source: mainline/kernel/arch/amd64/src/pm.c

Last change on this file was b169619, checked in by Jiří Zárevúcky <zarevucky.jiri@…>, 20 months ago

Deduplicate mem functions

There are a number of functions which are copied between
kernel, libc, and potentially boot too. mem*() functions
are first such offenders. All this duplicate code will
be moved to directory 'common'.

  • Property mode set to 100644
File size: 8.3 KB
Line 
1/*
2 * Copyright (c) 2008 Jakub Jermar
3 * Copyright (c) 2005-2006 Ondrej Palkovsky
4 * All rights reserved.
5 *
6 * Redistribution and use in source and binary forms, with or without
7 * modification, are permitted provided that the following conditions
8 * are met:
9 *
10 * - Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * - Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * - The name of the author may not be used to endorse or promote products
16 * derived from this software without specific prior written permission.
17 *
18 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
19 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
20 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
21 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
22 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
23 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
24 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
25 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
26 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
27 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
28 */
29
30/** @addtogroup kernel_amd64
31 * @{
32 */
33/** @file
34 */
35
36#include <arch.h>
37#include <arch/pm.h>
38#include <arch/asm.h>
39#include <mm/as.h>
40#include <mm/frame.h>
41#include <memw.h>
42#include <stdlib.h>
43
44/*
45 * There is no segmentation in long mode so we set up flat mode. In this
46 * mode, we use, for each privilege level, two segments spanning the
47 * whole memory. One is for code and one is for data.
48 */
49
50descriptor_t gdt[GDT_ITEMS] = {
51 [NULL_DES] = {
52 0
53 },
54 [KTEXT_DES] = {
55 .limit_0_15 = 0xffffU,
56 .limit_16_19 = 0xfU,
57 .access = AR_PRESENT | AR_CODE | DPL_KERNEL | AR_READABLE,
58 .longmode = 1,
59 .granularity = 1
60 },
61 [KDATA_DES] = {
62 .limit_0_15 = 0xffffU,
63 .limit_16_19 = 0xfU,
64 .access = AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL,
65 .granularity = 1
66 },
67 [UDATA_DES] = {
68 .limit_0_15 = 0xffffU,
69 .limit_16_19 = 0xfU,
70 .access = AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER,
71 .special = 1,
72 .granularity = 1
73 },
74 [UTEXT_DES] = {
75 .limit_0_15 = 0xffffU,
76 .limit_16_19 = 0xfU,
77 .access = AR_PRESENT | AR_CODE | DPL_USER,
78 .longmode = 1,
79 .granularity = 1
80 },
81 [KTEXT32_DES] = {
82 .limit_0_15 = 0xffffU,
83 .limit_16_19 = 0xfU,
84 .access = AR_PRESENT | AR_CODE | DPL_KERNEL | AR_READABLE,
85 .special = 1,
86 .granularity = 1
87 },
88 /*
89 * TSS descriptor - set up will be completed later,
90 * on AMD64 it is 64-bit - 2 items in the table
91 */
92 [TSS_DES] = {
93 0
94 },
95 [TSS_DES + 1] = {
96 0
97 },
98 /* VESA Init descriptor */
99#ifdef CONFIG_FB
100 [VESA_INIT_CODE_DES] = {
101 .limit_0_15 = 0xffff,
102 .limit_16_19 = 0xf,
103 .base_16_23 = VESA_INIT_SEGMENT >> 12,
104 .access = AR_PRESENT | AR_CODE | AR_READABLE | DPL_KERNEL
105 },
106 [VESA_INIT_DATA_DES] = {
107 .limit_0_15 = 0xffff,
108 .limit_16_19 = 0xf,
109 .base_16_23 = VESA_INIT_SEGMENT >> 12,
110 .access = AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL
111 }
112#endif
113};
114
115idescriptor_t idt[IDT_ITEMS];
116
117ptr_16_64_t gdtr = {
118 .limit = sizeof(gdt),
119 .base = (uint64_t) gdt
120};
121ptr_16_64_t idtr = {
122 .limit = sizeof(idt),
123 .base = (uint64_t) idt
124};
125
126static tss_t tss;
127tss_t *tss_p = NULL;
128
129void gdt_tss_setbase(descriptor_t *d, uintptr_t base)
130{
131 tss_descriptor_t *td = (tss_descriptor_t *) d;
132
133 td->base_0_15 = base & 0xffffU;
134 td->base_16_23 = ((base) >> 16) & 0xffU;
135 td->base_24_31 = ((base) >> 24) & 0xffU;
136 td->base_32_63 = ((base) >> 32);
137}
138
139void gdt_tss_setlimit(descriptor_t *d, uint32_t limit)
140{
141 tss_descriptor_t *td = (tss_descriptor_t *) d;
142
143 td->limit_0_15 = limit & 0xffffU;
144 td->limit_16_19 = (limit >> 16) & 0x0fU;
145}
146
147void idt_setoffset(idescriptor_t *d, uintptr_t offset)
148{
149 /*
150 * Offset is a linear address.
