source: mainline/kernel/generic/src/adt/btree.c@ 63e27ef

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 63e27ef was 63e27ef, checked in by Jiri Svoboda <jiri@…>, 8 years ago

ASSERT → assert

  • Property mode set to 100644
File size: 26.9 KB
Line 
1/*
2 * Copyright (c) 2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/** @addtogroup genericadt
30 * @{
31 */
32
33/**
34 * @file
35 * @brief B+tree implementation.
36 *
37 * This file implements B+tree type and operations.
38 *
39 * The B+tree has the following properties:
40 * @li it is a balanced 3-4-5 tree (i.e. BTREE_M = 5)
41 * @li values (i.e. pointers to values) are stored only in leaves
42 * @li leaves are linked in a list
43 *
44 * Be careful when using these trees. They need to allocate
45 * and deallocate memory for their index nodes and as such
46 * can sleep.
47 */
48
49#include <adt/btree.h>
50#include <adt/list.h>
51#include <assert.h>
52#include <mm/slab.h>
53#include <panic.h>
54#include <print.h>
55#include <trace.h>
56
57static slab_cache_t *btree_node_slab;
58
59#define ROOT_NODE(n) (!(n)->parent)
60#define INDEX_NODE(n) ((n)->subtree[0] != NULL)
61#define LEAF_NODE(n) ((n)->subtree[0] == NULL)
62
63#define FILL_FACTOR ((BTREE_M - 1) / 2)
64
65#define MEDIAN_LOW_INDEX(n) (((n)->keys-1) / 2)
66#define MEDIAN_HIGH_INDEX(n) ((n)->keys / 2)
67#define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
68#define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
69
70/** Initialize B-trees. */
71void btree_init(void)
72{
73 btree_node_slab = slab_cache_create("btree_node_t",
74 sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
75}
76
77/** Initialize B-tree node.
78 *
79 * @param node B-tree node.
80 *
81 */
82NO_TRACE static void node_initialize(btree_node_t *node)
83{
84 unsigned int i;
85
86 node->keys = 0;
87
88 /* Clean also space for the extra key. */
89 for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
90 node->key[i] = 0;
91 node->value[i] = NULL;
92 node->subtree[i] = NULL;
93 }
94
95 node->subtree[i] = NULL;
96 node->parent = NULL;
97
98 link_initialize(&node->leaf_link);
99 link_initialize(&node->bfs_link);
100 node->depth = 0;
101}
102
103/** Create empty B-tree.
104 *
105 * @param t B-tree.
106 *
107 */
108void btree_create(btree_t *t)
109{
110 list_initialize(&t->leaf_list);
111 t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
112 node_initialize(t->root);
113 list_append(&t->root->leaf_link, &t->leaf_list);
114}
115
116/** Destroy subtree rooted in a node.
117 *
118 * @param root Root of the subtree.
119 *
120 */
121NO_TRACE static void btree_destroy_subtree(btree_node_t *root)
122{
123 size_t i;
124
125 if (root->keys) {
126 for (i = 0; i < root->keys + 1; i++) {
127 if (root->subtree[i])
128 btree_destroy_subtree(root->subtree[i]);
129 }
130 }
131
132 slab_free(btree_node_slab, root);
133}
134
135/** Destroy empty B-tree. */
136void btree_destroy(btree_t *t)
137{
138 btree_destroy_subtree(t->root);
139}
140
141/** Insert key-value-rsubtree triplet into B-tree node.
142 *
143 * It is actually possible to have more keys than BTREE_MAX_KEYS.
144 * This feature is used during splitting the node when the
145 * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
146 * also makes use of this feature.
147 *
148 * @param node B-tree node into which the new key is to be inserted.
149 * @param key The key to be inserted.
150 * @param value Pointer to value to be inserted.
151 * @param rsubtree Pointer to the right subtree.
152 *
153 */
154NO_TRACE static void node_insert_key_and_rsubtree(btree_node_t *node,
155 btree_key_t key, void *value, btree_node_t *rsubtree)
156{
157 size_t i;
158
159 for (i = 0; i < node->keys; i++) {
160 if (key < node->key[i]) {
161 size_t j;
162
163 for (j = node->keys; j > i; j--) {
164 node->key[j] = node->key[j - 1];
165 node->value[j] = node->value[j - 1];
166 node->subtree[j + 1] = node->subtree[j];
167 }
168
169 break;
170 }
171 }
172
173 node->key[i] = key;
174 node->value[i] = value;
175 node->subtree[i + 1] = rsubtree;
176 node->keys++;
177}
178
179/** Find key by its left or right subtree.
