1 | /*
|
---|
2 | * Copyright (c) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup kernel_generic
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 | /** @file
|
---|
33 | */
|
---|
34 |
|
---|
35 | #ifndef KERN_ATOMIC_H_
|
---|
36 | #define KERN_ATOMIC_H_
|
---|
37 |
|
---|
38 | #include <stdbool.h>
|
---|
39 | #include <typedefs.h>
|
---|
40 | #include <stdatomic.h>
|
---|
41 |
|
---|
42 | /*
|
---|
43 | * Shorthand for relaxed atomic read/write, something that's needed to formally
|
---|
44 | * avoid undefined behavior in cases where we need to read a variable in
|
---|
45 | * different threads and we don't particularly care about ordering
|
---|
46 | * (e.g. statistic printouts). This is most likely translated into the same
|
---|
47 | * assembly instructions as regular read/writes.
|
---|
48 | */
|
---|
49 | #define atomic_set_unordered(var, val) atomic_store_explicit((var), (val), memory_order_relaxed)
|
---|
50 | #define atomic_get_unordered(var) atomic_load_explicit((var), memory_order_relaxed)
|
---|
51 |
|
---|
52 | #define atomic_predec(val) \
|
---|
53 | (atomic_fetch_sub((val), 1) - 1)
|
---|
54 |
|
---|
55 | #define atomic_preinc(val) \
|
---|
56 | (atomic_fetch_add((val), 1) + 1)
|
---|
57 |
|
---|
58 | #define atomic_postdec(val) \
|
---|
59 | atomic_fetch_sub((val), 1)
|
---|
60 |
|
---|
61 | #define atomic_postinc(val) \
|
---|
62 | atomic_fetch_add((val), 1)
|
---|
63 |
|
---|
64 | #define atomic_dec(val) \
|
---|
65 | ((void) atomic_fetch_sub(val, 1))
|
---|
66 |
|
---|
67 | #define atomic_inc(val) \
|
---|
68 | ((void) atomic_fetch_add(val, 1))
|
---|
69 |
|
---|
70 | #define local_atomic_exchange(var_addr, new_val) \
|
---|
71 | atomic_exchange_explicit( \
|
---|
72 | (_Atomic typeof(*(var_addr)) *) (var_addr), \
|
---|
73 | (new_val), memory_order_relaxed)
|
---|
74 |
|
---|
75 | #if __64_BITS__
|
---|
76 |
|
---|
77 | typedef struct {
|
---|
78 | atomic_uint_fast64_t value;
|
---|
79 | } atomic_time_stat_t;
|
---|
80 |
|
---|
81 | #define ATOMIC_TIME_INITIALIZER() (atomic_time_stat_t) {}
|
---|
82 |
|
---|
83 | static inline void atomic_time_increment(atomic_time_stat_t *time, int a)
|
---|
84 | {
|
---|
85 | /*
|
---|
86 | * We require increments to be synchronized with each other, so we
|
---|
87 | * can use ordinary reads and writes instead of a more expensive atomic
|
---|
88 | * read-modify-write operations.
|
---|
89 | */
|
---|
90 | uint64_t v = atomic_load_explicit(&time->value, memory_order_relaxed);
|
---|
91 | atomic_store_explicit(&time->value, v + a, memory_order_relaxed);
|
---|
92 | }
|
---|
93 |
|
---|
94 | static inline uint64_t atomic_time_read(atomic_time_stat_t *time)
|
---|
95 | {
|
---|
96 | return atomic_load_explicit(&time->value, memory_order_relaxed);
|
---|
97 | }
|
---|
98 |
|
---|
99 | #else
|
---|
100 |
|
---|
101 | /**
|
---|
102 | * A monotonically increasing 64b time statistic.
|
---|
103 | * Increments must be synchronized with each other (or limited to a single
|
---|
104 | * thread/CPU), but reads can be performed from any thread.
|
---|
105 | *
|
---|
106 | */
|
---|
107 | typedef struct {
|
---|
108 | uint64_t true_value;
|
---|
109 | atomic_uint_fast32_t high1;
|
---|
110 | atomic_uint_fast32_t high2;
|
---|
111 | atomic_uint_fast32_t low;
|
---|
112 | } atomic_time_stat_t;
|
---|
113 |
|
---|
114 | #define ATOMIC_TIME_INITIALIZER() (atomic_time_stat_t) {}
|
---|
115 |
|
---|
116 | static inline void atomic_time_increment(atomic_time_stat_t *time, int a)
|
---|
117 | {
|
---|
118 | /*
|
---|
119 | * On 32b architectures, we can't rely on 64b memory reads/writes being
|
---|
120 | * architecturally atomic, but we also don't want to pay the cost of
|
---|
121 | * emulating atomic reads/writes, so instead we split value in half
|
---|
122 | * and perform some ordering magic to make sure readers always get
|
---|
123 | * consistent value.
|
---|
124 | */
|
---|
125 |
|
---|
126 | /* true_value is only used by the writer, so this need not be atomic. */
|
---|
127 | uint64_t val = time->true_value;
|
---|
128 | uint32_t old_high = val >> 32;
|
---|
129 | val += a;
|
---|
130 | uint32_t new_high = val >> 32;
|
---|
131 | time->true_value = val;
|
---|
132 |
|
---|
133 | /* Tell GCC that the first branch is far more likely than the second. */
|
---|
134 | if (__builtin_expect(old_high == new_high, 1)) {
|
---|
135 | /* If the high half didn't change, we need not bother with barriers. */
|
---|
136 | atomic_store_explicit(&time->low, (uint32_t) val, memory_order_relaxed);
|
---|
137 | } else {
|
---|
138 | /*
|
---|
139 | * If both halves changed, extra ordering is necessary.
|
---|
140 | * The idea is that if reader reads high1 and high2 with the same value,
|
---|
141 | * it is guaranteed that they read the correct low half for that value.
|
---|
142 | *
|
---|
143 | * This is the same sequence that is used by userspace to read clock.
|
---|
144 | */
|
---|
145 | atomic_store_explicit(&time->high1, new_high, memory_order_relaxed);
|
---|
146 | atomic_store_explicit(&time->low, (uint32_t) val, memory_order_release);
|
---|
147 | atomic_store_explicit(&time->high2, new_high, memory_order_release);
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | static inline uint64_t atomic_time_read(atomic_time_stat_t *time)
|
---|
152 | {
|
---|
153 | uint32_t high2 = atomic_load_explicit(&time->high2, memory_order_acquire);
|
---|
154 | uint32_t low = atomic_load_explicit(&time->low, memory_order_acquire);
|
---|
155 | uint32_t high1 = atomic_load_explicit(&time->high1, memory_order_relaxed);
|
---|
156 |
|
---|
157 | if (high1 != high2)
|
---|
158 | low = 0;
|
---|
159 |
|
---|
160 | /* If the values differ, high1 is always the newer value. */
|
---|
161 | return (uint64_t) high1 << 32 | (uint64_t) low;
|
---|
162 | }
|
---|
163 |
|
---|
164 | #endif /* __64_BITS__ */
|
---|
165 |
|
---|
166 | #endif
|
---|
167 |
|
---|
168 | /** @}
|
---|
169 | */
|
---|