1 | /*
|
---|
2 | * Copyright (c) 2007 Vojtech Mencl
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genericadt
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief AVL tree implementation.
|
---|
36 | *
|
---|
37 | * This file implements AVL tree type and operations.
|
---|
38 | *
|
---|
39 | * Implemented AVL tree has the following properties:
|
---|
40 | * @li It is a binary search tree with non-unique keys.
|
---|
41 | * @li Difference of heights of the left and the right subtree of every node is
|
---|
42 | * one at maximum.
|
---|
43 | *
|
---|
44 | * Every node has a pointer to its parent which allows insertion of multiple
|
---|
45 | * identical keys into the tree.
|
---|
46 | *
|
---|
47 | * Be careful when using this tree because of the base atribute which is added
|
---|
48 | * to every inserted node key. There is no rule in which order nodes with the
|
---|
49 | * same key are visited.
|
---|
50 | */
|
---|
51 |
|
---|
52 | #include <adt/avl.h>
|
---|
53 | #include <assert.h>
|
---|
54 |
|
---|
55 | #define LEFT 0
|
---|
56 | #define RIGHT 1
|
---|
57 |
|
---|
58 | /** Search for the first occurence of the given key in an AVL tree.
|
---|
59 | *
|
---|
60 | * @param t AVL tree.
|
---|
61 | * @param key Key to be searched.
|
---|
62 | *
|
---|
63 | * @return Pointer to a node or NULL if there is no such key.
|
---|
64 | */
|
---|
65 | avltree_node_t *avltree_search(avltree_t *t, avltree_key_t key)
|
---|
66 | {
|
---|
67 | avltree_node_t *p;
|
---|
68 |
|
---|
69 | /*
|
---|
70 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
71 | */
|
---|
72 | p = t->root;
|
---|
73 | while (p != NULL) {
|
---|
74 | if (p->key > key)
|
---|
75 | p = p->lft;
|
---|
76 | else if (p->key < key)
|
---|
77 | p = p->rgt;
|
---|
78 | else
|
---|
79 | return p;
|
---|
80 | }
|
---|
81 | return NULL;
|
---|
82 | }
|
---|
83 |
|
---|
84 | /** Find the node with the smallest key in an AVL tree.
|
---|
85 | *
|
---|
86 | * @param t AVL tree.
|
---|
87 | *
|
---|
88 | * @return Pointer to a node or NULL if there is no node in the tree.
|
---|
89 | */
|
---|
90 | avltree_node_t *avltree_find_min(avltree_t *t)
|
---|
91 | {
|
---|
92 | avltree_node_t *p = t->root;
|
---|
93 |
|
---|
94 | /*
|
---|
95 | * Check whether the tree is empty.
|
---|
96 | */
|
---|
97 | if (!p)
|
---|
98 | return NULL;
|
---|
99 |
|
---|
100 | /*
|
---|
101 | * Iteratively descend to the leftmost leaf in the tree.
|
---|
102 | */
|
---|
103 | while (p->lft != NULL)
|
---|
104 | p = p->lft;
|
---|
105 |
|
---|
106 | return p;
|
---|
107 | }
|
---|
108 |
|
---|
109 | #define REBALANCE_INSERT_XX(DIR1, DIR2) \
|
---|
110 | top->DIR1 = par->DIR2; \
|
---|
111 | if (top->DIR1 != NULL) \
|
---|
112 | top->DIR1->par = top; \
|
---|
113 | par->par = top->par; \
|
---|
114 | top->par = par; \
|
---|
115 | par->DIR2 = top; \
|
---|
116 | par->balance = 0; \
|
---|
117 | top->balance = 0; \
|
---|
118 | *dpc = par;
|
---|
119 |
|
---|
120 | #define REBALANCE_INSERT_LL() REBALANCE_INSERT_XX(lft, rgt)
|
---|
121 | #define REBALANCE_INSERT_RR() REBALANCE_INSERT_XX(rgt, lft)
|
---|
122 |
|
---|
123 | #define REBALANCE_INSERT_XY(DIR1, DIR2, SGN) \
