1 | /*
|
---|
2 | * Copyright (C) 2006 Ondrej Palkovsky
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * The SLAB allocator is closely modelled after Opensolaris SLAB allocator
|
---|
31 | * http://www.usenix.org/events/usenix01/full_papers/bonwick/bonwick_html/
|
---|
32 | *
|
---|
33 | * with the following exceptions:
|
---|
34 | * - empty SLABS are deallocated immediately
|
---|
35 | * (in Linux they are kept in linked list, in Solaris ???)
|
---|
36 | * - empty magazines are deallocated when not needed
|
---|
37 | * (in Solaris they are held in linked list in slab cache)
|
---|
38 | *
|
---|
39 | * Following features are not currently supported but would be easy to do:
|
---|
40 | * - cache coloring
|
---|
41 | * - dynamic magazine growing (different magazine sizes are already
|
---|
42 | * supported, but we would need to adjust allocating strategy)
|
---|
43 | *
|
---|
44 | * The SLAB allocator supports per-CPU caches ('magazines') to facilitate
|
---|
45 | * good SMP scaling.
|
---|
46 | *
|
---|
47 | * When a new object is being allocated, it is first checked, if it is
|
---|
48 | * available in CPU-bound magazine. If it is not found there, it is
|
---|
49 | * allocated from CPU-shared SLAB - if partial full is found, it is used,
|
---|
50 | * otherwise a new one is allocated.
|
---|
51 | *
|
---|
52 | * When an object is being deallocated, it is put to CPU-bound magazine.
|
---|
53 | * If there is no such magazine, new one is allocated (if it fails,
|
---|
54 | * the object is deallocated into SLAB). If the magazine is full, it is
|
---|
55 | * put into cpu-shared list of magazines and new one is allocated.
|
---|
56 | *
|
---|
57 | * The CPU-bound magazine is actually a pair of magazine to avoid
|
---|
58 | * thrashing when somebody is allocating/deallocating 1 item at the magazine
|
---|
59 | * size boundary. LIFO order is enforced, which should avoid fragmentation
|
---|
60 | * as much as possible.
|
---|
61 | *
|
---|
62 | * Every cache contains list of full slabs and list of partialy full slabs.
|
---|
63 | * Empty SLABS are immediately freed (thrashing will be avoided because
|
---|
64 | * of magazines).
|
---|
65 | *
|
---|
66 | * The SLAB information structure is kept inside the data area, if possible.
|
---|
67 | * The cache can be marked that it should not use magazines. This is used
|
---|
68 | * only for SLAB related caches to avoid deadlocks and infinite recursion
|
---|
69 | * (the SLAB allocator uses itself for allocating all it's control structures).
|
---|
70 | *
|
---|
71 | * The SLAB allocator allocates lot of space and does not free it. When
|
---|
72 | * frame allocator fails to allocate the frame, it calls slab_reclaim().
|
---|
73 | * It tries 'light reclaim' first, then brutal reclaim. The light reclaim
|
---|
74 | * releases slabs from cpu-shared magazine-list, until at least 1 slab
|
---|
75 | * is deallocated in each cache (this algorithm should probably change).
|
---|
76 | * The brutal reclaim removes all cached objects, even from CPU-bound
|
---|
77 | * magazines.
