key and eliminate gaps in node->key array.
|
---|
239 | * Note that the value pointer and the right subtree pointer
|
---|
240 | * is removed from the node as well.
|
---|
241 | *
|
---|
242 | * @param node B-tree node.
|
---|
243 | * @param key Key to be removed.
|
---|
244 | *
|
---|
245 | */
|
---|
246 | NO_TRACE static void node_remove_key_and_rsubtree(btree_node_t *node,
|
---|
247 | btree_key_t key)
|
---|
248 | {
|
---|
249 | size_t i, j;
|
---|
250 |
|
---|
251 | for (i = 0; i < node->keys; i++) {
|
---|
252 | if (key == node->key[i]) {
|
---|
253 | for (j = i + 1; j < node->keys; j++) {
|
---|
254 | node->key[j - 1] = node->key[j];
|
---|
255 | node->value[j - 1] = node->value[j];
|
---|
256 | node->subtree[j] = node->subtree[j + 1];
|
---|
257 | }
|
---|
258 |
|
---|
259 | node->keys--;
|
---|
260 | return;
|
---|
261 | }
|
---|
262 | }
|
---|
263 |
|
---|
264 | panic("Node %p does not contain key %" PRIu64 ".", node, key);
|
---|
265 | }
|
---|
266 |
|
---|
267 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
268 | *
|
---|
269 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
270 | * This feature is used during insert by right rotation.
|
---|
271 | *
|
---|
272 | * @param node B-tree node into which the new key is to be inserted.
|
---|
273 | * @param key The key to be inserted.
|
---|
274 | * @param value Pointer to value to be inserted.
|
---|
275 | * @param lsubtree Pointer to the left subtree.
|
---|
276 | *
|
---|
277 | */
|
---|
278 | NO_TRACE static void node_insert_key_and_lsubtree(btree_node_t *node,
|
---|
279 | btree_key_t key, void *value, btree_node_t *lsubtree)
|
---|
280 | {
|
---|
281 | size_t i;
|
---|
282 |
|
---|
283 | for (i = 0; i < node->keys; i++) {
|
---|
284 | if (key < node->key[i]) {
|
---|
285 | size_t j;
|
---|
286 |
|
---|
287 | for (j = node->keys; j > i; j--) {
|
---|
288 | node->key[j] = node->key[j - 1];
|
---|
289 | node->value[j] = node->value[j - 1];
|
---|
290 | node->subtree[j + 1] = node->subtree[j];
|
---|
291 | }
|
---|
292 |
|
---|
293 | node->subtree[j + 1] = node->subtree[j];
|
---|
294 | break;
|
---|
295 | }
|
---|
296 | }
|
---|
297 |
|
---|
298 | node->key[i] = key;
|
---|
299 | node->value[i] = value;
|
---|
300 | node->subtree[i] = lsubtree;
|
---|
301 |
|
---|
302 | node->keys++;
|
---|
303 | }
|
---|
304 |
|
---|
305 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
|
---|
306 | *
|
---|
307 | * The biggest key and its value and right subtree is rotated
|
---|
308 | * from the left node to the right. If the node is an index node,
|
---|
309 | * than the parent node key belonging to the left node takes part
|
---|
310 | * in the rotation.
|
---|
311 | *
|
---|
312 | * @param lnode Left sibling.
|
---|
313 | * @param rnode Right sibling.
|
---|
314 | * @param idx Index of the parent node key that is taking part
|
---|
315 | * in the rotation.
|
---|
316 | *
|
---|
317 | */
|
---|
318 | NO_TRACE static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode,
|
---|
319 | size_t idx)
|
---|
320 | {
|
---|
321 | btree_key_t key = lnode->key[lnode->keys - 1];
|
---|
322 |
|
---|
323 | if (LEAF_NODE(lnode)) {
|
---|
324 | void *value = lnode->value[lnode->keys - 1];
|
---|
325 |
|
---|
326 | node_remove_key_and_rsubtree(lnode, key);
|
---|
327 | node_insert_key_and_lsubtree(rnode, key, value, NULL);
|
---|
328 | lnode->parent->key[idx] = key;
|
---|
329 | } else {
|
---|
330 | btree_node_t *rsubtree = lnode->subtree[lnode->keys];
|
---|
331 |
|
---|
332 | node_remove_key_and_rsubtree(lnode, key);
|
---|
333 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
|
---|
334 | lnode->parent->key[idx] = key;
|
---|
335 |
|
---|
336 | /* Fix parent link of the reconnected right subtree. */
|
---|
337 | rsubtree->parent = rnode;
|
---|
338 | }
|
---|
339 | }
|
---|
340 |
|
---|
341 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
|
---|
342 | *
|
---|
343 | * The smallest key and its value and left subtree is rotated
|
---|
344 | * from the right node to the left. If the node is an index node,
|
---|
345 | * than the parent node key belonging to the right node takes part
|
---|
346 | * in the rotation.