|
---|
124 | gpa = par->DIR2; \
|
---|
125 | par->DIR2 = gpa->DIR1; \
|
---|
126 | if (gpa->DIR1 != NULL) \
|
---|
127 | gpa->DIR1->par = par; \
|
---|
128 | gpa->DIR1 = par; \
|
---|
129 | par->par = gpa; \
|
---|
130 | top->DIR1 = gpa->DIR2; \
|
---|
131 | if (gpa->DIR2 != NULL) \
|
---|
132 | gpa->DIR2->par = top; \
|
---|
133 | gpa->DIR2 = top; \
|
---|
134 | gpa->par = top->par; \
|
---|
135 | top->par = gpa; \
|
---|
136 | \
|
---|
137 | if (gpa->balance == -1 * SGN) { \
|
---|
138 | par->balance = 0; \
|
---|
139 | top->balance = 1 * SGN; \
|
---|
140 | } else if (gpa->balance == 0) { \
|
---|
141 | par->balance = 0; \
|
---|
142 | top->balance = 0; \
|
---|
143 | } else { \
|
---|
144 | par->balance = -1 * SGN; \
|
---|
145 | top->balance = 0; \
|
---|
146 | } \
|
---|
147 | gpa->balance = 0; \
|
---|
148 | *dpc = gpa;
|
---|
149 |
|
---|
150 | #define REBALANCE_INSERT_LR() REBALANCE_INSERT_XY(lft, rgt, 1)
|
---|
151 | #define REBALANCE_INSERT_RL() REBALANCE_INSERT_XY(rgt, lft, -1)
|
---|
152 |
|
---|
153 | /** Insert new node into AVL tree.
|
---|
154 | *
|
---|
155 | * @param t AVL tree.
|
---|
156 | * @param newnode New node to be inserted.
|
---|
157 | */
|
---|
158 | void avltree_insert(avltree_t *t, avltree_node_t *newnode)
|
---|
159 | {
|
---|
160 | avltree_node_t *par;
|
---|
161 | avltree_node_t *gpa;
|
---|
162 | avltree_node_t *top;
|
---|
163 | avltree_node_t **dpc;
|
---|
164 | avltree_key_t key;
|
---|
165 |
|
---|
166 | assert(t);
|
---|
167 | assert(newnode);
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * Creating absolute key.
|
---|
171 | */
|
---|
172 | key = newnode->key + t->base;
|
---|
173 |
|
---|
174 | /*
|
---|
175 | * Iteratively descend to the leaf that can contain the new node.
|
---|
176 | * Last node with non-zero balance in the way to leaf is stored as top -
|
---|
177 | * it is a place of possible inbalance.
|
---|
178 | */
|
---|
179 | dpc = &t->root;
|
---|
180 | gpa = NULL;
|
---|
181 | top = t->root;
|
---|
182 | while ((par = (*dpc)) != NULL) {
|
---|
183 | if (par->balance != 0) {
|
---|
184 | top = par;
|
---|
185 | }
|
---|
186 | gpa = par;
|
---|
187 | dpc = par->key > key ? &par->lft : &par->rgt;
|
---|
188 | }
|
---|
189 |
|
---|
190 | /*
|
---|
191 | * Initialize the new node.
|
---|
192 | */
|
---|
193 | newnode->key = key;
|
---|
194 | newnode->lft = NULL;
|
---|
195 | newnode->rgt = NULL;
|
---|
196 | newnode->par = gpa;
|
---|
197 | newnode->balance = 0;
|
---|
198 |
|
---|
199 | /*
|
---|
200 | * Insert first node into the empty tree.
|
---|
201 | */
|
---|
202 | if (t->root == NULL) {
|
---|
203 | *dpc = newnode;
|
---|
204 | return;
|
---|
205 | }
|
---|
206 |
|
---|
207 | /*
|
---|
208 | * Insert the new node into the previously found leaf position.
|
---|
209 | */
|
---|
210 | *dpc = newnode;
|
---|
211 |
|
---|
212 | /*
|
---|
213 | * If the tree contains one node - end.
|
---|
214 | */
|
---|
215 | if (top == NULL)
|
---|
216 | return;
|
---|
217 |
|
---|
218 | /*
|
---|
219 | * Store pointer of top's father which points to the node with
|
---|
220 | * potentially broken balance (top).
