1 | /*
|
---|
2 | * Copyright (c) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup genarchmm
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /**
|
---|
34 | * @file
|
---|
35 | * @brief Virtual Address Translation for hierarchical 4-level page tables.
|
---|
36 | */
|
---|
37 |
|
---|
38 | #include <genarch/mm/page_pt.h>
|
---|
39 | #include <mm/page.h>
|
---|
40 | #include <mm/frame.h>
|
---|
41 | #include <mm/km.h>
|
---|
42 | #include <mm/as.h>
|
---|
43 | #include <arch/mm/page.h>
|
---|
44 | #include <arch/mm/as.h>
|
---|
45 | #include <arch/barrier.h>
|
---|
46 | #include <typedefs.h>
|
---|
47 | #include <arch/asm.h>
|
---|
48 | #include <memstr.h>
|
---|
49 | #include <align.h>
|
---|
50 | #include <macros.h>
|
---|
51 | #include <bitops.h>
|
---|
52 |
|
---|
53 | static void pt_mapping_insert(as_t *, uintptr_t, uintptr_t, unsigned int);
|
---|
54 | static void pt_mapping_remove(as_t *, uintptr_t);
|
---|
55 | static pte_t *pt_mapping_find(as_t *, uintptr_t, bool);
|
---|
56 | static void pt_mapping_make_global(uintptr_t, size_t);
|
---|
57 |
|
---|
58 | page_mapping_operations_t pt_mapping_operations = {
|
---|
59 | .mapping_insert = pt_mapping_insert,
|
---|
60 | .mapping_remove = pt_mapping_remove,
|
---|
61 | .mapping_find = pt_mapping_find,
|
---|
62 | .mapping_make_global = pt_mapping_make_global
|
---|
63 | };
|
---|
64 |
|
---|
65 | /** Map page to frame using hierarchical page tables.
|
---|
66 | *
|
---|
67 | * Map virtual address page to physical address frame
|
---|
68 | * using flags.
|
---|
69 | *
|
---|
70 | * @param as Address space to wich page belongs.
|
---|
71 | * @param page Virtual address of the page to be mapped.
|
---|
72 | * @param frame Physical address of memory frame to which the mapping is done.
|
---|
73 | * @param flags Flags to be used for mapping.
|
---|
74 | *
|
---|
75 | */
|
---|
76 | void pt_mapping_insert(as_t *as, uintptr_t page, uintptr_t frame,
|
---|
77 | unsigned int flags)
|
---|
78 | {
|
---|
79 | pte_t *ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
|
---|
80 |
|
---|
81 | ASSERT(page_table_locked(as));
|
---|
82 |
|
---|
83 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
84 | pte_t *newpt = (pte_t *)
|
---|
85 | PA2KA(frame_alloc(PTL1_FRAMES, FRAME_LOWMEM, PTL1_SIZE - 1));
|
---|
86 | memsetb(newpt, PTL1_SIZE, 0);
|
---|
87 | SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page), KA2PA(newpt));
|
---|
88 | SET_PTL1_FLAGS(ptl0, PTL0_INDEX(page),
|
---|
89 | PAGE_NOT_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE |
|
---|
90 | PAGE_WRITE);
|
---|
91 | /*
|
---|
92 | * Make sure that a concurrent hardware page table walk or
|
---|
93 | * pt_mapping_find() will see the new PTL1 only after it is
|
---|
94 | * fully initialized.
|
---|
95 | */
|
---|
96 | write_barrier();
|
---|
97 | SET_PTL1_PRESENT(ptl0, PTL0_INDEX(page));
|
---|
98 | }
|
---|
99 |
|
---|
100 | pte_t *ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
101 |
|
---|
102 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
103 | pte_t *newpt = (pte_t *)
|
---|
104 | PA2KA(frame_alloc(PTL2_FRAMES, FRAME_LOWMEM, PTL2_SIZE - 1));
|
---|
105 | memsetb(newpt, PTL2_SIZE, 0);
|
---|
106 | SET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page), KA2PA(newpt));
|
---|
107 | SET_PTL2_FLAGS(ptl1, PTL1_INDEX(page),
|
---|
108 | PAGE_NOT_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE |
|
---|
109 | PAGE_WRITE);
|
---|
110 | /*
|
---|
111 | * Make the new PTL2 visible only after it is fully initialized.