|
---|
347 | *
|
---|
348 | * @param lnode Left sibling.
|
---|
349 | * @param rnode Right sibling.
|
---|
350 | * @param idx Index of the parent node key that is taking part
|
---|
351 | * in the rotation.
|
---|
352 | *
|
---|
353 | */
|
---|
354 | NO_TRACE static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode,
|
---|
355 | size_t idx)
|
---|
356 | {
|
---|
357 | btree_key_t key = rnode->key[0];
|
---|
358 |
|
---|
359 | if (LEAF_NODE(rnode)) {
|
---|
360 | void *value = rnode->value[0];
|
---|
361 |
|
---|
362 | node_remove_key_and_lsubtree(rnode, key);
|
---|
363 | node_insert_key_and_rsubtree(lnode, key, value, NULL);
|
---|
364 | rnode->parent->key[idx] = rnode->key[0];
|
---|
365 | } else {
|
---|
366 | btree_node_t *lsubtree = rnode->subtree[0];
|
---|
367 |
|
---|
368 | node_remove_key_and_lsubtree(rnode, key);
|
---|
369 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
|
---|
370 | rnode->parent->key[idx] = key;
|
---|
371 |
|
---|
372 | /* Fix parent link of the reconnected left subtree. */
|
---|
373 | lsubtree->parent = lnode;
|
---|
374 | }
|
---|
375 | }
|
---|
376 |
|
---|
377 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
378 | *
|
---|
379 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
380 | * If there is free space, the key is inserted and the smallest key of
|
---|
381 | * the node is moved there. The index node which is the parent of both
|
---|
382 | * nodes is fixed.
|
---|
383 | *
|
---|
384 | * @param node B-tree node.
|
---|
385 | * @param inskey Key to be inserted.
|
---|
386 | * @param insvalue Value to be inserted.
|
---|
387 | * @param rsubtree Right subtree of inskey.
|
---|
388 | *
|
---|
389 | * @return True if the rotation was performed, false otherwise.
|
---|
390 | *
|
---|
391 | */
|
---|
392 | NO_TRACE static bool try_insert_by_rotation_to_left(btree_node_t *node,
|
---|
393 | btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
394 | {
|
---|
395 | size_t idx;
|
---|
396 | btree_node_t *lnode;
|
---|
397 |
|
---|
398 | /*
|
---|
399 | * If this is root node, the rotation can not be done.
|
---|
400 | */
|
---|
401 | if (ROOT_NODE(node))
|
---|
402 | return false;
|
---|
403 |
|
---|
404 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
405 | if ((int) idx == -1) {
|
---|
406 | /*
|
---|
407 | * If this node is the leftmost subtree of its parent,
|
---|
408 | * the rotation can not be done.
|
---|
409 | */
|
---|
410 | return false;
|
---|
411 | }
|
---|
412 |
|
---|
413 | lnode = node->parent->subtree[idx];
|
---|
414 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
415 | /*
|
---|
416 | * The rotaion can be done. The left sibling has free space.
|
---|
417 | */
|
---|
418 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
419 | rotate_from_right(lnode, node, idx);
|
---|
420 | return true;
|
---|
421 | }
|
---|
422 |
|
---|
423 | return false;
|
---|
424 | }
|
---|
425 |
|
---|
426 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
427 | *
|
---|
428 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
429 | * If there is free space, the key is inserted and the biggest key of
|
---|
430 | * the node is moved there. The index node which is the parent of both
|
---|
431 | * nodes is fixed.
|
---|
432 | *
|
---|
433 | * @param node B-tree node.
|
---|
434 | * @param inskey Key to be inserted.
|
---|
435 | * @param insvalue Value to be inserted.
|
---|
436 | * @param rsubtree Right subtree of inskey.