180 *
181 * @param node B-tree node.
182 * @param subtree Left or right subtree of a key found in node.
183 * @param right If true, subtree is a right subtree. If false,
184 * subtree is a left subtree.
185 *
186 * @return Index of the key associated with the subtree.
187 *
188 */
189NO_TRACE static size_t find_key_by_subtree(btree_node_t *node,
190 btree_node_t *subtree, bool right)
191{
192 size_t i;
193
194 for (i = 0; i < node->keys + 1; i++) {
195 if (subtree == node->subtree[i])
196 return i - (int) (right != false);
197 }
198
199 panic("Node %p does not contain subtree %p.", node, subtree);
200}
201
202/** Remove key and its left subtree pointer from B-tree node.
203 *
204 * Remove the key and eliminate gaps in node->key array.
205 * Note that the value pointer and the left subtree pointer
206 * is removed from the node as well.
207 *
208 * @param node B-tree node.
209 * @param key Key to be removed.
210 *
211 */
212NO_TRACE static void node_remove_key_and_lsubtree(btree_node_t *node,
213 btree_key_t key)
214{
215 size_t i;
216 size_t j;
217
218 for (i = 0; i < node->keys; i++) {
219 if (key == node->key[i]) {
220 for (j = i + 1; j < node->keys; j++) {
221 node->key[j - 1] = node->key[j];
222 node->value[j - 1] = node->value[j];
223 node->subtree[j - 1] = node->subtree[j];
224 }
225
226 node->subtree[j - 1] = node->subtree[j];
227 node->keys--;
228
229 return;
230 }
231 }
232
233 panic("Node %p does not contain key %" PRIu64 ".", node, key);
234}
235
236/** Remove key and its right subtree pointer from B-tree node.
237 *
238 * Remove the key and eliminate gaps in node->key array.
239 * Note that the value pointer and the right subtree pointer
240 * is removed from the node as well.
241 *
242 * @param node B-tree node.
243 * @param key Key to be removed.
244 *
245 */
246NO_TRACE static void node_remove_key_and_rsubtree(btree_node_t *node,
247 btree_key_t key)
248{
249 size_t i, j;
250
251 for (i = 0; i < node->keys; i++) {
252 if (key == node->key[i]) {
253 for (j = i + 1; j < node->keys; j++) {
254 node->key[j - 1] = node->key[j];
255 node->value[j - 1] = node->value[j];
256 node->subtree[j] = node->subtree[j + 1];
257 }
258
259 node->keys--;
260 return;
261 }
262 }
263
264 panic("Node %p does not contain key %" PRIu64 ".", node, key);
265}
266
267/** Insert key-value-lsubtree triplet into B-tree node.
268 *
269 * It is actually possible to have more keys than BTREE_MAX_KEYS.
270 * This feature is used during insert by right rotation.
271 *
272 * @param node B-tree node into which the new key is to be inserted.
273 * @param key The key to be inserted.
274 * @param value Pointer to value to be inserted.
275 * @param lsubtree Pointer to the left subtree.
276 *
277 */
278NO_TRACE static void node_insert_key_and_lsubtree(btree_node_t *node,
279 btree_key_t key, void *value, btree_node_t *lsubtree)
280{
281 size_t i;
282
283 for (i = 0; i < node->keys; i++) {
284 if (key < node->key[i]) {
285 size_t j;
286
287 for (j = node->keys; j > i; j--) {
288 node->key[j] = node->key[j - 1];
289 node->value[j] = node->value[j - 1];
290 node->subtree[j + 1] = node->subtree[j];
291 }
292
293 node->subtree[j + 1] = node->subtree[j];
294 break;
295 }
296 }
297
298 node->key[i] = key;
299 node->value[i] = value;
300 node->subtree[i] = lsubtree;
301
302 node->keys++;
303}
304
305/** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
306 *
307 * The biggest key and its value and right subtree is rotated
308 * from the left node to the right. If the node is an index node,
309 * than the parent node key belonging to the left node takes part
310 * in the rotation.
311 *
312 * @param lnode Left sibling.
313 * @param rnode Right sibling.