|
---|
78 | *
|
---|
79 | *
|
---|
80 | */
|
---|
81 |
|
---|
82 |
|
---|
83 | #include <synch/spinlock.h>
|
---|
84 | #include <mm/slab.h>
|
---|
85 | #include <list.h>
|
---|
86 | #include <memstr.h>
|
---|
87 | #include <align.h>
|
---|
88 | #include <mm/heap.h>
|
---|
89 | #include <mm/frame.h>
|
---|
90 | #include <config.h>
|
---|
91 | #include <print.h>
|
---|
92 | #include <arch.h>
|
---|
93 | #include <panic.h>
|
---|
94 | #include <debug.h>
|
---|
95 | #include <bitops.h>
|
---|
96 |
|
---|
97 | SPINLOCK_INITIALIZE(slab_cache_lock);
|
---|
98 | static LIST_INITIALIZE(slab_cache_list);
|
---|
99 |
|
---|
100 | /** Magazine cache */
|
---|
101 | static slab_cache_t mag_cache;
|
---|
102 | /** Cache for cache descriptors */
|
---|
103 | static slab_cache_t slab_cache_cache;
|
---|
104 |
|
---|
105 | /** Cache for external slab descriptors
|
---|
106 | * This time we want per-cpu cache, so do not make it static
|
---|
107 | * - using SLAB for internal SLAB structures will not deadlock,
|
---|
108 | * as all slab structures are 'small' - control structures of
|
---|
109 | * their caches do not require further allocation
|
---|
110 | */
|
---|
111 | static slab_cache_t *slab_extern_cache;
|
---|
112 | /** Caches for malloc */
|
---|
113 | static slab_cache_t *malloc_caches[SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1];
|
---|
114 | char *malloc_names[] = {
|
---|
115 | "malloc-8","malloc-16","malloc-32","malloc-64","malloc-128",
|
---|
116 | "malloc-256","malloc-512","malloc-1K","malloc-2K",
|
---|
117 | "malloc-4K","malloc-8K","malloc-16K","malloc-32K",
|
---|
118 | "malloc-64K","malloc-128K"
|
---|
119 | };
|
---|
120 |
|
---|
121 | /** Slab descriptor */
|
---|
122 | typedef struct {
|
---|
123 | slab_cache_t *cache; /**< Pointer to parent cache */
|
---|
124 | link_t link; /* List of full/partial slabs */
|
---|
125 | void *start; /**< Start address of first available item */
|
---|
126 | count_t available; /**< Count of available items in this slab */
|
---|
127 | index_t nextavail; /**< The index of next available item */
|
---|
128 | }slab_t;
|
---|
129 |
|
---|
130 | /**************************************/
|
---|
131 | /* SLAB allocation functions */
|
---|
132 |
|
---|
133 | /**
|
---|
134 | * Allocate frames for slab space and initialize
|
---|
135 | *
|
---|
136 | */
|
---|
137 | static slab_t * slab_space_alloc(slab_cache_t *cache, int flags)
|
---|
138 | {
|
---|
139 | void *data;
|
---|
140 | slab_t *slab;
|
---|
141 | size_t fsize;
|
---|
142 | int i;
|
---|
143 | zone_t *zone = NULL;
|
---|
144 | int status;
|
---|
145 | frame_t *frame;
|
---|
146 |
|
---|
147 | data = (void *)frame_alloc(FRAME_KA | flags, cache->order, &status, &zone);
|
---|
148 | if (status != FRAME_OK) {
|
---|
149 | return NULL;
|
---|
150 | }
|
---|
151 | if (! (cache->flags & SLAB_CACHE_SLINSIDE)) {
|
---|
152 | slab = slab_alloc(slab_extern_cache, flags);
|
---|
153 | if (!slab) {
|
---|
154 | frame_free((__address)data);
|
---|
155 | return NULL;
|
---|
156 | }
|
---|
157 | } else {
|
---|
158 | fsize = (PAGE_SIZE << cache->order);
|
---|
159 | slab = data + fsize - sizeof(*slab);
|
---|
160 | }
|
---|
161 |
|
---|
162 | /* Fill in slab structures */
|
---|
163 | /* TODO: some better way of accessing the frame */
|
---|
164 | for (i=0; i < (1 << cache->order); i++) {
|
---|
165 | frame = ADDR2FRAME(zone, KA2PA((__address)(data+i*PAGE_SIZE)));
|
---|
166 | frame->parent = slab;
|
---|
167 | }
|
---|
168 |
|
---|
169 | slab->start = data;
|
---|
170 | slab->available = cache->objects;
|
---|
171 | slab->nextavail = 0;
|
---|
172 | slab->cache = cache;
|
---|
173 |
|
---|
174 | for (i=0; i<cache->objects;i++)
|
---|
175 | *((int *) (slab->start + i*cache->size)) = i+1;
