1 | /*
|
---|
2 | * Copyright (c) 2006 Jakub Jermar
|
---|
3 | * Copyright (c) 2009 Pavel Rimsky
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | /** @addtogroup kernel_sparc64
|
---|
31 | * @{
|
---|
32 | */
|
---|
33 | /** @file
|
---|
34 | */
|
---|
35 |
|
---|
36 | #include <smp/smp.h>
|
---|
37 | #include <smp/ipi.h>
|
---|
38 | #include <genarch/ofw/ofw_tree.h>
|
---|
39 | #include <cpu.h>
|
---|
40 | #include <arch/cpu.h>
|
---|
41 | #include <arch/boot/boot.h>
|
---|
42 | #include <arch.h>
|
---|
43 | #include <config.h>
|
---|
44 | #include <macros.h>
|
---|
45 | #include <stdbool.h>
|
---|
46 | #include <stddef.h>
|
---|
47 | #include <stdint.h>
|
---|
48 | #include <synch/waitq.h>
|
---|
49 | #include <stdio.h>
|
---|
50 | #include <arch/sun4v/hypercall.h>
|
---|
51 | #include <arch/sun4v/md.h>
|
---|
52 | #include <arch/sun4v/ipi.h>
|
---|
53 | #include <time/delay.h>
|
---|
54 | #include <arch/smp/sun4v/smp.h>
|
---|
55 | #include <str.h>
|
---|
56 | #include <errno.h>
|
---|
57 |
|
---|
58 | /** hypervisor code of the "running" state of the CPU */
|
---|
59 | #define CPU_STATE_RUNNING 2
|
---|
60 |
|
---|
61 | /** maximum possible number of processor cores */
|
---|
62 | #define MAX_NUM_CORES 8
|
---|
63 |
|
---|
64 | /** needed in the CPU_START hypercall */
|
---|
65 | extern void kernel_image_start(void);
|
---|
66 |
|
---|
67 | /** needed in the CPU_START hypercall */
|
---|
68 | extern void *trap_table;
|
---|
69 |
|
---|
70 | /** number of execution units detected */
|
---|
71 | uint8_t exec_unit_count = 0;
|
---|
72 |
|
---|
73 | /** execution units (processor cores) */
|
---|
74 | exec_unit_t exec_units[MAX_NUM_CORES];
|
---|
75 |
|
---|
76 | /** CPU structures */
|
---|
77 | extern cpu_t *cpus;
|
---|
78 |
|
---|
79 | /** maximum number of strands per a physical core detected */
|
---|
80 | unsigned int max_core_strands = 0;
|
---|
81 |
|
---|
82 | #if 0
|
---|
83 | /**
|
---|
84 | * Proposes the optimal number of ready threads for each virtual processor
|
---|
85 | * in the given processor core so that the processor core is as busy as the
|
---|
86 | * average processor core. The proposed number of ready threads will be
|
---|
87 | * stored to the proposed_nrdy variable of the cpu_arch_t struture.