|
---|
437 | *
|
---|
438 | * @return True if the rotation was performed, false otherwise.
|
---|
439 | *
|
---|
440 | */
|
---|
441 | NO_TRACE static bool try_insert_by_rotation_to_right(btree_node_t *node,
|
---|
442 | btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
443 | {
|
---|
444 | size_t idx;
|
---|
445 | btree_node_t *rnode;
|
---|
446 |
|
---|
447 | /*
|
---|
448 | * If this is root node, the rotation can not be done.
|
---|
449 | */
|
---|
450 | if (ROOT_NODE(node))
|
---|
451 | return false;
|
---|
452 |
|
---|
453 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
454 | if (idx == node->parent->keys) {
|
---|
455 | /*
|
---|
456 | * If this node is the rightmost subtree of its parent,
|
---|
457 | * the rotation can not be done.
|
---|
458 | */
|
---|
459 | return false;
|
---|
460 | }
|
---|
461 |
|
---|
462 | rnode = node->parent->subtree[idx + 1];
|
---|
463 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
464 | /*
|
---|
465 | * The rotation can be done. The right sibling has free space.
|
---|
466 | */
|
---|
467 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
468 | rotate_from_left(node, rnode, idx);
|
---|
469 | return true;
|
---|
470 | }
|
---|
471 |
|
---|
472 | return false;
|
---|
473 | }
|
---|
474 |
|
---|
475 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
476 | *
|
---|
477 | * This function will split a node and return a pointer to a newly created
|
---|
478 | * node containing keys greater than or equal to the greater of medians
|
---|
479 | * (or median) of the old keys and the newly added key. It will also write
|
---|
480 | * the median key to a memory address supplied by the caller.
|
---|
481 | *
|
---|
482 | * If the node being split is an index node, the median will not be
|
---|
483 | * included in the new node. If the node is a leaf node,
|
---|
484 | * the median will be copied there.
|
---|
485 | *
|
---|
486 | * @param node B-tree node which is going to be split.
|
---|
487 | * @param key The key to be inserted.
|
---|
488 | * @param value Pointer to the value to be inserted.
|
---|
489 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
490 | * @param median Address in memory, where the median key will be stored.
|
---|
491 | *
|
---|
492 | * @return Newly created right sibling of node.
|
---|
493 | *
|
---|
494 | */
|
---|
495 | NO_TRACE static btree_node_t *node_split(btree_node_t *node, btree_key_t key,
|
---|
496 | void *value, btree_node_t *rsubtree, btree_key_t *median)
|
---|
497 | {
|
---|
498 | btree_node_t *rnode;
|
---|
499 | size_t i;
|
---|
500 | size_t j;
|
---|
501 |
|
---|
502 | assert(median);
|
---|
503 | assert(node->keys == BTREE_MAX_KEYS);
|
---|
504 |
|
---|
505 | /*
|
---|
506 | * Use the extra space to store the extra node.
|
---|
507 | */
|
---|
508 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
509 |
|
---|
510 | /*
|
---|
511 | * Compute median of keys.
|
---|
512 | */
|
---|
513 | *median = MEDIAN_HIGH(node);
|
---|
514 |
|
---|
515 | /*
|
---|
516 | * Allocate and initialize new right sibling.
|
---|
517 | */
|
---|
518 | rnode = (btree_node_t *) slab_alloc(btree_node_cache, 0);
|
---|
519 | node_initialize(rnode);
|
---|
520 | rnode->parent = node->parent;
|
---|
521 | rnode->depth = node->depth;
|
---|
522 |
|
---|
523 | /*
|
---|
524 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
525 | * If this is an index node, do not copy the median.
|
---|
526 | */
|
---|
527 | i = (size_t) INDEX_NODE(node);
|
---|
528 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
529 | rnode->key[j] = node->key[i];
|
---|
530 | rnode->value[j] = node->value[i];
|
---|
531 | rnode->subtree[j] = node->subtree[i];
|
---|
532 |
|
---|
533 | /*
|
---|
534 | * Fix parent links in subtrees.