314 * @param idx Index of the parent node key that is taking part
315 * in the rotation.
316 *
317 */
318NO_TRACE static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode,
319 size_t idx)
320{
321 btree_key_t key = lnode->key[lnode->keys - 1];
322
323 if (LEAF_NODE(lnode)) {
324 void *value = lnode->value[lnode->keys - 1];
325
326 node_remove_key_and_rsubtree(lnode, key);
327 node_insert_key_and_lsubtree(rnode, key, value, NULL);
328 lnode->parent->key[idx] = key;
329 } else {
330 btree_node_t *rsubtree = lnode->subtree[lnode->keys];
331
332 node_remove_key_and_rsubtree(lnode, key);
333 node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
334 lnode->parent->key[idx] = key;
335
336 /* Fix parent link of the reconnected right subtree. */
337 rsubtree->parent = rnode;
338 }
339}
340
341/** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
342 *
343 * The smallest key and its value and left subtree is rotated
344 * from the right node to the left. If the node is an index node,
345 * than the parent node key belonging to the right node takes part
346 * in the rotation.
347 *
348 * @param lnode Left sibling.
349 * @param rnode Right sibling.
350 * @param idx Index of the parent node key that is taking part
351 * in the rotation.
352 *
353 */
354NO_TRACE static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode,
355 size_t idx)
356{
357 btree_key_t key = rnode->key[0];
358
359 if (LEAF_NODE(rnode)) {
360 void *value = rnode->value[0];
361
362 node_remove_key_and_lsubtree(rnode, key);
363 node_insert_key_and_rsubtree(lnode, key, value, NULL);
364 rnode->parent->key[idx] = rnode->key[0];
365 } else {
366 btree_node_t *lsubtree = rnode->subtree[0];
367
368 node_remove_key_and_lsubtree(rnode, key);
369 node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
370 rnode->parent->key[idx] = key;
371
372 /* Fix parent link of the reconnected left subtree. */
373 lsubtree->parent = lnode;
374 }
375}
376
377/** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
378 *
379 * Left sibling of the node (if it exists) is checked for free space.
380 * If there is free space, the key is inserted and the smallest key of
381 * the node is moved there. The index node which is the parent of both
382 * nodes is fixed.
383 *
384 * @param node B-tree node.
385 * @param inskey Key to be inserted.
386 * @param insvalue Value to be inserted.
387 * @param rsubtree Right subtree of inskey.
388 *
389 * @return True if the rotation was performed, false otherwise.
390 *
391 */
392NO_TRACE static bool try_insert_by_rotation_to_left(btree_node_t *node,
393 btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
394{
395 size_t idx;
396 btree_node_t *lnode;
397
398 /*
399 * If this is root node, the rotation can not be done.
400 */
401 if (ROOT_NODE(node))
402 return false;
403
404 idx = find_key_by_subtree(node->parent, node, true);
405 if ((int) idx == -1) {
406 /*
407 * If this node is the leftmost subtree of its parent,
408 * the rotation can not be done.
409 */
410 return false;
411 }
412
413 lnode = node->parent->subtree[idx];
414 if (lnode->keys < BTREE_MAX_KEYS) {
415 /*
416 * The rotaion can be done. The left sibling has free space.
417 */
418 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
419 rotate_from_right(lnode, node, idx);
420 return true;
421 }
422
423 return false;
424}
425
426/** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
427 *
428 * Right sibling of the node (if it exists) is checked for free space.
429 * If there is free space, the key is inserted and the biggest key of
430 * the node is moved there. The index node which is the parent of both
431 * nodes is fixed.
432 *
433 * @param node B-tree node.
434 * @param inskey Key to be inserted.
435 * @param insvalue Value to be inserted.
436 * @param rsubtree Right subtree of inskey.
437 *
438 * @return True if the rotation was performed, false otherwise.
439 *
440 */
441NO_TRACE static bool try_insert_by_rotation_to_right(btree_node_t *node,
442 btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
443{
444 size_t idx;
445 btree_node_t *rnode;
446
447 /*
448 * If this is root node, the rotation can not be done.
449 */
450 if (ROOT_NODE(node))
451 return false;
452
453 idx = find_key_by_subtree(node->parent, node, false);
454 if (idx == node->parent->keys) {
455 /*
456 * If this node is the rightmost subtree of its parent,
457 * the rotation can not be done.