|
---|
112 | */
|
---|
113 | write_barrier();
|
---|
114 | SET_PTL2_PRESENT(ptl1, PTL1_INDEX(page));
|
---|
115 | }
|
---|
116 |
|
---|
117 | pte_t *ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
118 |
|
---|
119 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
120 | pte_t *newpt = (pte_t *)
|
---|
121 | PA2KA(frame_alloc(PTL3_FRAMES, FRAME_LOWMEM, PTL2_SIZE - 1));
|
---|
122 | memsetb(newpt, PTL2_SIZE, 0);
|
---|
123 | SET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page), KA2PA(newpt));
|
---|
124 | SET_PTL3_FLAGS(ptl2, PTL2_INDEX(page),
|
---|
125 | PAGE_NOT_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE |
|
---|
126 | PAGE_WRITE);
|
---|
127 | /*
|
---|
128 | * Make the new PTL3 visible only after it is fully initialized.
|
---|
129 | */
|
---|
130 | write_barrier();
|
---|
131 | SET_PTL3_PRESENT(ptl2, PTL2_INDEX(page));
|
---|
132 | }
|
---|
133 |
|
---|
134 | pte_t *ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
135 |
|
---|
136 | SET_FRAME_ADDRESS(ptl3, PTL3_INDEX(page), frame);
|
---|
137 | SET_FRAME_FLAGS(ptl3, PTL3_INDEX(page), flags | PAGE_NOT_PRESENT);
|
---|
138 | /*
|
---|
139 | * Make the new mapping visible only after it is fully initialized.
|
---|
140 | */
|
---|
141 | write_barrier();
|
---|
142 | SET_FRAME_PRESENT(ptl3, PTL3_INDEX(page));
|
---|
143 | }
|
---|
144 |
|
---|
145 | /** Remove mapping of page from hierarchical page tables.
|
---|
146 | *
|
---|
147 | * Remove any mapping of page within address space as.
|
---|
148 | * TLB shootdown should follow in order to make effects of
|
---|
149 | * this call visible.
|
---|
150 | *
|
---|
151 | * Empty page tables except PTL0 are freed.
|
---|
152 | *
|
---|
153 | * @param as Address space to wich page belongs.
|
---|
154 | * @param page Virtual address of the page to be demapped.
|
---|
155 | *
|
---|
156 | */
|
---|
157 | void pt_mapping_remove(as_t *as, uintptr_t page)
|
---|
158 | {
|
---|
159 | ASSERT(page_table_locked(as));
|
---|
160 |
|
---|
161 | /*
|
---|
162 | * First, remove the mapping, if it exists.
|
---|
163 | */
|
---|
164 |
|
---|
165 | pte_t *ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
|
---|
166 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
167 | return;
|
---|
168 |
|
---|
169 | pte_t *ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
170 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
171 | return;
|
---|
172 |
|
---|
173 | pte_t *ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
174 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
175 | return;
|
---|
176 |
|
---|
177 | pte_t *ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
178 |
|
---|
179 | /*
|
---|
180 | * Destroy the mapping.
|
---|
181 | * Setting to PAGE_NOT_PRESENT is not sufficient.
|
---|
182 | * But we need SET_FRAME for possible PT coherence maintenance.
|
---|
183 | * At least on ARM.
|
---|
184 | */
|
---|
185 | //TODO: Fix this inconsistency
|
---|
186 | SET_FRAME_FLAGS(ptl3, PTL3_INDEX(page), PAGE_NOT_PRESENT);
|
---|
187 | memsetb(&ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
|
---|
188 |
|
---|
189 | /*
|
---|
190 | * Second, free all empty tables along the way from PTL3 down to PTL0
|
---|
191 | * except those needed for sharing the kernel non-identity mappings.
|
---|
192 | */
|
---|
193 |
|
---|
194 | /* Check PTL3 */
|
---|
195 | bool empty = true;
|
---|
196 |
|
---|
197 | unsigned int i;
|
---|
198 | for (i = 0; i < PTL3_ENTRIES; i++) {
|
---|
199 | if (PTE_VALID(&ptl3[i])) {
|
---|
200 | empty = false;
|
---|
201 | break;
|
---|
202 | }
|
---|
203 | }
|
---|
204 |
|
---|
205 | if (empty) {
|
---|
206 | /*
|
---|
207 | * PTL3 is empty.
|
---|
208 | * Release the frame and remove PTL3 pointer from the parent
|
---|
209 | * table.