|
---|
221 | */
|
---|
222 | if (top->par == NULL) {
|
---|
223 | dpc = &t->root;
|
---|
224 | } else {
|
---|
225 | if (top->par->lft == top)
|
---|
226 | dpc = &top->par->lft;
|
---|
227 | else
|
---|
228 | dpc = &top->par->rgt;
|
---|
229 | }
|
---|
230 |
|
---|
231 | /*
|
---|
232 | * Repair all balances on the way from top node to the newly inserted
|
---|
233 | * node.
|
---|
234 | */
|
---|
235 | par = top;
|
---|
236 | while (par != newnode) {
|
---|
237 | if (par->key > key) {
|
---|
238 | par->balance--;
|
---|
239 | par = par->lft;
|
---|
240 | } else {
|
---|
241 | par->balance++;
|
---|
242 | par = par->rgt;
|
---|
243 | }
|
---|
244 | }
|
---|
245 |
|
---|
246 | /*
|
---|
247 | * To balance the tree, we must check and balance top node.
|
---|
248 | */
|
---|
249 | if (top->balance == -2) {
|
---|
250 | par = top->lft;
|
---|
251 | if (par->balance == -1) {
|
---|
252 | /*
|
---|
253 | * LL rotation.
|
---|
254 | */
|
---|
255 | REBALANCE_INSERT_LL();
|
---|
256 | } else {
|
---|
257 | /*
|
---|
258 | * LR rotation.
|
---|
259 | */
|
---|
260 | assert(par->balance == 1);
|
---|
261 |
|
---|
262 | REBALANCE_INSERT_LR();
|
---|
263 | }
|
---|
264 | } else if (top->balance == 2) {
|
---|
265 | par = top->rgt;
|
---|
266 | if (par->balance == 1) {
|
---|
267 | /*
|
---|
268 | * RR rotation.
|
---|
269 | */
|
---|
270 | REBALANCE_INSERT_RR();
|
---|
271 | } else {
|
---|
272 | /*
|
---|
273 | * RL rotation.
|
---|
274 | */
|
---|
275 | assert(par->balance == -1);
|
---|
276 |
|
---|
277 | REBALANCE_INSERT_RL();
|
---|
278 | }
|
---|
279 | } else {
|
---|
280 | /*
|
---|
281 | * Balance is not broken, insertion is finised.
|
---|
282 | */
|
---|
283 | return;
|
---|
284 | }
|
---|
285 |
|
---|
286 | }
|
---|
287 |
|
---|
288 | /** Repair the tree after reparenting node u.
|
---|
289 | *
|
---|
290 | * If node u has no parent, mark it as the root of the whole tree. Otherwise
|
---|
291 | * node v represents stale address of one of the children of node u's parent.
|
---|
292 | * Replace v with w as node u parent's child (for most uses, u and w will be the
|
---|
293 | * same).
|
---|
294 | *
|
---|
295 | * @param t AVL tree.
|
---|
296 | * @param u Node whose new parent has a stale child pointer.
|
---|
297 | * @param v Stale child of node u's new parent.
|
---|
298 | * @param w New child of node u's new parent.
|
---|
299 | * @param dir If not NULL, address of the variable where to store information
|
---|
300 | * about whether w replaced v in the left or the right subtree of
|
---|
301 | * u's new parent.
|
---|
302 | * @param ro Read only operation; do not modify any tree pointers. This is
|
---|
303 | * useful for tracking direction via the dir pointer.
|
---|
304 | *
|
---|
305 | * @return Zero if w became the new root of the tree, otherwise return
|
---|
306 | * non-zero.