458 */
459 return false;
460 }
461
462 rnode = node->parent->subtree[idx + 1];
463 if (rnode->keys < BTREE_MAX_KEYS) {
464 /*
465 * The rotation can be done. The right sibling has free space.
466 */
467 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
468 rotate_from_left(node, rnode, idx);
469 return true;
470 }
471
472 return false;
473}
474
475/** Split full B-tree node and insert new key-value-right-subtree triplet.
476 *
477 * This function will split a node and return a pointer to a newly created
478 * node containing keys greater than or equal to the greater of medians
479 * (or median) of the old keys and the newly added key. It will also write
480 * the median key to a memory address supplied by the caller.
481 *
482 * If the node being split is an index node, the median will not be
483 * included in the new node. If the node is a leaf node,
484 * the median will be copied there.
485 *
486 * @param node B-tree node which is going to be split.
487 * @param key The key to be inserted.
488 * @param value Pointer to the value to be inserted.
489 * @param rsubtree Pointer to the right subtree of the key being added.
490 * @param median Address in memory, where the median key will be stored.
491 *
492 * @return Newly created right sibling of node.
493 *
494 */
495NO_TRACE static btree_node_t *node_split(btree_node_t *node, btree_key_t key,
496 void *value, btree_node_t *rsubtree, btree_key_t *median)
497{
498 btree_node_t *rnode;
499 size_t i;
500 size_t j;
501
502 assert(median);
503 assert(node->keys == BTREE_MAX_KEYS);
504
505 /*
506 * Use the extra space to store the extra node.
507 */
508 node_insert_key_and_rsubtree(node, key, value, rsubtree);
509
510 /*
511 * Compute median of keys.
512 */
513 *median = MEDIAN_HIGH(node);
514
515 /*
516 * Allocate and initialize new right sibling.
517 */
518 rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
519 node_initialize(rnode);
520 rnode->parent = node->parent;
521 rnode->depth = node->depth;
522
523 /*
524 * Copy big keys, values and subtree pointers to the new right sibling.
525 * If this is an index node, do not copy the median.
526 */
527 i = (size_t) INDEX_NODE(node);
528 for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
529 rnode->key[j] = node->key[i];
530 rnode->value[j] = node->value[i];
531 rnode->subtree[j] = node->subtree[i];
532
533 /*
534 * Fix parent links in subtrees.
535 */
536 if (rnode->subtree[j])
537 rnode->subtree[j]->parent = rnode;
538 }
539
540 rnode->subtree[j] = node->subtree[i];
541 if (rnode->subtree[j])
542 rnode->subtree[j]->parent = rnode;
543
544 rnode->keys = j; /* Set number of keys of the new node. */
545 node->keys /= 2; /* Shrink the old node. */
546
547 return rnode;
548}
549
550/** Recursively insert into B-tree.
551 *
552 * @param t B-tree.
553 * @param key Key to be inserted.
554 * @param value Value to be inserted.
555 * @param rsubtree Right subtree of the inserted key.
556 * @param node Start inserting into this node.
557 *
558 */
559NO_TRACE static void _btree_insert(btree_t *t, btree_key_t key, void *value,
560 btree_node_t *rsubtree, btree_node_t *node)
561{
562 if (node->keys < BTREE_MAX_KEYS) {
563 /*
564 * Node contains enough space, the key can be stored immediately.
565 */
566 node_insert_key_and_rsubtree(node, key, value, rsubtree);
567 } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
568 /*
569 * The key-value-rsubtree triplet has been inserted because
570 * some keys could have been moved to the left sibling.
571 */
572 } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
573 /*
574 * The key-value-rsubtree triplet has been inserted because
575 * some keys could have been moved to the right sibling.
576 */
577 } else {
578 btree_node_t *rnode;
579 btree_key_t median;
580
581 /*
582 * Node is full and both siblings (if both exist) are full too.
583 * Split the node and insert the smallest key from the node containing
584 * bigger keys (i.e. the new node) into its parent.
585 */
586
587 rnode = node_split(node, key, value, rsubtree, &median);
588
589 if (LEAF_NODE(node)) {
590 list_insert_after(&rnode->leaf_link, &node->leaf_link);
591 }
592
593 if (ROOT_NODE(node)) {
594 /*
595 * We split the root node. Create new root.
