source: mainline/kernel/arch/sparc64/src/smp/sun4v/smp.c@ c5429fe

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since c5429fe was c5429fe, checked in by Jakub Jermar <jakub@…>, 7 years ago

Disambiguate architecture specific doxygroups

  • Property mode set to 100644
File size: 12.5 KB
Line 
1/*
2 * Copyright (c) 2006 Jakub Jermar
3 * Copyright (c) 2009 Pavel Rimsky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_sparc64
31 * @{
32 */
33/** @file
34 */
35
36#include <smp/smp.h>
37#include <smp/ipi.h>
38#include <genarch/ofw/ofw_tree.h>
39#include <cpu.h>
40#include <arch/cpu.h>
41#include <arch/boot/boot.h>
42#include <arch.h>
43#include <config.h>
44#include <macros.h>
45#include <halt.h>
46#include <stdbool.h>
47#include <stddef.h>
48#include <stdint.h>
49#include <synch/waitq.h>
50#include <print.h>
51#include <arch/sun4v/hypercall.h>
52#include <arch/sun4v/md.h>
53#include <arch/sun4v/ipi.h>
54#include <time/delay.h>
55#include <arch/smp/sun4v/smp.h>
56#include <str.h>
57#include <errno.h>
58
59/** hypervisor code of the "running" state of the CPU */
60#define CPU_STATE_RUNNING 2
61
62/** maximum possible number of processor cores */
63#define MAX_NUM_CORES 8
64
65/** needed in the CPU_START hypercall */
66extern void kernel_image_start(void);
67
68/** needed in the CPU_START hypercall */
69extern void *trap_table;
70
71/** number of execution units detected */
72uint8_t exec_unit_count = 0;
73
74/** execution units (processor cores) */
75exec_unit_t exec_units[MAX_NUM_CORES];
76
77/** CPU structures */
78extern cpu_t *cpus;
79
80/** maximum number of strands per a physical core detected */
81unsigned int max_core_strands = 0;
82
83#if 0
84/**
85 * Proposes the optimal number of ready threads for each virtual processor
86 * in the given processor core so that the processor core is as busy as the
87 * average processor core. The proposed number of ready threads will be
88 * stored to the proposed_nrdy variable of the cpu_arch_t struture.
89 */
90bool calculate_optimal_nrdy(exec_unit_t *exec_unit)
91{
92
93 /* calculate the number of threads the core will steal */
94 int avg = atomic_load(&nrdy) / exec_unit_count;
95 int to_steal = avg - atomic_load(&(exec_units->nrdy));
96 if (to_steal < 0) {
97 return true;
98 } else if (to_steal == 0) {
99 return false;
100 }
101
102 /* initialize the proposals with the real numbers of ready threads */
103 unsigned int k;
104 for (k = 0; k < exec_unit->strand_count; k++) {
105 exec_units->cpus[k]->arch.proposed_nrdy =
106 atomic_load(&(exec_unit->cpus[k]->nrdy));
107 }
108
109 /* distribute the threads to be stolen to the core's CPUs */
110 int j;
111 for (j = to_steal; j > 0; j--) {
112 unsigned int k;
113 unsigned int least_busy = 0;
114 unsigned int least_busy_nrdy =
115 exec_unit->cpus[0]->arch.proposed_nrdy;
116
117 /* for each stolen thread, give it to the least busy CPU */
118 for (k = 0; k < exec_unit->strand_count; k++) {
119 if (exec_unit->cpus[k]->arch.proposed_nrdy < least_busy_nrdy) {
120 least_busy = k;
121 least_busy_nrdy =
122 exec_unit->cpus[k]->arch.proposed_nrdy;
123 }
124 }
125 exec_unit->cpus[least_busy]->arch.proposed_nrdy++;
126 }
127
128 return false;
129}
130#endif
131
132/**
133 * Finds out which execution units belong to particular CPUs. By execution unit
134 * we mean the physical core the logical processor is backed by. Since each
135 * Niagara physical core has just one integer execution unit and we will
136 * ignore other execution units than the integer ones, we will use the terms
137 * "integer execution unit", "execution unit" and "physical core"
138 * interchangeably.
139 *
140 * The physical cores are detected by browsing the children of the CPU node
141 * in the machine description and looking for a node representing an integer
142 * execution unit. Once the integer execution unit of a particular CPU is
143 * known, the ID of the CPU is added to the list of cpuids of the corresponding
144 * execution unit structure (exec_unit_t). If an execution unit is encountered
145 * for the first time, a new execution unit structure (exec_unit_t) must be
146 * created first and added to the execution units array (exec_units).