|
---|
88 | */
|
---|
89 | bool calculate_optimal_nrdy(exec_unit_t *exec_unit)
|
---|
90 | {
|
---|
91 |
|
---|
92 | /* calculate the number of threads the core will steal */
|
---|
93 | int avg = atomic_load(&nrdy) / exec_unit_count;
|
---|
94 | int to_steal = avg - atomic_load(&(exec_units->nrdy));
|
---|
95 | if (to_steal < 0) {
|
---|
96 | return true;
|
---|
97 | } else if (to_steal == 0) {
|
---|
98 | return false;
|
---|
99 | }
|
---|
100 |
|
---|
101 | /* initialize the proposals with the real numbers of ready threads */
|
---|
102 | unsigned int k;
|
---|
103 | for (k = 0; k < exec_unit->strand_count; k++) {
|
---|
104 | exec_units->cpus[k]->arch.proposed_nrdy =
|
---|
105 | atomic_load(&(exec_unit->cpus[k]->nrdy));
|
---|
106 | }
|
---|
107 |
|
---|
108 | /* distribute the threads to be stolen to the core's CPUs */
|
---|
109 | int j;
|
---|
110 | for (j = to_steal; j > 0; j--) {
|
---|
111 | unsigned int k;
|
---|
112 | unsigned int least_busy = 0;
|
---|
113 | unsigned int least_busy_nrdy =
|
---|
114 | exec_unit->cpus[0]->arch.proposed_nrdy;
|
---|
115 |
|
---|
116 | /* for each stolen thread, give it to the least busy CPU */
|
---|
117 | for (k = 0; k < exec_unit->strand_count; k++) {
|
---|
118 | if (exec_unit->cpus[k]->arch.proposed_nrdy < least_busy_nrdy) {
|
---|
119 | least_busy = k;
|
---|
120 | least_busy_nrdy =
|
---|
121 | exec_unit->cpus[k]->arch.proposed_nrdy;
|
---|
122 | }
|
---|
123 | }
|
---|
124 | exec_unit->cpus[least_busy]->arch.proposed_nrdy++;
|
---|
125 | }
|
---|
126 |
|
---|
127 | return false;
|
---|
128 | }
|
---|
129 | #endif
|
---|
130 |
|
---|
131 | /**
|
---|
132 | * Finds out which execution units belong to particular CPUs. By execution unit
|
---|
133 | * we mean the physical core the logical processor is backed by. Since each
|
---|
134 | * Niagara physical core has just one integer execution unit and we will
|
---|
135 | * ignore other execution units than the integer ones, we will use the terms
|
---|
136 | * "integer execution unit", "execution unit" and "physical core"
|
---|
137 | * interchangeably.
|
---|
138 | *
|
---|
139 | * The physical cores are detected by browsing the children of the CPU node
|
---|
140 | * in the machine description and looking for a node representing an integer
|
---|
141 | * execution unit. Once the integer execution unit of a particular CPU is
|
---|
142 | * known, the ID of the CPU is added to the list of cpuids of the corresponding
|
---|
143 | * execution unit structure (exec_unit_t). If an execution unit is encountered
|
---|
144 | * for the first time, a new execution unit structure (exec_unit_t) must be
|
---|
145 | * created first and added to the execution units array (exec_units).
|
---|
146 | *
|
---|
147 | * If the function fails to find an execution unit for a CPU (this may happen
|
---|
148 | * on machines with older firmware or on Simics), it performs a fallback code
|
---|
149 | * which pretends there exists just one execution unit and all CPUs belong to
|
---|
150 | * it.
|
---|
151 | *
|
---|
152 | * Finally, the array of all execution units is reordered such that its element
|
---|
153 | * which represents the physical core of the the bootstrap CPU is at index 0.
|
---|
154 | * Moreover, the array of CPU IDs within the BSP's physical core structure is
|
---|
155 | * reordered such that the element which represents the ID of the BSP is at
|
---|
156 | * index 0. This is done because we would like the CPUs to be woken up
|
---|
157 | * such that the 0-index CPU of the 0-index execution unit is
|
---|
158 | * woken up first. And since the BSP is already woken up, we would like it to be
|
---|
159 | * at 0-th position of the 0-th execution unit structure.
|
---|
160 | *
|
---|
161 | * Apart from that, the code also counts the total number of CPUs and stores
|
---|
162 | * it to the global config.cpu_count variable.