|
---|
535 | */
|
---|
536 | if (rnode->subtree[j])
|
---|
537 | rnode->subtree[j]->parent = rnode;
|
---|
538 | }
|
---|
539 |
|
---|
540 | rnode->subtree[j] = node->subtree[i];
|
---|
541 | if (rnode->subtree[j])
|
---|
542 | rnode->subtree[j]->parent = rnode;
|
---|
543 |
|
---|
544 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
545 | node->keys /= 2; /* Shrink the old node. */
|
---|
546 |
|
---|
547 | return rnode;
|
---|
548 | }
|
---|
549 |
|
---|
550 | /** Recursively insert into B-tree.
|
---|
551 | *
|
---|
552 | * @param t B-tree.
|
---|
553 | * @param key Key to be inserted.
|
---|
554 | * @param value Value to be inserted.
|
---|
555 | * @param rsubtree Right subtree of the inserted key.
|
---|
556 | * @param node Start inserting into this node.
|
---|
557 | *
|
---|
558 | */
|
---|
559 | NO_TRACE static void _btree_insert(btree_t *t, btree_key_t key, void *value,
|
---|
560 | btree_node_t *rsubtree, btree_node_t *node)
|
---|
561 | {
|
---|
562 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
563 | /*
|
---|
564 | * Node contains enough space, the key can be stored immediately.
|
---|
565 | */
|
---|
566 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
567 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
|
---|
568 | /*
|
---|
569 | * The key-value-rsubtree triplet has been inserted because
|
---|
570 | * some keys could have been moved to the left sibling.
|
---|
571 | */
|
---|
572 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
|
---|
573 | /*
|
---|
574 | * The key-value-rsubtree triplet has been inserted because
|
---|
575 | * some keys could have been moved to the right sibling.
|
---|
576 | */
|
---|
577 | } else {
|
---|
578 | btree_node_t *rnode;
|
---|
579 | btree_key_t median;
|
---|
580 |
|
---|
581 | /*
|
---|
582 | * Node is full and both siblings (if both exist) are full too.
|
---|
583 | * Split the node and insert the smallest key from the node containing
|
---|
584 | * bigger keys (i.e. the new node) into its parent.
|
---|
585 | */
|
---|
586 |
|
---|
587 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
588 |
|
---|
589 | if (LEAF_NODE(node)) {
|
---|
590 | list_insert_after(&rnode->leaf_link, &node->leaf_link);
|
---|
591 | }
|
---|
592 |
|
---|
593 | if (ROOT_NODE(node)) {
|
---|
594 | /*
|
---|
595 | * We split the root node. Create new root.
|
---|
596 | */
|
---|
597 | t->root = (btree_node_t *) slab_alloc(btree_node_cache, 0);
|
---|
598 | node->parent = t->root;
|
---|
599 | rnode->parent = t->root;
|
---|
600 | node_initialize(t->root);
|
---|
601 |
|
---|
602 | /*
|
---|
603 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
604 | * Right-hand side subtree will be rnode.
|
---|
605 | */
|
---|
606 | t->root->subtree[0] = node;
|
---|
607 |
|
---|
608 | t->root->depth = node->depth + 1;
|
---|
609 | }
|
---|
610 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
611 | }
|
---|
612 | }
|
---|
613 |
|
---|
614 | /** Insert key-value pair into B-tree.
|
---|
615 | *
|
---|
616 | * @param t B-tree.
|
---|
617 | * @param key Key to be inserted.
|
---|
618 | * @param value Value to be inserted.
|
---|
619 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
620 | *
|
---|
621 | */
|
---|
622 | void btree_insert(btree_t *t, btree_key_t key, void *value,
|
---|
623 | btree_node_t *leaf_node)
|
---|
624 | {
|
---|
625 | btree_node_t *lnode;
|
---|
626 |
|
---|
627 | assert(value);
|
---|
628 |
|
---|
629 | lnode = leaf_node;
|
---|
630 | if (!lnode) {
|
---|
631 | if (btree_search(t, key, &lnode))
|
---|
632 | panic("B-tree %p already contains key %" PRIu64 ".", t, key);
|
---|
633 | }
|
---|
634 |
|
---|
635 | _btree_insert(t, key, value, NULL, lnode);
|
---|
636 | }
|
---|
637 |
|
---|
638 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
|
---|
639 | *
|
---|
640 | * @param rnode Node into which to add key from its left sibling
|
---|
641 | * or from the index node.
|
---|
642 | *
|
---|
643 | * @return True if the rotation was performed, false otherwise.