596 */
597 t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
598 node->parent = t->root;
599 rnode->parent = t->root;
600 node_initialize(t->root);
601
602 /*
603 * Left-hand side subtree will be the old root (i.e. node).
604 * Right-hand side subtree will be rnode.
605 */
606 t->root->subtree[0] = node;
607
608 t->root->depth = node->depth + 1;
609 }
610 _btree_insert(t, median, NULL, rnode, node->parent);
611 }
612}
613
614/** Insert key-value pair into B-tree.
615 *
616 * @param t B-tree.
617 * @param key Key to be inserted.
618 * @param value Value to be inserted.
619 * @param leaf_node Leaf node where the insertion should begin.
620 *
621 */
622void btree_insert(btree_t *t, btree_key_t key, void *value,
623 btree_node_t *leaf_node)
624{
625 btree_node_t *lnode;
626
627 assert(value);
628
629 lnode = leaf_node;
630 if (!lnode) {
631 if (btree_search(t, key, &lnode))
632 panic("B-tree %p already contains key %" PRIu64 ".", t, key);
633 }
634
635 _btree_insert(t, key, value, NULL, lnode);
636}
637
638/** Rotate in a key from the left sibling or from the index node, if this operation can be done.
639 *
640 * @param rnode Node into which to add key from its left sibling
641 * or from the index node.
642 *
643 * @return True if the rotation was performed, false otherwise.
644 *
645 */
646NO_TRACE static bool try_rotation_from_left(btree_node_t *rnode)
647{
648 size_t idx;
649 btree_node_t *lnode;
650
651 /*
652 * If this is root node, the rotation can not be done.
653 */
654 if (ROOT_NODE(rnode))
655 return false;
656
657 idx = find_key_by_subtree(rnode->parent, rnode, true);
658 if ((int) idx == -1) {
659 /*
660 * If this node is the leftmost subtree of its parent,
661 * the rotation can not be done.
662 */
663 return false;
664 }
665
666 lnode = rnode->parent->subtree[idx];
667 if (lnode->keys > FILL_FACTOR) {
668 rotate_from_left(lnode, rnode, idx);
669 return true;
670 }
671
672 return false;
673}
674
675/** Rotate in a key from the right sibling or from the index node, if this operation can be done.
676 *
677 * @param lnode Node into which to add key from its right sibling
678 * or from the index node.
679 *
680 * @return True if the rotation was performed, false otherwise.
681 *
682 */
683NO_TRACE static bool try_rotation_from_right(btree_node_t *lnode)
684{
685 size_t idx;
686 btree_node_t *rnode;
687
688 /*
689 * If this is root node, the rotation can not be done.
690 */
691 if (ROOT_NODE(lnode))
692 return false;
693
694 idx = find_key_by_subtree(lnode->parent, lnode, false);
695 if (idx == lnode->parent->keys) {
696 /*
697 * If this node is the rightmost subtree of its parent,
698 * the rotation can not be done.
699 */
700 return false;
701 }
702
703 rnode = lnode->parent->subtree[idx + 1];
704 if (rnode->keys > FILL_FACTOR) {
705 rotate_from_right(lnode, rnode, idx);
706 return true;
707 }
708
709 return false;
710}
711
712/** Combine node with any of its siblings.
713 *
714 * The siblings are required to be below the fill factor.
715 *
716 * @param node Node to combine with one of its siblings.
717 *
718 * @return Pointer to the rightmost of the two nodes.
719 *
720 */
721NO_TRACE static btree_node_t *node_combine(btree_node_t *node)
722{
723 size_t idx;
724 btree_node_t *rnode;
725 size_t i;
726
727 assert(!ROOT_NODE(node));
728
729 idx = find_key_by_subtree(node->parent, node, false);
730 if (idx == node->parent->keys) {
731 /*
732 * Rightmost subtree of its parent, combine with the left sibling.