|
---|
307 | */
|
---|
308 | static int
|
---|
309 | repair(avltree_t *t, avltree_node_t *u, avltree_node_t *v, avltree_node_t *w,
|
---|
310 | int *dir, int ro)
|
---|
311 | {
|
---|
312 | if (u->par == NULL) {
|
---|
313 | if (!ro)
|
---|
314 | t->root = w;
|
---|
315 | return 0;
|
---|
316 | } else {
|
---|
317 | if (u->par->lft == v) {
|
---|
318 | if (!ro)
|
---|
319 | u->par->lft = w;
|
---|
320 | if (dir)
|
---|
321 | *dir = LEFT;
|
---|
322 | } else {
|
---|
323 | assert(u->par->rgt == v);
|
---|
324 | if (!ro)
|
---|
325 | u->par->rgt = w;
|
---|
326 | if (dir)
|
---|
327 | *dir = RIGHT;
|
---|
328 | }
|
---|
329 | }
|
---|
330 | return 1;
|
---|
331 | }
|
---|
332 |
|
---|
333 | #define REBALANCE_DELETE(DIR1, DIR2, SIGN) \
|
---|
334 | if (cur->balance == -1 * SIGN) { \
|
---|
335 | par->balance = 0; \
|
---|
336 | gpa->balance = 1 * SIGN; \
|
---|
337 | if (gpa->DIR1) \
|
---|
338 | gpa->DIR1->par = gpa; \
|
---|
339 | par->DIR2->par = par; \
|
---|
340 | } else if (cur->balance == 0) { \
|
---|
341 | par->balance = 0; \
|
---|
342 | gpa->balance = 0; \
|
---|
343 | if (gpa->DIR1) \
|
---|
344 | gpa->DIR1->par = gpa; \
|
---|
345 | if (par->DIR2) \
|
---|
346 | par->DIR2->par = par; \
|
---|
347 | } else { \
|
---|
348 | par->balance = -1 * SIGN; \
|
---|
349 | gpa->balance = 0; \
|
---|
350 | if (par->DIR2) \
|
---|
351 | par->DIR2->par = par; \
|
---|
352 | gpa->DIR1->par = gpa; \
|
---|
353 | } \
|
---|
354 | cur->balance = 0;
|
---|
355 |
|
---|
356 | #define REBALANCE_DELETE_LR() REBALANCE_DELETE(lft, rgt, 1)
|
---|
357 | #define REBALANCE_DELETE_RL() REBALANCE_DELETE(rgt, lft, -1)
|
---|
358 |
|
---|
359 | /** Delete a node from the AVL tree.
|
---|
360 | *
|
---|
361 | * Because multiple identical keys are allowed, the parent pointers are
|
---|
362 | * essential during deletion.
|
---|
363 | *
|
---|
364 | * @param t AVL tree structure.
|
---|
365 | * @param node Address of the node which will be deleted.
|
---|
366 | */
|
---|
367 | void avltree_delete(avltree_t *t, avltree_node_t *node)
|
---|
368 | {
|
---|
369 | avltree_node_t *cur;
|
---|
370 | avltree_node_t *par;
|
---|
371 | avltree_node_t *gpa;
|
---|
372 | int dir;
|
---|
373 |
|
---|
374 | assert(t);
|
---|
375 | assert(node);
|
---|
376 |
|
---|
377 | if (node->lft == NULL) {
|
---|
378 | if (node->rgt) {
|
---|
379 | /*
|
---|
380 | * Replace the node with its only right son.
|
---|
381 | *
|
---|
382 | * Balance of the right son will be repaired in the
|
---|
383 | * balancing cycle.
|
---|
384 | */
|
---|
385 | cur = node->rgt;
|
---|
386 | cur->par = node->par;
|
---|
387 | gpa = cur;
|
---|
388 | dir = RIGHT;
|
---|
389 | cur->balance = node->balance;
|
---|
390 | } else {
|
---|
391 | if (node->par == NULL) {
|
---|
392 | /*
|
---|
393 | * The tree has only one node - it will become
|
---|
394 | * an empty tree and the balancing can end.
|
---|
395 | */
|
---|
396 | t->root = NULL;
|
---|
397 | return;
|
---|
398 | }
|
---|
399 | /*
|
---|
400 | * The node has no child, it will be deleted with no
|
---|
401 | * substitution.
|
---|
402 | */
|
---|
403 | gpa = node->par;
|
---|
404 | cur = NULL;
|
---|
405 | dir = (gpa->lft == node) ? LEFT : RIGHT;
|
---|
406 | }
|
---|
407 | } else {
|
---|
408 | /*
|
---|
409 | * The node has the left son. Find a node with the smallest key
|
---|
410 | * in the left subtree and replace the deleted node with that
|
---|
411 | * node.
|
---|
412 | */
|
---|
413 | cur = node->lft;
|
---|
414 | while (cur->rgt != NULL)
|
---|
415 | cur = cur->rgt;
|
---|
416 |
|
---|
417 | if (cur != node->lft) {
|
---|
418 | /*
|
---|
419 | * The rightmost node of the deleted node's left subtree
|
---|
420 | * was found. Replace the deleted node with this node.