151 */
152 d->offset_0_15 = offset & 0xffffU;
153 d->offset_16_31 = (offset >> 16) & 0xffffU;
154 d->offset_32_63 = offset >> 32;
155}
156
157void tss_initialize(tss_t *t)
158{
159 memsetb(t, sizeof(tss_t), 0);
160}
161
162/*
163 * This function takes care of proper setup of IDT and IDTR.
164 */
165void idt_init(void)
166{
167 idescriptor_t *d;
168
169 for (unsigned i = 0; i < IDT_ITEMS; i++) {
170 d = &idt[i];
171
172 d->unused = 0;
173 d->selector = GDT_SELECTOR(KTEXT_DES);
174
175 d->present = 1;
176 d->type = AR_INTERRUPT; /* masking interrupt */
177
178 d->dpl = PL_KERNEL;
179 d->ist = 0;
180 }
181
182 d = &idt[0];
183 idt_setoffset(d++, (uintptr_t) &int_0);
184 idt_setoffset(d++, (uintptr_t) &int_1);
185 idt_setoffset(d++, (uintptr_t) &int_2);
186 idt_setoffset(d++, (uintptr_t) &int_3);
187 idt_setoffset(d++, (uintptr_t) &int_4);
188 idt_setoffset(d++, (uintptr_t) &int_5);
189 idt_setoffset(d++, (uintptr_t) &int_6);
190 idt_setoffset(d++, (uintptr_t) &int_7);
191 idt_setoffset(d++, (uintptr_t) &int_8);
192 idt_setoffset(d++, (uintptr_t) &int_9);
193 idt_setoffset(d++, (uintptr_t) &int_10);
194 idt_setoffset(d++, (uintptr_t) &int_11);
195 idt_setoffset(d++, (uintptr_t) &int_12);
196 idt_setoffset(d++, (uintptr_t) &int_13);
197 idt_setoffset(d++, (uintptr_t) &int_14);
198 idt_setoffset(d++, (uintptr_t) &int_15);
199 idt_setoffset(d++, (uintptr_t) &int_16);
200 idt_setoffset(d++, (uintptr_t) &int_17);
201 idt_setoffset(d++, (uintptr_t) &int_18);
202 idt_setoffset(d++, (uintptr_t) &int_19);
203 idt_setoffset(d++, (uintptr_t) &int_20);
204 idt_setoffset(d++, (uintptr_t) &int_21);
205 idt_setoffset(d++, (uintptr_t) &int_22);
206 idt_setoffset(d++, (uintptr_t) &int_23);
207 idt_setoffset(d++, (uintptr_t) &int_24);
208 idt_setoffset(d++, (uintptr_t) &int_25);
209 idt_setoffset(d++, (uintptr_t) &int_26);
210 idt_setoffset(d++, (uintptr_t) &int_27);
211 idt_setoffset(d++, (uintptr_t) &int_28);
212 idt_setoffset(d++, (uintptr_t) &int_29);
213 idt_setoffset(d++, (uintptr_t) &int_30);
214 idt_setoffset(d++, (uintptr_t) &int_31);
215 idt_setoffset(d++, (uintptr_t) &int_32);
216 idt_setoffset(d++, (uintptr_t) &int_33);
217 idt_setoffset(d++, (uintptr_t) &int_34);
218 idt_setoffset(d++, (uintptr_t) &int_35);
219 idt_setoffset(d++, (uintptr_t) &int_36);
220 idt_setoffset(d++, (uintptr_t) &int_37);
221 idt_setoffset(d++, (uintptr_t) &int_38);
222 idt_setoffset(d++, (uintptr_t) &int_39);
223 idt_setoffset(d++, (uintptr_t) &int_40);