|
---|
176 |
|
---|
177 | atomic_inc(&cache->allocated_slabs);
|
---|
178 | return slab;
|
---|
179 | }
|
---|
180 |
|
---|
181 | /**
|
---|
182 | * Deallocate space associated with SLAB
|
---|
183 | *
|
---|
184 | * @return number of freed frames
|
---|
185 | */
|
---|
186 | static count_t slab_space_free(slab_cache_t *cache, slab_t *slab)
|
---|
187 | {
|
---|
188 | frame_free((__address)slab->start);
|
---|
189 | if (! (cache->flags & SLAB_CACHE_SLINSIDE))
|
---|
190 | slab_free(slab_extern_cache, slab);
|
---|
191 |
|
---|
192 | atomic_dec(&cache->allocated_slabs);
|
---|
193 |
|
---|
194 | return 1 << cache->order;
|
---|
195 | }
|
---|
196 |
|
---|
197 | /** Map object to slab structure */
|
---|
198 | static slab_t * obj2slab(void *obj)
|
---|
199 | {
|
---|
200 | frame_t *frame;
|
---|
201 |
|
---|
202 | frame = frame_addr2frame((__address)obj);
|
---|
203 | return (slab_t *)frame->parent;
|
---|
204 | }
|
---|
205 |
|
---|
206 | /**************************************/
|
---|
207 | /* SLAB functions */
|
---|
208 |
|
---|
209 |
|
---|
210 | /**
|
---|
211 | * Return object to slab and call a destructor
|
---|
212 | *
|
---|
213 | * Assume the cache->lock is held;
|
---|
214 | *
|
---|
215 | * @param slab If the caller knows directly slab of the object, otherwise NULL
|
---|
216 | *
|
---|
217 | * @return Number of freed pages
|
---|
218 | */
|
---|
219 | static count_t slab_obj_destroy(slab_cache_t *cache, void *obj,
|
---|
220 | slab_t *slab)
|
---|
221 | {
|
---|
222 | count_t frames = 0;
|
---|
223 |
|
---|
224 | if (!slab)
|
---|
225 | slab = obj2slab(obj);
|
---|
226 |
|
---|
227 | ASSERT(slab->cache == cache);
|
---|
228 |
|
---|
229 | *((int *)obj) = slab->nextavail;
|
---|
230 | slab->nextavail = (obj - slab->start)/cache->size;
|
---|
231 | slab->available++;
|
---|
232 |
|
---|
233 | /* Move it to correct list */
|
---|
234 | if (slab->available == 1) {
|
---|
235 | /* It was in full, move to partial */
|
---|
236 | list_remove(&slab->link);
|
---|
237 | list_prepend(&slab->link, &cache->partial_slabs);
|
---|
238 | }
|
---|
239 | if (slab->available == cache->objects) {
|
---|
240 | /* Free associated memory */
|
---|
241 | list_remove(&slab->link);
|
---|
242 | /* Avoid deadlock */
|
---|
243 | spinlock_unlock(&cache->lock);
|
---|
244 | frames = slab_space_free(cache, slab);
|
---|
245 | spinlock_lock(&cache->lock);
|
---|
246 | }
|
---|
247 |
|
---|
248 | return frames;
|
---|
249 | }
|
---|
250 |
|
---|
251 | /**
|
---|
252 | * Take new object from slab or create new if needed
|
---|
253 | *
|
---|
254 | * Assume cache->lock is held.
|
---|
255 | *
|
---|
256 | * @return Object address or null
|
---|
257 | */
|
---|
258 | static void * slab_obj_create(slab_cache_t *cache, int flags)
|
---|
259 | {
|
---|
260 | slab_t *slab;
|
---|
261 | void *obj;
|
---|
262 |
|
---|
263 | if (list_empty(&cache->partial_slabs)) {
|
---|
264 | /* Allow recursion and reclaiming
|
---|
265 | * - this should work, as the SLAB control structures
|
---|
266 | * are small and do not need to allocte with anything
|
---|
267 | * other ten frame_alloc when they are allocating,
|
---|
268 | * that's why we should get recursion at most 1-level deep
|
---|
269 | */
|
---|
270 | spinlock_unlock(&cache->lock);
|
---|
271 | slab = slab_space_alloc(cache, flags);
|
---|
272 | spinlock_lock(&cache->lock);
|
---|
273 | if (!slab) {
|
---|
274 | return NULL;
|
---|
275 | }
|
---|
276 | } else {
|
---|
277 | slab = list_get_instance(cache->partial_slabs.next,
|
---|
278 | slab_t,
|
---|
279 | link);
|
---|
280 | list_remove(&slab->link);
|
---|
281 | }
|
---|
282 | obj = slab->start + slab->nextavail * cache->size;
|
---|
283 | slab->nextavail = *((int *)obj);
|
---|