|
---|
421 | * Cutting off of the found node has two cases that
|
---|
422 | * depend on its left son.
|
---|
423 | */
|
---|
424 | if (cur->lft) {
|
---|
425 | /*
|
---|
426 | * The found node has a left son.
|
---|
427 | */
|
---|
428 | gpa = cur->lft;
|
---|
429 | gpa->par = cur->par;
|
---|
430 | dir = LEFT;
|
---|
431 | gpa->balance = cur->balance;
|
---|
432 | } else {
|
---|
433 | dir = RIGHT;
|
---|
434 | gpa = cur->par;
|
---|
435 | }
|
---|
436 | cur->par->rgt = cur->lft;
|
---|
437 | cur->lft = node->lft;
|
---|
438 | cur->lft->par = cur;
|
---|
439 | } else {
|
---|
440 | /*
|
---|
441 | * The left son of the node hasn't got a right son. The
|
---|
442 | * left son will take the deleted node's place.
|
---|
443 | */
|
---|
444 | dir = LEFT;
|
---|
445 | gpa = cur;
|
---|
446 | }
|
---|
447 | if (node->rgt)
|
---|
448 | node->rgt->par = cur;
|
---|
449 | cur->rgt = node->rgt;
|
---|
450 | cur->balance = node->balance;
|
---|
451 | cur->par = node->par;
|
---|
452 | }
|
---|
453 |
|
---|
454 | /*
|
---|
455 | * Repair the parent node's pointer which pointed previously to the
|
---|
456 | * deleted node.
|
---|
457 | */
|
---|
458 | (void) repair(t, node, node, cur, NULL, false);
|
---|
459 |
|
---|
460 | /*
|
---|
461 | * Repair cycle which repairs balances of nodes on the way from from the
|
---|
462 | * cut-off node up to the root.
|
---|
463 | */
|
---|
464 | while (true) {
|
---|
465 | if (dir == LEFT) {
|
---|
466 | /*
|
---|
467 | * Deletion was made in the left subtree.
|
---|
468 | */
|
---|
469 | gpa->balance++;
|
---|
470 | if (gpa->balance == 1) {
|
---|
471 | /*
|
---|
472 | * Stop balancing, the tree is balanced.
|
---|
473 | */
|
---|
474 | break;
|
---|
475 | } else if (gpa->balance == 2) {
|
---|
476 | /*
|
---|
477 | * Bad balance, heights of left and right
|
---|
478 | * subtrees differ more than by one.
|
---|
479 | */
|
---|
480 | par = gpa->rgt;
|
---|
481 |
|
---|
482 | if (par->balance == -1) {
|
---|
483 | /*
|
---|
484 | * RL rotation.
|
---|
485 | */
|
---|
486 |
|
---|
487 | cur = par->lft;
|
---|
488 | par->lft = cur->rgt;
|
---|
489 | cur->rgt = par;
|
---|
490 | gpa->rgt = cur->lft;
|
---|
491 | cur->lft = gpa;
|
---|
492 |
|
---|
493 | /*
|
---|
494 | * Repair balances and paternity of
|
---|
495 | * children, depending on the balance
|
---|
496 | * factor of the grand child (cur).
|
---|
497 | */
|
---|
498 | REBALANCE_DELETE_RL();
|
---|
499 |
|
---|
500 | /*
|
---|
501 | * Repair paternity.
|
---|
502 | */
|
---|
503 | cur->par = gpa->par;
|
---|
504 | gpa->par = cur;
|
---|
505 | par->par = cur;
|
---|
506 |
|
---|
507 | if (!repair(t, cur, gpa, cur, &dir,
|
---|
508 | false))
|
---|
509 | break;
|
---|
510 | gpa = cur->par;
|
---|
511 | } else {
|
---|
512 | /*
|
---|
513 | * RR rotation.
|
---|
514 | */
|
---|
515 |
|
---|
516 | gpa->rgt = par->lft;
|
---|
517 | if (par->lft)
|
---|
518 | par->lft->par = gpa;
|
---|
519 | par->lft = gpa;
|
---|
520 |
|
---|
521 | /*
|
---|
522 | * Repair paternity.