147 *
148 * If the function fails to find an execution unit for a CPU (this may happen
149 * on machines with older firmware or on Simics), it performs a fallback code
150 * which pretends there exists just one execution unit and all CPUs belong to
151 * it.
152 *
153 * Finally, the array of all execution units is reordered such that its element
154 * which represents the physical core of the the bootstrap CPU is at index 0.
155 * Moreover, the array of CPU IDs within the BSP's physical core structure is
156 * reordered such that the element which represents the ID of the BSP is at
157 * index 0. This is done because we would like the CPUs to be woken up
158 * such that the 0-index CPU of the 0-index execution unit is
159 * woken up first. And since the BSP is already woken up, we would like it to be
160 * at 0-th position of the 0-th execution unit structure.
161 *
162 * Apart from that, the code also counts the total number of CPUs and stores
163 * it to the global config.cpu_count variable.
164 */
165static void detect_execution_units(void)
166{
167 /* ID of the bootstrap processor */
168 uint64_t myid;
169
170 /* total number of CPUs detected */
171 size_t cpu_count = 0;
172
173 /* will be set to 1 if detecting the physical cores fails */
174 bool exec_unit_assign_error = 0;
175
176 /* index of the bootstrap physical core in the array of cores */
177 unsigned int bsp_exec_unit_index = 0;
178
179 /* index of the BSP ID inside the array of bootstrap core's cpuids */
180 unsigned int bsp_core_strand_index = 0;
181
182 __hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid);
183 md_node_t node = md_get_root();
184
185 /* walk through all the CPU nodes in the MD*/
186 while (md_next_node(&node, "cpu")) {
187
188 uint64_t cpuid;
189 md_get_integer_property(node, "id", &cpuid);
190 cpu_count++;
191
192 /*
193 * if failed in previous CPUs, don't try
194 * to detect physical cores any more
195 */
196 if (exec_unit_assign_error)
197 continue;
198
199 /* detect exec. unit for the CPU represented by current node */
200 uint64_t exec_unit_id = 0;
201 md_child_iter_t it = md_get_child_iterator(node);
202
203 while (md_next_child(&it)) {
204 md_node_t child = md_get_child_node(it);
205 const char *exec_unit_type = "";
206 md_get_string_property(child, "type", &exec_unit_type);
207
208 /* each physical core has just 1 integer exec. unit */
209 if (str_cmp(exec_unit_type, "integer") == 0) {
210 exec_unit_id = child;
211 break;
212 }
213 }
214
215 /* execution unit detected successfully */
216 if (exec_unit_id != 0) {
217
218 /* find the exec. unit in array of existing units */
219 unsigned int i = 0;
220 for (i = 0; i < exec_unit_count; i++) {
221 if (exec_units[i].exec_unit_id == exec_unit_id)
222 break;
223 }
224
225 /*
226 * execution unit just met has not been met before, so
227 * create a new entry in array of all execution units
228 */
229 if (i == exec_unit_count) {
230 exec_units[i].exec_unit_id = exec_unit_id;
231 exec_units[i].strand_count = 0;
232 atomic_store(&(exec_units[i].nrdy), 0);
233 spinlock_initialize(&(exec_units[i].proposed_nrdy_lock), "exec_units[].proposed_nrdy_lock");
234 exec_unit_count++;
235 }
236
237 /*
238 * remember the exec. unit and strand of the BSP
239 */
240 if (cpuid == myid) {
241 bsp_exec_unit_index = i;
242 bsp_core_strand_index = exec_units[i].strand_count;
243 }
244
245 /* add the CPU just met to the exec. unit's list */
246 exec_units[i].cpuids[exec_units[i].strand_count] = cpuid;
247 exec_units[i].strand_count++;
248 max_core_strands =
249 exec_units[i].strand_count > max_core_strands ?
250 exec_units[i].strand_count : max_core_strands;
251
252 /* detecting execution unit failed */
253 } else {
254 exec_unit_assign_error = 1;
255 }
256 }
257
258 /* save the number of CPUs to a globally accessible variable */
259 config.cpu_count = cpu_count;
260
261 /*
262 * A fallback code which will be executed if finding out which
263 * execution units belong to particular CPUs fails. Pretend there
264 * exists just one execution unit and all CPUs belong to it.