|
---|
210 | */
|
---|
211 | #if (PTL2_ENTRIES != 0)
|
---|
212 | memsetb(&ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
|
---|
213 | #elif (PTL1_ENTRIES != 0)
|
---|
214 | memsetb(&ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
|
---|
215 | #else
|
---|
216 | if (km_is_non_identity(page))
|
---|
217 | return;
|
---|
218 |
|
---|
219 | memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
220 | #endif
|
---|
221 | frame_free(KA2PA((uintptr_t) ptl3), PTL3_FRAMES);
|
---|
222 | } else {
|
---|
223 | /*
|
---|
224 | * PTL3 is not empty.
|
---|
225 | * Therefore, there must be a path from PTL0 to PTL3 and
|
---|
226 | * thus nothing to free in higher levels.
|
---|
227 | *
|
---|
228 | */
|
---|
229 | return;
|
---|
230 | }
|
---|
231 |
|
---|
232 | /* Check PTL2, empty is still true */
|
---|
233 | #if (PTL2_ENTRIES != 0)
|
---|
234 | for (i = 0; i < PTL2_ENTRIES; i++) {
|
---|
235 | if (PTE_VALID(&ptl2[i])) {
|
---|
236 | empty = false;
|
---|
237 | break;
|
---|
238 | }
|
---|
239 | }
|
---|
240 |
|
---|
241 | if (empty) {
|
---|
242 | /*
|
---|
243 | * PTL2 is empty.
|
---|
244 | * Release the frame and remove PTL2 pointer from the parent
|
---|
245 | * table.
|
---|
246 | */
|
---|
247 | #if (PTL1_ENTRIES != 0)
|
---|
248 | memsetb(&ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
|
---|
249 | #else
|
---|
250 | if (km_is_non_identity(page))
|
---|
251 | return;
|
---|
252 |
|
---|
253 | memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
254 | #endif
|
---|
255 | frame_free(KA2PA((uintptr_t) ptl2), PTL2_FRAMES);
|
---|
256 | } else {
|
---|
257 | /*
|
---|
258 | * PTL2 is not empty.
|
---|
259 | * Therefore, there must be a path from PTL0 to PTL2 and
|
---|
260 | * thus nothing to free in higher levels.
|
---|
261 | *
|
---|
262 | */
|
---|
263 | return;
|
---|
264 | }
|
---|
265 | #endif /* PTL2_ENTRIES != 0 */
|
---|
266 |
|
---|
267 | /* check PTL1, empty is still true */
|
---|
268 | #if (PTL1_ENTRIES != 0)
|
---|
269 | for (i = 0; i < PTL1_ENTRIES; i++) {
|
---|
270 | if (PTE_VALID(&ptl1[i])) {
|
---|
271 | empty = false;
|
---|
272 | break;
|
---|
273 | }
|
---|
274 | }
|
---|
275 |
|
---|
276 | if (empty) {
|
---|
277 | /*
|
---|
278 | * PTL1 is empty.
|
---|
279 | * Release the frame and remove PTL1 pointer from the parent
|
---|
280 | * table.
|
---|
281 | */
|
---|
282 | if (km_is_non_identity(page))
|
---|
283 | return;
|
---|
284 |
|
---|
285 | memsetb(&ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
286 | frame_free(KA2PA((uintptr_t) ptl1), PTL1_FRAMES);
|
---|
287 | }
|
---|
288 | #endif /* PTL1_ENTRIES != 0 */
|
---|
289 | }
|
---|
290 |
|
---|
291 | /** Find mapping for virtual page in hierarchical page tables.
|
---|
292 | *
|
---|
293 | * @param as Address space to which page belongs.
|
---|
294 | * @param page Virtual page.
|
---|
295 | * @param nolock True if the page tables need not be locked.
|
---|
296 | *
|
---|
297 | * @return NULL if there is no such mapping; entry from PTL3 describing
|
---|
298 | * the mapping otherwise.
|
---|
299 | *
|
---|
300 | */
|
---|
301 | pte_t *pt_mapping_find(as_t *as, uintptr_t page, bool nolock)
|
---|
302 | {
|
---|
303 | ASSERT(nolock || page_table_locked(as));
|
---|
304 |
|
---|
305 | pte_t *ptl0 = (pte_t *) PA2KA((uintptr_t) as->genarch.page_table);
|
---|
306 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
307 | return NULL;
|
---|
308 |
|
---|
309 | read_barrier();
|
---|
310 |
|
---|
311 | pte_t *ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
312 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
313 | return NULL;
|
---|
314 |
|
---|
315 | #if (PTL1_ENTRIES != 0)
|
---|
316 | /*
|
---|
317 | * Always read ptl2 only after we are sure it is present.