284 | slab->available--;
|
---|
285 | if (! slab->available)
|
---|
286 | list_prepend(&slab->link, &cache->full_slabs);
|
---|
287 | else
|
---|
288 | list_prepend(&slab->link, &cache->partial_slabs);
|
---|
289 | return obj;
|
---|
290 | }
|
---|
291 |
|
---|
292 | /**************************************/
|
---|
293 | /* CPU-Cache slab functions */
|
---|
294 |
|
---|
295 | /**
|
---|
296 | * Free all objects in magazine and free memory associated with magazine
|
---|
297 | *
|
---|
298 | * Assume mag_cache[cpu].lock is locked
|
---|
299 | *
|
---|
300 | * @return Number of freed pages
|
---|
301 | */
|
---|
302 | static count_t magazine_destroy(slab_cache_t *cache,
|
---|
303 | slab_magazine_t *mag)
|
---|
304 | {
|
---|
305 | int i;
|
---|
306 | count_t frames = 0;
|
---|
307 |
|
---|
308 | for (i=0;i < mag->busy; i++) {
|
---|
309 | frames += slab_obj_destroy(cache, mag->objs[i], NULL);
|
---|
310 | atomic_dec(&cache->cached_objs);
|
---|
311 | }
|
---|
312 |
|
---|
313 | slab_free(&mag_cache, mag);
|
---|
314 |
|
---|
315 | return frames;
|
---|
316 | }
|
---|
317 |
|
---|
318 | /**
|
---|
319 | * Find full magazine, set it as current and return it
|
---|
320 | *
|
---|
321 | * Assume cpu_magazine lock is held
|
---|
322 | */
|
---|
323 | static slab_magazine_t * get_full_current_mag(slab_cache_t *cache)
|
---|
324 | {
|
---|
325 | slab_magazine_t *cmag, *lastmag, *newmag;
|
---|
326 |
|
---|
327 | cmag = cache->mag_cache[CPU->id].current;
|
---|
328 | lastmag = cache->mag_cache[CPU->id].last;
|
---|
329 | if (cmag) { /* First try local CPU magazines */
|
---|
330 | if (cmag->busy)
|
---|
331 | return cmag;
|
---|
332 |
|
---|
333 | if (lastmag && lastmag->busy) {
|
---|
334 | cache->mag_cache[CPU->id].current = lastmag;
|
---|
335 | cache->mag_cache[CPU->id].last = cmag;
|
---|
336 | return lastmag;
|
---|
337 | }
|
---|
338 | }
|
---|
339 | /* Local magazines are empty, import one from magazine list */
|
---|
340 | spinlock_lock(&cache->lock);
|
---|
341 | if (list_empty(&cache->magazines)) {
|
---|
342 | spinlock_unlock(&cache->lock);
|
---|
343 | return NULL;
|
---|
344 | }
|
---|
345 | newmag = list_get_instance(cache->magazines.next,
|
---|
346 | slab_magazine_t,
|
---|
347 | link);
|
---|
348 | list_remove(&newmag->link);
|
---|
349 | spinlock_unlock(&cache->lock);
|
---|
350 |
|
---|
351 | if (lastmag)
|
---|
352 | slab_free(&mag_cache, lastmag);
|
---|
353 | cache->mag_cache[CPU->id].last = cmag;
|
---|
354 | cache->mag_cache[CPU->id].current = newmag;
|
---|
355 | return newmag;
|
---|
356 | }
|
---|
357 |
|
---|
358 | /**
|
---|
359 | * Try to find object in CPU-cache magazines
|
---|
360 | *
|
---|
361 | * @return Pointer to object or NULL if not available
|
---|
362 | */
|
---|
363 | static void * magazine_obj_get(slab_cache_t *cache)
|
---|
364 | {
|
---|
365 | slab_magazine_t *mag;
|
---|
366 | void *obj;
|
---|
367 |
|
---|
368 | if (!CPU)
|
---|
369 | return NULL;
|
---|
370 |
|
---|
371 | spinlock_lock(&cache->mag_cache[CPU->id].lock);
|
---|
372 |
|
---|
373 | mag = get_full_current_mag(cache);
|
---|
374 | if (!mag) {
|
---|
375 | spinlock_unlock(&cache->mag_cache[CPU->id].lock);
|
---|
376 | return NULL;
|
---|
377 | }
|
---|
378 | obj = mag->objs[--mag->busy];
|
---|
379 | spinlock_unlock(&cache->mag_cache[CPU->id].lock);
|
---|
380 | atomic_dec(&cache->cached_objs);
|
---|
381 |
|
---|
382 | return obj;
|
---|
383 | }
|
---|
384 |
|
---|
385 | /**
|
---|
386 | * Assure that the current magazine is empty, return pointer to it, or NULL if
|
---|
387 | * no empty magazine is available and cannot be allocated
|
---|
388 | *
|
---|
389 | * Assume mag_cache[CPU->id].lock is held
|
---|
390 | *
|
---|
391 | * We have 2 magazines bound to processor.