|
---|
644 | *
|
---|
645 | */
|
---|
646 | NO_TRACE static bool try_rotation_from_left(btree_node_t *rnode)
|
---|
647 | {
|
---|
648 | size_t idx;
|
---|
649 | btree_node_t *lnode;
|
---|
650 |
|
---|
651 | /*
|
---|
652 | * If this is root node, the rotation can not be done.
|
---|
653 | */
|
---|
654 | if (ROOT_NODE(rnode))
|
---|
655 | return false;
|
---|
656 |
|
---|
657 | idx = find_key_by_subtree(rnode->parent, rnode, true);
|
---|
658 | if ((int) idx == -1) {
|
---|
659 | /*
|
---|
660 | * If this node is the leftmost subtree of its parent,
|
---|
661 | * the rotation can not be done.
|
---|
662 | */
|
---|
663 | return false;
|
---|
664 | }
|
---|
665 |
|
---|
666 | lnode = rnode->parent->subtree[idx];
|
---|
667 | if (lnode->keys > FILL_FACTOR) {
|
---|
668 | rotate_from_left(lnode, rnode, idx);
|
---|
669 | return true;
|
---|
670 | }
|
---|
671 |
|
---|
672 | return false;
|
---|
673 | }
|
---|
674 |
|
---|
675 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
|
---|
676 | *
|
---|
677 | * @param lnode Node into which to add key from its right sibling
|
---|
678 | * or from the index node.
|
---|
679 | *
|
---|
680 | * @return True if the rotation was performed, false otherwise.
|
---|
681 | *
|
---|
682 | */
|
---|
683 | NO_TRACE static bool try_rotation_from_right(btree_node_t *lnode)
|
---|
684 | {
|
---|
685 | size_t idx;
|
---|
686 | btree_node_t *rnode;
|
---|
687 |
|
---|
688 | /*
|
---|
689 | * If this is root node, the rotation can not be done.
|
---|
690 | */
|
---|
691 | if (ROOT_NODE(lnode))
|
---|
692 | return false;
|
---|
693 |
|
---|
694 | idx = find_key_by_subtree(lnode->parent, lnode, false);
|
---|
695 | if (idx == lnode->parent->keys) {
|
---|
696 | /*
|
---|
697 | * If this node is the rightmost subtree of its parent,
|
---|
698 | * the rotation can not be done.
|
---|
699 | */
|
---|
700 | return false;
|
---|
701 | }
|
---|
702 |
|
---|
703 | rnode = lnode->parent->subtree[idx + 1];
|
---|
704 | if (rnode->keys > FILL_FACTOR) {
|
---|
705 | rotate_from_right(lnode, rnode, idx);
|
---|
706 | return true;
|
---|
707 | }
|
---|
708 |
|
---|
709 | return false;
|
---|
710 | }
|
---|
711 |
|
---|
712 | /** Combine node with any of its siblings.
|
---|
713 | *
|
---|
714 | * The siblings are required to be below the fill factor.
|
---|
715 | *
|
---|
716 | * @param node Node to combine with one of its siblings.
|
---|
717 | *
|
---|
718 | * @return Pointer to the rightmost of the two nodes.
|
---|
719 | *
|
---|
720 | */
|
---|
721 | NO_TRACE static btree_node_t *node_combine(btree_node_t *node)
|
---|
722 | {
|
---|
723 | size_t idx;
|
---|
724 | btree_node_t *rnode;
|
---|
725 | size_t i;
|
---|
726 |
|
---|
727 | assert(!ROOT_NODE(node));
|
---|
728 |
|
---|
729 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
730 | if (idx == node->parent->keys) {
|
---|
731 | /*
|
---|
732 | * Rightmost subtree of its parent, combine with the left sibling.
|
---|
733 | */
|
---|
734 | idx--;
|
---|
735 | rnode = node;
|
---|
736 | node = node->parent->subtree[idx];
|
---|
737 | } else
|
---|
738 | rnode = node->parent->subtree[idx + 1];
|
---|
739 |
|
---|
740 | /* Index nodes need to insert parent node key in between left and right node. */
|
---|
741 | if (INDEX_NODE(node))
|
---|
742 | node->key[node->keys++] = node->parent->key[idx];
|
---|
743 |
|
---|
744 | /* Copy the key-value-subtree triplets from the right node. */
|
---|
745 | for (i = 0; i < rnode->keys; i++) {
|
---|
746 | node->key[node->keys + i] = rnode->key[i];
|
---|
747 | node->value[node->keys + i] = rnode->value[i];
|
---|
748 |
|
---|
749 | if (INDEX_NODE(node)) {
|
---|
750 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
751 | rnode->subtree[i]->parent = node;
|
---|
752 | }
|
---|
753 | }
|
---|
754 |
|
---|
755 | if (INDEX_NODE(node)) {
|
---|
756 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
757 | rnode->subtree[i]->parent = node;
|
---|
758 | }
|
---|
759 |
|
---|
760 | node->keys += rnode->keys;
|
---|
761 | return rnode;
|
---|
762 | }
|
---|
763 |
|
---|
764 | /** Recursively remove B-tree node.