733 */
734 idx--;
735 rnode = node;
736 node = node->parent->subtree[idx];
737 } else
738 rnode = node->parent->subtree[idx + 1];
739
740 /* Index nodes need to insert parent node key in between left and right node. */
741 if (INDEX_NODE(node))
742 node->key[node->keys++] = node->parent->key[idx];
743
744 /* Copy the key-value-subtree triplets from the right node. */
745 for (i = 0; i < rnode->keys; i++) {
746 node->key[node->keys + i] = rnode->key[i];
747 node->value[node->keys + i] = rnode->value[i];
748
749 if (INDEX_NODE(node)) {
750 node->subtree[node->keys + i] = rnode->subtree[i];
751 rnode->subtree[i]->parent = node;
752 }
753 }
754
755 if (INDEX_NODE(node)) {
756 node->subtree[node->keys + i] = rnode->subtree[i];
757 rnode->subtree[i]->parent = node;
758 }
759
760 node->keys += rnode->keys;
761 return rnode;
762}
763
764/** Recursively remove B-tree node.
765 *
766 * @param t B-tree.
767 * @param key Key to be removed from the B-tree along with its associated value.
768 * @param node Node where the key being removed resides.
769 *
770 */
771NO_TRACE static void _btree_remove(btree_t *t, btree_key_t key,
772 btree_node_t *node)
773{
774 if (ROOT_NODE(node)) {
775 if ((node->keys == 1) && (node->subtree[0])) {
776 /*
777 * Free the current root and set new root.
778 */
779 t->root = node->subtree[0];
780 t->root->parent = NULL;
781 slab_free(btree_node_slab, node);
782 } else {
783 /*
784 * Remove the key from the root node.
785 * Note that the right subtree is removed because when
786 * combining two nodes, the left-side sibling is preserved
787 * and the right-side sibling is freed.
788 */
789 node_remove_key_and_rsubtree(node, key);
790 }
791
792 return;
793 }
794
795 if (node->keys <= FILL_FACTOR) {
796 /*
797 * If the node is below the fill factor,
798 * try to borrow keys from left or right sibling.
799 */
800 if (!try_rotation_from_left(node))
801 try_rotation_from_right(node);
802 }
803
804 if (node->keys > FILL_FACTOR) {
805 size_t i;
806
807 /*
808 * The key can be immediately removed.
809 *
810 * Note that the right subtree is removed because when
811 * combining two nodes, the left-side sibling is preserved
812 * and the right-side sibling is freed.
813 */
814 node_remove_key_and_rsubtree(node, key);
815
816 for (i = 0; i < node->parent->keys; i++) {
817 if (node->parent->key[i] == key)
818 node->parent->key[i] = node->key[0];
819 }
820 } else {
821 size_t idx;
822 btree_node_t *rnode;
823 btree_node_t *parent;
824
825 /*
826 * The node is below the fill factor as well as its left and right sibling.
827 * Resort to combining the node with one of its siblings.
828 * The node which is on the left is preserved and the node on the right is
829 * freed.
830 */
831 parent = node->parent;
832 node_remove_key_and_rsubtree(node, key);
833 rnode = node_combine(node);
834
835 if (LEAF_NODE(rnode))
836 list_remove(&rnode->leaf_link);
837
838 idx = find_key_by_subtree(parent, rnode, true);
839 assert((int) idx != -1);
840 slab_free(btree_node_slab, rnode);
841 _btree_remove(t, parent->key[idx], parent);
842 }
843}
844
845/** Remove B-tree node.
846 *
847 * @param t B-tree.
848 * @param key Key to be removed from the B-tree along
849 * with its associated value.
850 * @param leaf_node If not NULL, pointer to the leaf node where
851 * the key is found.
852 *
853 */
854void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
855{
856 btree_node_t *lnode;
857
858 lnode = leaf_node;
859 if (!lnode) {
860 if (!btree_search(t, key, &lnode))
861 panic("B-tree %p does not contain key %" PRIu64 ".", t, key);
862 }
863
864 _btree_remove(t, key, lnode);
865}
866
867/** Search key in a B-tree.
868 *
869 * @param t B-tree.
870 * @param key Key to be searched.
871 * @param leaf_node Address where to put pointer to visited leaf node.
872 *
873 * @return Pointer to value or NULL if there is no such key.
874 *
875 */
876void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
877{
878 btree_node_t *cur, *next;
879
880 /*
881 * Iteratively descend to the leaf that can contain the searched key.
882 */
883 for (cur = t->root; cur; cur = next) {
884 /*
885 * Last iteration will set this with proper
886 * leaf node address.
887 */
888 *leaf_node = cur;
889
890 if (cur->keys == 0)
891 return NULL;
892
893 /*
894 * The key can be in the leftmost subtree.
895 * Test it separately.