|
---|
163 | */
|
---|
164 | static void detect_execution_units(void)
|
---|
165 | {
|
---|
166 | /* ID of the bootstrap processor */
|
---|
167 | uint64_t myid;
|
---|
168 |
|
---|
169 | /* total number of CPUs detected */
|
---|
170 | size_t cpu_count = 0;
|
---|
171 |
|
---|
172 | /* will be set to 1 if detecting the physical cores fails */
|
---|
173 | bool exec_unit_assign_error = 0;
|
---|
174 |
|
---|
175 | /* index of the bootstrap physical core in the array of cores */
|
---|
176 | unsigned int bsp_exec_unit_index = 0;
|
---|
177 |
|
---|
178 | /* index of the BSP ID inside the array of bootstrap core's cpuids */
|
---|
179 | unsigned int bsp_core_strand_index = 0;
|
---|
180 |
|
---|
181 | __hypercall_fast_ret1(0, 0, 0, 0, 0, CPU_MYID, &myid);
|
---|
182 | md_node_t node = md_get_root();
|
---|
183 |
|
---|
184 | /* walk through all the CPU nodes in the MD*/
|
---|
185 | while (md_next_node(&node, "cpu")) {
|
---|
186 |
|
---|
187 | uint64_t cpuid;
|
---|
188 | md_get_integer_property(node, "id", &cpuid);
|
---|
189 | cpu_count++;
|
---|
190 |
|
---|
191 | /*
|
---|
192 | * if failed in previous CPUs, don't try
|
---|
193 | * to detect physical cores any more
|
---|
194 | */
|
---|
195 | if (exec_unit_assign_error)
|
---|
196 | continue;
|
---|
197 |
|
---|
198 | /* detect exec. unit for the CPU represented by current node */
|
---|
199 | uint64_t exec_unit_id = 0;
|
---|
200 | md_child_iter_t it = md_get_child_iterator(node);
|
---|
201 |
|
---|
202 | while (md_next_child(&it)) {
|
---|
203 | md_node_t child = md_get_child_node(it);
|
---|
204 | const char *exec_unit_type = "";
|
---|
205 | md_get_string_property(child, "type", &exec_unit_type);
|
---|
206 |
|
---|
207 | /* each physical core has just 1 integer exec. unit */
|
---|
208 | if (str_cmp(exec_unit_type, "integer") == 0) {
|
---|
209 | exec_unit_id = child;
|
---|
210 | break;
|
---|
211 | }
|
---|
212 | }
|
---|
213 |
|
---|
214 | /* execution unit detected successfully */
|
---|
215 | if (exec_unit_id != 0) {
|
---|
216 |
|
---|
217 | /* find the exec. unit in array of existing units */
|
---|
218 | unsigned int i = 0;
|
---|
219 | for (i = 0; i < exec_unit_count; i++) {
|
---|
220 | if (exec_units[i].exec_unit_id == exec_unit_id)
|
---|
221 | break;
|
---|
222 | }
|
---|
223 |
|
---|
224 | /*
|
---|
225 | * execution unit just met has not been met before, so
|
---|
226 | * create a new entry in array of all execution units
|
---|
227 | */
|
---|
228 | if (i == exec_unit_count) {
|
---|
229 | exec_units[i].exec_unit_id = exec_unit_id;
|
---|
230 | exec_units[i].strand_count = 0;
|
---|
231 | atomic_store(&(exec_units[i].nrdy), 0);
|
---|
232 | spinlock_initialize(&(exec_units[i].proposed_nrdy_lock), "exec_units[].proposed_nrdy_lock");
|
---|
233 | exec_unit_count++;
|
---|
234 | }
|
---|
235 |
|
---|
236 | /*
|
---|
237 | * remember the exec. unit and strand of the BSP
|
---|
238 | */
|
---|
239 | if (cpuid == myid) {
|
---|
240 | bsp_exec_unit_index = i;
|
---|
241 | bsp_core_strand_index = exec_units[i].strand_count;
|
---|
242 | }
|
---|
243 |
|
---|
244 | /* add the CPU just met to the exec. unit's list */
|
---|
245 | exec_units[i].cpuids[exec_units[i].strand_count] = cpuid;
|
---|
246 | exec_units[i].strand_count++;
|
---|
247 | max_core_strands =
|
---|
248 | exec_units[i].strand_count > max_core_strands ?