224 idt_setoffset(d++, (uintptr_t) &int_41);
225 idt_setoffset(d++, (uintptr_t) &int_42);
226 idt_setoffset(d++, (uintptr_t) &int_43);
227 idt_setoffset(d++, (uintptr_t) &int_44);
228 idt_setoffset(d++, (uintptr_t) &int_45);
229 idt_setoffset(d++, (uintptr_t) &int_46);
230 idt_setoffset(d++, (uintptr_t) &int_47);
231 idt_setoffset(d++, (uintptr_t) &int_48);
232 idt_setoffset(d++, (uintptr_t) &int_49);
233 idt_setoffset(d++, (uintptr_t) &int_50);
234 idt_setoffset(d++, (uintptr_t) &int_51);
235 idt_setoffset(d++, (uintptr_t) &int_52);
236 idt_setoffset(d++, (uintptr_t) &int_53);
237 idt_setoffset(d++, (uintptr_t) &int_54);
238 idt_setoffset(d++, (uintptr_t) &int_55);
239 idt_setoffset(d++, (uintptr_t) &int_56);
240 idt_setoffset(d++, (uintptr_t) &int_57);
241 idt_setoffset(d++, (uintptr_t) &int_58);
242 idt_setoffset(d++, (uintptr_t) &int_59);
243 idt_setoffset(d++, (uintptr_t) &int_60);
244 idt_setoffset(d++, (uintptr_t) &int_61);
245 idt_setoffset(d++, (uintptr_t) &int_62);
246 idt_setoffset(d++, (uintptr_t) &int_63);
247}
248
249/** Initialize segmentation - code/data/idt tables
250 *
251 */
252void pm_init(void)
253{
254 descriptor_t *gdt_p = (descriptor_t *) gdtr.base;
255 tss_descriptor_t *tss_desc;
256
257 /*
258 * Each CPU has its private GDT and TSS.
259 * All CPUs share one IDT.
260 */
261
262 if (config.cpu_active == 1) {
263 idt_init();
264 /*
265 * NOTE: bootstrap CPU has statically allocated TSS, because
266 * the heap hasn't been initialized so far.
267 */
268 tss_p = &tss;
269 } else {
270 /*
271 * We are going to use malloc, which may return
272 * non boot-mapped pointer, initialize the CR3 register
273 * ahead of page_init
274 */
275 write_cr3((uintptr_t) AS_KERNEL->genarch.page_table);
276
277 tss_p = (tss_t *) malloc(sizeof(tss_t));
278 if (!tss_p)
279 panic("Cannot allocate TSS.");
280 }
281
282 tss_initialize(tss_p);
283
284 tss_desc = (tss_descriptor_t *) (&gdt_p[TSS_DES]);
285 tss_desc->present = 1;
286 tss_desc->type = AR_TSS;
287 tss_desc->dpl = PL_KERNEL;
288
289 gdt_tss_setbase(&gdt_p[TSS_DES], (uintptr_t) tss_p);
290 gdt_tss_setlimit(&gdt_p[TSS_DES], TSS_BASIC_SIZE - 1);
291
292 gdtr_load(&gdtr);
293 idtr_load(&idtr);
294 /*
295 * As of this moment, the current CPU has its own GDT pointing
296 * to its own TSS. We just need to load the TR register.
297 */
298 tr_load(GDT_SELECTOR(TSS_DES));
299}
300
301/** @}
302 */
Note: See TracBrowser for help on using the repository browser.