265 */
266 if (exec_unit_assign_error) {
267 bsp_exec_unit_index = 0;
268 exec_unit_count = 1;
269 exec_units[0].strand_count = cpu_count;
270 exec_units[0].exec_unit_id = 1;
271 spinlock_initialize(&(exec_units[0].proposed_nrdy_lock), "exec_units[0].proposed_nrdy_lock");
272 atomic_store(&(exec_units[0].nrdy), 0);
273 max_core_strands = cpu_count;
274
275 /* browse CPUs again, assign them the fictional exec. unit */
276 node = md_get_root();
277 unsigned int i = 0;
278
279 while (md_next_node(&node, "cpu")) {
280 uint64_t cpuid;
281 md_get_integer_property(node, "id", &cpuid);
282 if (cpuid == myid) {
283 bsp_core_strand_index = i;
284 }
285 exec_units[0].cpuids[i++] = cpuid;
286 }
287 }
288
289 /*
290 * Reorder the execution units array elements and the cpuid array
291 * elements so that the BSP will always be the very first CPU of
292 * the very first execution unit.
293 */
294 exec_unit_t temp_exec_unit = exec_units[0];
295 exec_units[0] = exec_units[bsp_exec_unit_index];
296 exec_units[bsp_exec_unit_index] = temp_exec_unit;
297
298 uint64_t temp_cpuid = exec_units[0].cpuids[0];
299 exec_units[0].cpuids[0] = exec_units[0].cpuids[bsp_exec_unit_index];
300 exec_units[0].cpuids[bsp_core_strand_index] = temp_cpuid;
301
302}
303
304/**
305 * Determine number of processors and detect physical cores. On Simics
306 * copy the code which will be executed by the AP when the BSP sends an
307 * IPI to it in order to make it execute HelenOS code.
308 */
309void smp_init(void)
310{
311 detect_execution_units();
312}
313
314/**
315 * For each CPU sets the value of cpus[i].arch.id, where i is the
316 * index of the CPU in the cpus variable, to the cpuid of the i-th processor
317 * to be run. The CPUs are run such that the CPU represented by cpus[0]
318 * is run first, cpus[1] is run after it, and cpus[cpu_count - 1] is run as the
319 * last one.
320 *
321 * The CPU IDs are set such that during waking the CPUs up the
322 * processor cores will be alternated, i.e. first one CPU from the first core
323 * will be run, after that one CPU from the second CPU core will be run,...
324 * then one CPU from the last core will be run, after that another CPU
325 * from the first core will be run, then another CPU from the second core
326 * will be run,... then another CPU from the last core will be run, and so on.
327 */
328static void init_cpuids(void)
329{
330 unsigned int cur_core_strand;
331 unsigned int cur_core;
332 unsigned int cur_cpu = 0;
333
334 for (cur_core_strand = 0; cur_core_strand < max_core_strands; cur_core_strand++) {
335 for (cur_core = 0; cur_core < exec_unit_count; cur_core++) {
336 if (cur_core_strand > exec_units[cur_core].strand_count)
337 continue;
338
339 cpus[cur_cpu].arch.exec_unit = &(exec_units[cur_core]);
340 atomic_add(&(exec_units[cur_core].nrdy), atomic_load(&(cpus[cur_cpu].nrdy)));
341 cpus[cur_cpu].arch.id = exec_units[cur_core].cpuids[cur_core_strand];
342 exec_units[cur_core].cpus[cur_core_strand] = &(cpus[cur_cpu]);
343 cur_cpu++;
344 }
345 }
346}
347
348/**
349 * Wakes up a single CPU.
350 *
351 * @param cpuid ID of the CPU to be woken up
352 */
353static bool wake_cpu(uint64_t cpuid)
354{
355#ifdef CONFIG_SIMICS_SMP_HACK
356 ipi_unicast_to((void (*)(void)) 1234, cpuid);
357#else
358 /* stop the CPU before making it execute our code */
359 if (__hypercall_fast1(CPU_STOP, cpuid) != EOK)
360 return false;
361
362 /* wait for the CPU to stop */
363 uint64_t state;
364 __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, CPU_STATE, &state);
365 while (state == CPU_STATE_RUNNING)
366 __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, CPU_STATE, &state);
367
368 /* make the CPU run again and execute HelenOS code */
369 if (__hypercall_fast4(CPU_START, cpuid,
370 (uint64_t) KA2PA(kernel_image_start), KA2PA(trap_table),
371 physmem_base) != EOK)
372 return false;
373#endif
374
375 if (waitq_sleep_timeout(&ap_completion_wq, 10000000,
376 SYNCH_FLAGS_NONE, NULL) == ETIMEOUT)
377 printf("%s: waiting for processor (cpuid = %" PRIu64 ") timed out\n",
378 __func__, cpuid);
379
380 return true;
381}
382
383/** Wake application processors up. */
384void kmp(void *arg)
385{
386 init_cpuids();
387
388 unsigned int i;
389
390 for (i = 1; i < config.cpu_count; i++) {
391 wake_cpu(cpus[i].arch.id);
392 }
393}
394
395/** @}
396 */
Note: See TracBrowser for help on using the repository browser.