|
---|
523 | */
|
---|
524 | par->par = gpa->par;
|
---|
525 | gpa->par = par;
|
---|
526 |
|
---|
527 | if (par->balance == 0) {
|
---|
528 | /*
|
---|
529 | * The right child of the
|
---|
530 | * balanced node is balanced,
|
---|
531 | * after RR rotation is done,
|
---|
532 | * the whole tree will be
|
---|
533 | * balanced.
|
---|
534 | */
|
---|
535 | par->balance = -1;
|
---|
536 | gpa->balance = 1;
|
---|
537 |
|
---|
538 | (void) repair(t, par, gpa, par,
|
---|
539 | NULL, false);
|
---|
540 | break;
|
---|
541 | } else {
|
---|
542 | par->balance = 0;
|
---|
543 | gpa->balance = 0;
|
---|
544 | if (!repair(t, par, gpa, par,
|
---|
545 | &dir, false))
|
---|
546 | break;
|
---|
547 | }
|
---|
548 | gpa = par->par;
|
---|
549 | }
|
---|
550 | } else {
|
---|
551 | /*
|
---|
552 | * Repair the pointer which pointed to the
|
---|
553 | * balanced node. If it was root then balancing
|
---|
554 | * is finished else continue with the next
|
---|
555 | * iteration (parent node).
|
---|
556 | */
|
---|
557 | if (!repair(t, gpa, gpa, NULL, &dir, true))
|
---|
558 | break;
|
---|
559 | gpa = gpa->par;
|
---|
560 | }
|
---|
561 | } else {
|
---|
562 | /*
|
---|
563 | * Deletion was made in the right subtree.
|
---|
564 | */
|
---|
565 | gpa->balance--;
|
---|
566 | if (gpa->balance == -1) {
|
---|
567 | /*
|
---|
568 | * Stop balancing, the tree is balanced.
|
---|
569 | */
|
---|
570 | break;
|
---|
571 | } else if (gpa->balance == -2) {
|
---|
572 | /*
|
---|
573 | * Bad balance, heights of left and right
|
---|
574 | * subtrees differ more than by one.
|
---|
575 | */
|
---|
576 | par = gpa->lft;
|
---|
577 |
|
---|
578 | if (par->balance == 1) {
|
---|
579 | /*
|
---|
580 | * LR rotation.
|
---|
581 | */
|
---|
582 |
|
---|
583 | cur = par->rgt;
|
---|
584 | par->rgt = cur->lft;
|
---|
585 | cur->lft = par;
|
---|
586 | gpa->lft = cur->rgt;
|
---|
587 | cur->rgt = gpa;
|
---|
588 |
|
---|
589 | /*
|
---|
590 | * Repair balances and paternity of
|
---|
591 | * children, depending on the balance
|
---|
592 | * factor of the grand child (cur).
|
---|
593 | */
|
---|
594 | REBALANCE_DELETE_LR();
|
---|
595 |
|
---|
596 | /*
|
---|
597 | * Repair paternity.
|
---|
598 | */
|
---|
599 | cur->par = gpa->par;
|
---|
600 | gpa->par = cur;
|
---|
601 | par->par = cur;
|
---|
602 |
|
---|
603 | if (!repair(t, cur, gpa, cur, &dir,
|
---|
604 | false))
|
---|
605 | break;
|
---|
606 | gpa = cur->par;
|
---|
607 | } else {
|
---|
608 | /*
|
---|
609 | * LL rotation.
|
---|
610 | */
|
---|
611 |
|
---|
612 | gpa->lft = par->rgt;
|
---|
613 | if (par->rgt)
|
---|
614 | par->rgt->par = gpa;
|
---|
615 | par->rgt = gpa;
|
---|
616 | /*
|
---|
617 | * Repair paternity.
|
---|
618 | */
|
---|
619 | par->par = gpa->par;
|
---|
620 | gpa->par = par;
|
---|
621 |
|
---|
622 | if (par->balance == 0) {
|
---|
623 | /*
|
---|
624 | * The left child of the
|
---|
625 | * balanced node is balanced,
|
---|
626 | * after LL rotation is done,
|
---|
627 | * the whole tree will be
|
---|
628 | * balanced.