|
---|
318 | */
|
---|
319 | read_barrier();
|
---|
320 | #endif
|
---|
321 |
|
---|
322 | pte_t *ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
323 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
324 | return NULL;
|
---|
325 |
|
---|
326 | #if (PTL2_ENTRIES != 0)
|
---|
327 | /*
|
---|
328 | * Always read ptl3 only after we are sure it is present.
|
---|
329 | */
|
---|
330 | read_barrier();
|
---|
331 | #endif
|
---|
332 |
|
---|
333 | pte_t *ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
334 |
|
---|
335 | return &ptl3[PTL3_INDEX(page)];
|
---|
336 | }
|
---|
337 |
|
---|
338 | /** Return the size of the region mapped by a single PTL0 entry.
|
---|
339 | *
|
---|
340 | * @return Size of the region mapped by a single PTL0 entry.
|
---|
341 | */
|
---|
342 | static uintptr_t ptl0_step_get(void)
|
---|
343 | {
|
---|
344 | size_t va_bits;
|
---|
345 |
|
---|
346 | va_bits = fnzb(PTL0_ENTRIES) + fnzb(PTL1_ENTRIES) + fnzb(PTL2_ENTRIES) +
|
---|
347 | fnzb(PTL3_ENTRIES) + PAGE_WIDTH;
|
---|
348 |
|
---|
349 | return 1UL << (va_bits - fnzb(PTL0_ENTRIES));
|
---|
350 | }
|
---|
351 |
|
---|
352 | /** Make the mappings in the given range global accross all address spaces.
|
---|
353 | *
|
---|
354 | * All PTL0 entries in the given range will be mapped to a next level page
|
---|
355 | * table. The next level page table will be allocated and cleared.
|
---|
356 | *
|
---|
357 | * pt_mapping_remove() will never deallocate these page tables even when there
|
---|
358 | * are no PTEs in them.
|
---|
359 | *
|
---|
360 | * @param as Address space.
|
---|
361 | * @param base Base address corresponding to the first PTL0 entry that will be
|
---|
362 | * altered by this function.
|
---|
363 | * @param size Size in bytes defining the range of PTL0 entries that will be
|
---|
364 | * altered by this function.
|
---|
365 | *
|
---|
366 | */
|
---|
367 | void pt_mapping_make_global(uintptr_t base, size_t size)
|
---|
368 | {
|
---|
369 | ASSERT(size > 0);
|
---|
370 |
|
---|
371 | uintptr_t ptl0 = PA2KA((uintptr_t) AS_KERNEL->genarch.page_table);
|
---|
372 | uintptr_t ptl0_step = ptl0_step_get();
|
---|
373 | size_t frames;
|
---|
374 |
|
---|
375 | #if (PTL1_ENTRIES != 0)
|
---|
376 | frames = PTL1_FRAMES;
|
---|
377 | #elif (PTL2_ENTRIES != 0)
|
---|
378 | frames = PTL2_FRAMES;
|
---|
379 | #else
|
---|
380 | frames = PTL3_FRAMES;
|
---|
381 | #endif
|
---|
382 |
|
---|
383 | for (uintptr_t addr = ALIGN_DOWN(base, ptl0_step);
|
---|
384 | addr - 1 < base + size - 1;
|
---|
385 | addr += ptl0_step) {
|
---|
386 | if (GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(addr))) {
|
---|
387 | ASSERT(overlaps(addr, ptl0_step,
|
---|
388 | config.identity_base, config.identity_size));
|
---|
389 |
|
---|
390 | /*
|
---|
391 | * This PTL0 entry also maps the kernel identity region,
|
---|
392 | * so it is already global and initialized.
|
---|
393 | */
|
---|
394 | continue;
|
---|
395 | }
|
---|
396 |
|
---|
397 | uintptr_t l1 = PA2KA(frame_alloc(frames, FRAME_LOWMEM, 0));
|
---|
398 | memsetb((void *) l1, FRAMES2SIZE(frames), 0);
|
---|
399 | SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(addr), KA2PA(l1));
|
---|
400 | SET_PTL1_FLAGS(ptl0, PTL0_INDEX(addr),
|
---|
401 | PAGE_PRESENT | PAGE_USER | PAGE_CACHEABLE |
|
---|
402 | PAGE_EXEC | PAGE_WRITE | PAGE_READ);
|
---|
403 | }
|
---|
404 | }
|
---|
405 |
|
---|
406 | /** @}
|
---|
407 | */
|
---|