|
---|
765 | *
|
---|
766 | * @param t B-tree.
|
---|
767 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
768 | * @param node Node where the key being removed resides.
|
---|
769 | *
|
---|
770 | */
|
---|
771 | NO_TRACE static void _btree_remove(btree_t *t, btree_key_t key,
|
---|
772 | btree_node_t *node)
|
---|
773 | {
|
---|
774 | if (ROOT_NODE(node)) {
|
---|
775 | if ((node->keys == 1) && (node->subtree[0])) {
|
---|
776 | /*
|
---|
777 | * Free the current root and set new root.
|
---|
778 | */
|
---|
779 | t->root = node->subtree[0];
|
---|
780 | t->root->parent = NULL;
|
---|
781 | slab_free(btree_node_cache, node);
|
---|
782 | } else {
|
---|
783 | /*
|
---|
784 | * Remove the key from the root node.
|
---|
785 | * Note that the right subtree is removed because when
|
---|
786 | * combining two nodes, the left-side sibling is preserved
|
---|
787 | * and the right-side sibling is freed.
|
---|
788 | */
|
---|
789 | node_remove_key_and_rsubtree(node, key);
|
---|
790 | }
|
---|
791 |
|
---|
792 | return;
|
---|
793 | }
|
---|
794 |
|
---|
795 | if (node->keys <= FILL_FACTOR) {
|
---|
796 | /*
|
---|
797 | * If the node is below the fill factor,
|
---|
798 | * try to borrow keys from left or right sibling.
|
---|
799 | */
|
---|
800 | if (!try_rotation_from_left(node))
|
---|
801 | try_rotation_from_right(node);
|
---|
802 | }
|
---|
803 |
|
---|
804 | if (node->keys > FILL_FACTOR) {
|
---|
805 | size_t i;
|
---|
806 |
|
---|
807 | /*
|
---|
808 | * The key can be immediately removed.
|
---|
809 | *
|
---|
810 | * Note that the right subtree is removed because when
|
---|
811 | * combining two nodes, the left-side sibling is preserved
|
---|
812 | * and the right-side sibling is freed.
|
---|
813 | */
|
---|
814 | node_remove_key_and_rsubtree(node, key);
|
---|
815 |
|
---|
816 | for (i = 0; i < node->parent->keys; i++) {
|
---|
817 | if (node->parent->key[i] == key)
|
---|
818 | node->parent->key[i] = node->key[0];
|
---|
819 | }
|
---|
820 | } else {
|
---|
821 | size_t idx;
|
---|
822 | btree_node_t *rnode;
|
---|
823 | btree_node_t *parent;
|
---|
824 |
|
---|
825 | /*
|
---|
826 | * The node is below the fill factor as well as its left and right sibling.
|
---|
827 | * Resort to combining the node with one of its siblings.
|
---|
828 | * The node which is on the left is preserved and the node on the right is
|
---|
829 | * freed.
|
---|
830 | */
|
---|
831 | parent = node->parent;
|
---|
832 | node_remove_key_and_rsubtree(node, key);
|
---|
833 | rnode = node_combine(node);
|
---|
834 |
|
---|
835 | if (LEAF_NODE(rnode))
|
---|
836 | list_remove(&rnode->leaf_link);
|
---|
837 |
|
---|
838 | idx = find_key_by_subtree(parent, rnode, true);
|
---|
839 | assert((int) idx != -1);
|
---|
840 | slab_free(btree_node_cache, rnode);
|
---|
841 | _btree_remove(t, parent->key[idx], parent);
|
---|
842 | }
|
---|
843 | }
|
---|
844 |
|
---|
845 | /** Remove B-tree node.