|
---|
629 | */
|
---|
630 | par->balance = 1;
|
---|
631 | gpa->balance = -1;
|
---|
632 |
|
---|
633 | (void) repair(t, par, gpa, par,
|
---|
634 | NULL, false);
|
---|
635 | break;
|
---|
636 | } else {
|
---|
637 | par->balance = 0;
|
---|
638 | gpa->balance = 0;
|
---|
639 |
|
---|
640 | if (!repair(t, par, gpa, par,
|
---|
641 | &dir, false))
|
---|
642 | break;
|
---|
643 | }
|
---|
644 | gpa = par->par;
|
---|
645 | }
|
---|
646 | } else {
|
---|
647 | /*
|
---|
648 | * Repair the pointer which pointed to the
|
---|
649 | * balanced node. If it was root then balancing
|
---|
650 | * is finished. Otherwise continue with the next
|
---|
651 | * iteration (parent node).
|
---|
652 | */
|
---|
653 | if (!repair(t, gpa, gpa, NULL, &dir, true))
|
---|
654 | break;
|
---|
655 | gpa = gpa->par;
|
---|
656 | }
|
---|
657 | }
|
---|
658 | }
|
---|
659 | }
|
---|
660 |
|
---|
661 | /** Delete a node with the smallest key from the AVL tree.
|
---|
662 | *
|
---|
663 | * @param t AVL tree structure.
|
---|
664 | */
|
---|
665 | bool avltree_delete_min(avltree_t *t)
|
---|
666 | {
|
---|
667 | avltree_node_t *node;
|
---|
668 |
|
---|
669 | /*
|
---|
670 | * Start searching for the smallest key in the tree starting in the root
|
---|
671 | * node and continue in cycle to the leftmost node in the tree (which
|
---|
672 | * must have the smallest key).
|
---|
673 | */
|
---|
674 |
|
---|
675 | node = t->root;
|
---|
676 | if (!node)
|
---|
677 | return false;
|
---|
678 |
|
---|
679 | while (node->lft != NULL)
|
---|
680 | node = node->lft;
|
---|
681 |
|
---|
682 | avltree_delete(t, node);
|
---|
683 |
|
---|
684 | return true;
|
---|
685 | }
|
---|
686 |
|
---|
687 | /** Walk a subtree of an AVL tree in-order and apply a supplied walker on each
|
---|
688 | * visited node.
|
---|
689 | *
|
---|
690 | * @param node Node representing the root of an AVL subtree to be
|
---|
691 | * walked.
|
---|
692 | * @param walker Walker function that will be appliad on each visited
|
---|
693 | * node.
|
---|
694 | * @param arg Argument for the walker.
|
---|
695 | *
|
---|
696 | * @return Zero if the walk should stop or non-zero otherwise.
|
---|
697 | */
|
---|
698 | static bool _avltree_walk(avltree_node_t *node, avltree_walker_t walker,
|
---|
699 | void *arg)
|
---|
700 | {
|
---|
701 | if (node->lft) {
|
---|
702 | if (!_avltree_walk(node->lft, walker, arg))
|
---|
703 | return false;
|
---|
704 | }
|
---|
705 | if (!walker(node, arg))
|
---|
706 | return false;
|
---|
707 | if (node->rgt) {
|
---|
708 | if (!_avltree_walk(node->rgt, walker, arg))
|
---|
709 | return false;
|
---|
710 | }
|
---|
711 | return true;
|
---|
712 | }
|
---|
713 |
|
---|
714 | /** Walk the AVL tree in-order and apply the walker function on each visited
|
---|
715 | * node.
|
---|
716 | *
|
---|
717 | * @param t AVL tree to be walked.
|
---|
718 | * @param walker Walker function that will be called on each visited
|
---|
719 | * node.
|
---|
720 | * @param arg Argument for the walker.
|
---|
721 | */
|
---|
722 | void avltree_walk(avltree_t *t, avltree_walker_t walker, void *arg)
|
---|
723 | {
|
---|
724 | if (t->root)
|
---|
725 | _avltree_walk(t->root, walker, arg);
|
---|
726 | }
|
---|
727 |
|
---|
728 | /** @}
|
---|
729 | */
|
---|