|
---|
249 | exec_units[i].strand_count : max_core_strands;
|
---|
250 |
|
---|
251 | /* detecting execution unit failed */
|
---|
252 | } else {
|
---|
253 | exec_unit_assign_error = 1;
|
---|
254 | }
|
---|
255 | }
|
---|
256 |
|
---|
257 | /* save the number of CPUs to a globally accessible variable */
|
---|
258 | config.cpu_count = cpu_count;
|
---|
259 |
|
---|
260 | /*
|
---|
261 | * A fallback code which will be executed if finding out which
|
---|
262 | * execution units belong to particular CPUs fails. Pretend there
|
---|
263 | * exists just one execution unit and all CPUs belong to it.
|
---|
264 | */
|
---|
265 | if (exec_unit_assign_error) {
|
---|
266 | bsp_exec_unit_index = 0;
|
---|
267 | exec_unit_count = 1;
|
---|
268 | exec_units[0].strand_count = cpu_count;
|
---|
269 | exec_units[0].exec_unit_id = 1;
|
---|
270 | spinlock_initialize(&(exec_units[0].proposed_nrdy_lock), "exec_units[0].proposed_nrdy_lock");
|
---|
271 | atomic_store(&(exec_units[0].nrdy), 0);
|
---|
272 | max_core_strands = cpu_count;
|
---|
273 |
|
---|
274 | /* browse CPUs again, assign them the fictional exec. unit */
|
---|
275 | node = md_get_root();
|
---|
276 | unsigned int i = 0;
|
---|
277 |
|
---|
278 | while (md_next_node(&node, "cpu")) {
|
---|
279 | uint64_t cpuid;
|
---|
280 | md_get_integer_property(node, "id", &cpuid);
|
---|
281 | if (cpuid == myid) {
|
---|
282 | bsp_core_strand_index = i;
|
---|
283 | }
|
---|
284 | exec_units[0].cpuids[i++] = cpuid;
|
---|
285 | }
|
---|
286 | }
|
---|
287 |
|
---|
288 | /*
|
---|
289 | * Reorder the execution units array elements and the cpuid array
|
---|
290 | * elements so that the BSP will always be the very first CPU of
|
---|
291 | * the very first execution unit.
|
---|
292 | */
|
---|
293 | exec_unit_t temp_exec_unit = exec_units[0];
|
---|
294 | exec_units[0] = exec_units[bsp_exec_unit_index];
|
---|
295 | exec_units[bsp_exec_unit_index] = temp_exec_unit;
|
---|
296 |
|
---|
297 | uint64_t temp_cpuid = exec_units[0].cpuids[0];
|
---|
298 | exec_units[0].cpuids[0] = exec_units[0].cpuids[bsp_exec_unit_index];
|
---|
299 | exec_units[0].cpuids[bsp_core_strand_index] = temp_cpuid;
|
---|
300 |
|
---|
301 | }
|
---|
302 |
|
---|
303 | /**
|
---|
304 | * Determine number of processors and detect physical cores. On Simics
|
---|
305 | * copy the code which will be executed by the AP when the BSP sends an
|
---|
306 | * IPI to it in order to make it execute HelenOS code.
|
---|
307 | */
|
---|
308 | void smp_init(void)
|
---|
309 | {
|
---|
310 | detect_execution_units();
|
---|
311 | }
|
---|
312 |
|
---|
313 | /**
|
---|
314 | * For each CPU sets the value of cpus[i].arch.id, where i is the
|
---|
315 | * index of the CPU in the cpus variable, to the cpuid of the i-th processor
|
---|
316 | * to be run. The CPUs are run such that the CPU represented by cpus[0]
|
---|
317 | * is run first, cpus[1] is run after it, and cpus[cpu_count - 1] is run as the
|
---|
318 | * last one.
|
---|
319 | *
|
---|
320 | * The CPU IDs are set such that during waking the CPUs up the
|
---|
321 | * processor cores will be alternated, i.e. first one CPU from the first core
|
---|
322 | * will be run, after that one CPU from the second CPU core will be run,...