896 */
897 if (key < cur->key[0]) {
898 next = cur->subtree[0];
899 continue;
900 } else {
901 void *val;
902 size_t i;
903
904 /*
905 * Now if the key is smaller than cur->key[i]
906 * it can only mean that the value is in cur->subtree[i]
907 * or it is not in the tree at all.
908 */
909 for (i = 1; i < cur->keys; i++) {
910 if (key < cur->key[i]) {
911 next = cur->subtree[i];
912 val = cur->value[i - 1];
913
914 if (LEAF_NODE(cur))
915 return key == cur->key[i - 1] ? val : NULL;
916
917 goto descend;
918 }
919 }
920
921 /*
922 * Last possibility is that the key is
923 * in the rightmost subtree.
924 */
925 next = cur->subtree[i];
926 val = cur->value[i - 1];
927
928 if (LEAF_NODE(cur))
929 return key == cur->key[i - 1] ? val : NULL;
930 }
931descend:
932 ;
933 }
934
935 /*
936 * The key was not found in the *leaf_node and
937 * is smaller than any of its keys.
938 */
939 return NULL;
940}
941
942/** Return pointer to B-tree leaf node's left neighbour.
943 *
944 * @param t B-tree.
945 * @param node Node whose left neighbour will be returned.
946 *
947 * @return Left neighbour of the node or NULL if the node
948 * does not have the left neighbour.
949 *
950 */
951btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
952{
953 assert(LEAF_NODE(node));
954
955 if (node->leaf_link.prev != &t->leaf_list.head)
956 return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
957 else
958 return NULL;
959}
960
961/** Return pointer to B-tree leaf node's right neighbour.
962 *
963 * @param t B-tree.
964 * @param node Node whose right neighbour will be returned.
965 *
966 * @return Right neighbour of the node or NULL if the node
967 * does not have the right neighbour.
968 *
969 */
970btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
971{
972 assert(LEAF_NODE(node));
973
974 if (node->leaf_link.next != &t->leaf_list.head)
975 return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
976 else
977 return NULL;
978}
979
980/** Print B-tree.
981 *
982 * @param t Print out B-tree.
983 *
984 */
985void btree_print(btree_t *t)
986{
987 size_t i;
988 int depth = t->root->depth;
989 list_t list;
990
991 printf("Printing B-tree:\n");
992 list_initialize(&list);
993 list_append(&t->root->bfs_link, &list);
994
995 /*
996 * Use BFS search to print out the tree.
997 * Levels are distinguished from one another by node->depth.
998 */
999 while (!list_empty(&list)) {
1000 link_t *hlp;
1001 btree_node_t *node;
1002
1003 hlp = list_first(&list);
1004 assert(hlp != NULL);
1005 node = list_get_instance(hlp, btree_node_t, bfs_link);
1006 list_remove(hlp);
1007
1008 assert(node);
1009
1010 if (node->depth != depth) {
1011 printf("\n");
1012 depth = node->depth;
1013 }
1014
1015 printf("(");
1016
1017 for (i = 0; i < node->keys; i++) {
1018 printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
1019 if (node->depth && node->subtree[i]) {
1020 list_append(&node->subtree[i]->bfs_link, &list);
1021 }
1022 }
1023
1024 if (node->depth && node->subtree[i])
1025 list_append(&node->subtree[i]->bfs_link, &list);
1026
1027 printf(")");
1028 }
1029
1030 printf("\n");
1031
1032 printf("Printing list of leaves:\n");
1033 list_foreach(t->leaf_list, leaf_link, btree_node_t, node) {
1034 assert(node);
1035
1036 printf("(");
1037
1038 for (i = 0; i < node->keys; i++)
1039 printf("%" PRIu64 "%s", node->key[i], i < node->keys - 1 ? "," : "");
1040
1041 printf(")");
1042 }
1043
1044 printf("\n");
1045}
1046
1047/** Return number of B-tree elements.
1048 *
1049 * @param t B-tree to count.
1050 *
1051 * @return Return number of B-tree elements.
1052 *
1053 */
1054unsigned long btree_count(btree_t *t)
1055{
1056 unsigned long count = 0;
1057
1058 list_foreach(t->leaf_list, leaf_link, btree_node_t, node) {
1059 count += node->keys;
1060 }
1061
1062 return count;
1063}
1064
1065/** @}
1066 */
Note: See TracBrowser for help on using the repository browser.