|
---|
846 | *
|
---|
847 | * @param t B-tree.
|
---|
848 | * @param key Key to be removed from the B-tree along
|
---|
849 | * with its associated value.
|
---|
850 | * @param leaf_node If not NULL, pointer to the leaf node where
|
---|
851 | * the key is found.
|
---|
852 | *
|
---|
853 | */
|
---|
854 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
|
---|
855 | {
|
---|
856 | btree_node_t *lnode;
|
---|
857 |
|
---|
858 | lnode = leaf_node;
|
---|
859 | if (!lnode) {
|
---|
860 | if (!btree_search(t, key, &lnode))
|
---|
861 | panic("B-tree %p does not contain key %" PRIu64 ".", t, key);
|
---|
862 | }
|
---|
863 |
|
---|
864 | _btree_remove(t, key, lnode);
|
---|
865 | }
|
---|
866 |
|
---|
867 | /** Search key in a B-tree.
|
---|
868 | *
|
---|
869 | * @param t B-tree.
|
---|
870 | * @param key Key to be searched.
|
---|
871 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
872 | *
|
---|
873 | * @return Pointer to value or NULL if there is no such key.
|
---|
874 | *
|
---|
875 | */
|
---|
876 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
|
---|
877 | {
|
---|
878 | btree_node_t *cur, *next;
|
---|
879 |
|
---|
880 | /*
|
---|
881 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
882 | */
|
---|
883 | for (cur = t->root; cur; cur = next) {
|
---|
884 | /*
|
---|
885 | * Last iteration will set this with proper
|
---|
886 | * leaf node address.
|
---|
887 | */
|
---|
888 | *leaf_node = cur;
|
---|
889 |
|
---|
890 | if (cur->keys == 0)
|
---|
891 | return NULL;
|
---|
892 |
|
---|
893 | /*
|
---|
894 | * The key can be in the leftmost subtree.
|
---|
895 | * Test it separately.
|
---|
896 | */
|
---|
897 | if (key < cur->key[0]) {
|
---|
898 | next = cur->subtree[0];
|
---|
899 | continue;
|
---|
900 | } else {
|
---|
901 | void *val;
|
---|
902 | size_t i;
|
---|
903 |
|
---|
904 | /*
|
---|
905 | * Now if the key is smaller than cur->key[i]
|
---|
906 | * it can only mean that the value is in cur->subtree[i]
|
---|
907 | * or it is not in the tree at all.
|
---|
908 | */
|
---|
909 | for (i = 1; i < cur->keys; i++) {
|
---|
910 | if (key < cur->key[i]) {
|
---|
911 | next = cur->subtree[i];
|
---|
912 | val = cur->value[i - 1];
|
---|
913 |
|
---|
914 | if (LEAF_NODE(cur))
|
---|
915 | return key == cur->key[i - 1] ? val : NULL;
|
---|
916 |
|
---|
917 | goto descend;
|
---|
918 | }
|
---|
919 | }
|
---|
920 |
|
---|
921 | /*
|
---|
922 | * Last possibility is that the key is
|
---|
923 | * in the rightmost subtree.
|
---|
924 | */
|
---|
925 | next = cur->subtree[i];
|
---|
926 | val = cur->value[i - 1];
|
---|
927 |
|
---|
928 | if (LEAF_NODE(cur))
|
---|
929 | return key == cur->key[i - 1] ? val : NULL;
|
---|
930 | }
|
---|
931 | descend:
|
---|
932 | ;
|
---|
933 | }
|
---|
934 |
|
---|
935 | /*
|
---|
936 | * The key was not found in the *leaf_node and
|
---|
937 | * is smaller than any of its keys.
|
---|
938 | */
|
---|
939 | return NULL;
|
---|
940 | }
|
---|
941 |
|
---|
942 | /** Return pointer to B-tree leaf node's left neighbour.
|
---|
943 | *
|
---|
944 | * @param t B-tree.
|
---|
945 | * @param node Node whose left neighbour will be returned.
|
---|
946 | *
|
---|
947 | * @return Left neighbour of the node or NULL if the node
|
---|
948 | * does not have the left neighbour.