|
---|
323 | * then one CPU from the last core will be run, after that another CPU
|
---|
324 | * from the first core will be run, then another CPU from the second core
|
---|
325 | * will be run,... then another CPU from the last core will be run, and so on.
|
---|
326 | */
|
---|
327 | static void init_cpuids(void)
|
---|
328 | {
|
---|
329 | unsigned int cur_core_strand;
|
---|
330 | unsigned int cur_core;
|
---|
331 | unsigned int cur_cpu = 0;
|
---|
332 |
|
---|
333 | for (cur_core_strand = 0; cur_core_strand < max_core_strands; cur_core_strand++) {
|
---|
334 | for (cur_core = 0; cur_core < exec_unit_count; cur_core++) {
|
---|
335 | if (cur_core_strand > exec_units[cur_core].strand_count)
|
---|
336 | continue;
|
---|
337 |
|
---|
338 | cpus[cur_cpu].arch.exec_unit = &(exec_units[cur_core]);
|
---|
339 | atomic_add(&(exec_units[cur_core].nrdy), atomic_load(&(cpus[cur_cpu].nrdy)));
|
---|
340 | cpus[cur_cpu].arch.id = exec_units[cur_core].cpuids[cur_core_strand];
|
---|
341 | exec_units[cur_core].cpus[cur_core_strand] = &(cpus[cur_cpu]);
|
---|
342 | cur_cpu++;
|
---|
343 | }
|
---|
344 | }
|
---|
345 | }
|
---|
346 |
|
---|
347 | /**
|
---|
348 | * Wakes up a single CPU.
|
---|
349 | *
|
---|
350 | * @param cpuid ID of the CPU to be woken up
|
---|
351 | */
|
---|
352 | static bool wake_cpu(uint64_t cpuid)
|
---|
353 | {
|
---|
354 | #ifdef CONFIG_SIMICS_SMP_HACK
|
---|
355 | ipi_unicast_to((void (*)(void)) 1234, cpuid);
|
---|
356 | #else
|
---|
357 | /* stop the CPU before making it execute our code */
|
---|
358 | if (__hypercall_fast1(CPU_STOP, cpuid) != EOK)
|
---|
359 | return false;
|
---|
360 |
|
---|
361 | /* wait for the CPU to stop */
|
---|
362 | uint64_t state;
|
---|
363 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, CPU_STATE, &state);
|
---|
364 | while (state == CPU_STATE_RUNNING)
|
---|
365 | __hypercall_fast_ret1(cpuid, 0, 0, 0, 0, CPU_STATE, &state);
|
---|
366 |
|
---|
367 | /* make the CPU run again and execute HelenOS code */
|
---|
368 | if (__hypercall_fast4(CPU_START, cpuid,
|
---|
369 | (uint64_t) KA2PA(kernel_image_start), KA2PA(trap_table),
|
---|
370 | physmem_base) != EOK)
|
---|
371 | return false;
|
---|
372 | #endif
|
---|
373 |
|
---|
374 | if (waitq_sleep_timeout(&ap_completion_wq, 10000000,
|
---|
375 | SYNCH_FLAGS_NONE, NULL) == ETIMEOUT)
|
---|
376 | printf("%s: waiting for processor (cpuid = %" PRIu64 ") timed out\n",
|
---|
377 | __func__, cpuid);
|
---|
378 |
|
---|
379 | return true;
|
---|
380 | }
|
---|
381 |
|
---|
382 | /** Wake application processors up. */
|
---|
383 | void kmp(void *arg)
|
---|
384 | {
|
---|
385 | init_cpuids();
|
---|
386 |
|
---|
387 | unsigned int i;
|
---|
388 |
|
---|
389 | for (i = 1; i < config.cpu_count; i++) {
|
---|
390 | wake_cpu(cpus[i].arch.id);
|
---|
391 | }
|
---|
392 | }
|
---|
393 |
|
---|
394 | /** @}
|
---|
395 | */
|
---|