|
---|
949 | *
|
---|
950 | */
|
---|
951 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
|
---|
952 | {
|
---|
953 | assert(LEAF_NODE(node));
|
---|
954 |
|
---|
955 | if (node->leaf_link.prev != &t->leaf_list.head)
|
---|
956 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
|
---|
957 | else
|
---|
958 | return NULL;
|
---|
959 | }
|
---|
960 |
|
---|
961 | /** Return pointer to B-tree leaf node's right neighbour.
|
---|
962 | *
|
---|
963 | * @param t B-tree.
|
---|
964 | * @param node Node whose right neighbour will be returned.
|
---|
965 | *
|
---|
966 | * @return Right neighbour of the node or NULL if the node
|
---|
967 | * does not have the right neighbour.
|
---|
968 | *
|
---|
969 | */
|
---|
970 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
|
---|
971 | {
|
---|
972 | assert(LEAF_NODE(node));
|
---|
973 |
|
---|
974 | if (node->leaf_link.next != &t->leaf_list.head)
|
---|
975 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
|
---|
976 | else
|
---|
977 | return NULL;
|
---|
978 | }
|
---|
979 |
|
---|
980 | /** Print B-tree.
|
---|
981 | *
|
---|
982 | * @param t Print out B-tree.
|
---|
983 | *
|
---|
984 | */
|
---|
985 | void btree_print(btree_t *t)
|
---|
986 | {
|
---|
987 | size_t i;
|
---|
988 | int depth = t->root->depth;
|
---|
989 | list_t list;
|
---|
990 |
|
---|
991 | printf("Printing B-tree:\n");
|
---|
992 | list_initialize(&list);
|
---|
993 | list_append(&t->root->bfs_link, &list);
|
---|
994 |
|
---|
995 | /*
|
---|
996 | * Use BFS search to print out the tree.
|
---|
997 | * Levels are distinguished from one another by node->depth.
|
---|
998 | */
|
---|
999 | while (!list_empty(&list)) {
|
---|
1000 | link_t *hlp;
|
---|
1001 | btree_node_t *node;
|
---|
1002 |
|
---|
1003 | hlp = list_first(&list);
|
---|
1004 | assert(hlp != NULL);
|
---|
1005 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
1006 | list_remove(hlp);
|
---|
1007 |
|
---|
1008 | assert(node);
|
---|
1009 |
|
---|
1010 | if (node->depth != depth) {
|
---|
1011 | printf("\n");
|
---|
1012 | depth = node->depth;
|
---|
1013 | }
|
---|
1014 |
|
---|
1015 | printf("(");
|
---|
1016 |
|
---|
1017 | for (i = 0; i < node->keys; i++) {
|
---|
1018 | printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
1019 | if (node->depth && node->subtree[i]) {
|
---|
1020 | list_append(&node->subtree[i]->bfs_link, &list);
|
---|
1021 | }
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | if (node->depth && node->subtree[i])
|
---|
1025 | list_append(&node->subtree[i]->bfs_link, &list);
|
---|
1026 |
|
---|
1027 | printf(")");
|
---|
1028 | }
|
---|
1029 |
|
---|
1030 | printf("\n");
|
---|
1031 |
|
---|
1032 | printf("Printing list of leaves:\n");
|
---|
1033 | list_foreach(t->leaf_list, leaf_link, btree_node_t, node) {
|
---|
1034 | assert(node);
|
---|
1035 |
|
---|
1036 | printf("(");
|
---|
1037 |
|
---|
1038 | for (i = 0; i < node->keys; i++)
|
---|
1039 | printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
1040 |
|
---|
1041 | printf(")");
|
---|
1042 | }
|
---|
1043 |
|
---|
1044 | printf("\n");
|
---|
1045 | }
|
---|
1046 |
|
---|
1047 | /** Return number of B-tree elements.
|
---|
1048 | *
|
---|
1049 | * @param t B-tree to count.
|
---|
1050 | *
|
---|
1051 | * @return Return number of B-tree elements.
|
---|
1052 | *
|
---|
1053 | */
|
---|
1054 | unsigned long btree_count(btree_t *t)
|
---|
1055 | {
|
---|
1056 | unsigned long count = 0;
|
---|
1057 |
|
---|
1058 | list_foreach(t->leaf_list, leaf_link, btree_node_t, node) {
|
---|
1059 | count += node->keys;
|
---|
1060 | }
|
---|
1061 |
|
---|
1062 | return count;
|
---|
1063 | }
|
---|
1064 |
|
---|
1065 | /** @}
|
---|
1066 | */
|
---|