|
---|
392 | * First try the current.
|
---|
393 | * If full, try the last.
|
---|
394 | * If full, put to magazines list.
|
---|
395 | * allocate new, exchange last & current
|
---|
396 | *
|
---|
397 | */
|
---|
398 | static slab_magazine_t * make_empty_current_mag(slab_cache_t *cache)
|
---|
399 | {
|
---|
400 | slab_magazine_t *cmag,*lastmag,*newmag;
|
---|
401 |
|
---|
402 | cmag = cache->mag_cache[CPU->id].current;
|
---|
403 | lastmag = cache->mag_cache[CPU->id].last;
|
---|
404 |
|
---|
405 | if (cmag) {
|
---|
406 | if (cmag->busy < cmag->size)
|
---|
407 | return cmag;
|
---|
408 | if (lastmag && lastmag->busy < lastmag->size) {
|
---|
409 | cache->mag_cache[CPU->id].last = cmag;
|
---|
410 | cache->mag_cache[CPU->id].current = lastmag;
|
---|
411 | return lastmag;
|
---|
412 | }
|
---|
413 | }
|
---|
414 | /* current | last are full | nonexistent, allocate new */
|
---|
415 | /* We do not want to sleep just because of caching */
|
---|
416 | /* Especially we do not want reclaiming to start, as
|
---|
417 | * this would deadlock */
|
---|
418 | newmag = slab_alloc(&mag_cache, FRAME_ATOMIC | FRAME_NO_RECLAIM);
|
---|
419 | if (!newmag)
|
---|
420 | return NULL;
|
---|
421 | newmag->size = SLAB_MAG_SIZE;
|
---|
422 | newmag->busy = 0;
|
---|
423 |
|
---|
424 | /* Flush last to magazine list */
|
---|
425 | if (lastmag) {
|
---|
426 | spinlock_lock(&cache->lock);
|
---|
427 | list_prepend(&lastmag->link, &cache->magazines);
|
---|
428 | spinlock_unlock(&cache->lock);
|
---|
429 | }
|
---|
430 | /* Move current as last, save new as current */
|
---|
431 | cache->mag_cache[CPU->id].last = cmag;
|
---|
432 | cache->mag_cache[CPU->id].current = newmag;
|
---|
433 |
|
---|
434 | return newmag;
|
---|
435 | }
|
---|
436 |
|
---|
437 | /**
|
---|
438 | * Put object into CPU-cache magazine
|
---|
439 | *
|
---|
440 | * @return 0 - success, -1 - could not get memory
|
---|
441 | */
|
---|
442 | static int magazine_obj_put(slab_cache_t *cache, void *obj)
|
---|
443 | {
|
---|
444 | slab_magazine_t *mag;
|
---|
445 |
|
---|
446 | if (!CPU)
|
---|
447 | return -1;
|
---|
448 |
|
---|
449 | spinlock_lock(&cache->mag_cache[CPU->id].lock);
|
---|
450 |
|
---|
451 | mag = make_empty_current_mag(cache);
|
---|
452 | if (!mag) {
|
---|
453 | spinlock_unlock(&cache->mag_cache[CPU->id].lock);
|
---|
454 | return -1;
|
---|
455 | }
|
---|
456 |
|
---|
457 | mag->objs[mag->busy++] = obj;
|
---|
458 |
|
---|
459 | spinlock_unlock(&cache->mag_cache[CPU->id].lock);
|
---|
460 | atomic_inc(&cache->cached_objs);
|
---|
461 | return 0;
|
---|
462 | }
|
---|
463 |
|
---|
464 |
|
---|
465 | /**************************************/
|
---|
466 | /* SLAB CACHE functions */
|
---|
467 |
|
---|
468 | /** Return number of objects that fit in certain cache size */
|
---|
469 | static int comp_objects(slab_cache_t *cache)
|
---|
470 | {
|
---|
471 | if (cache->flags & SLAB_CACHE_SLINSIDE)
|
---|
472 | return ((PAGE_SIZE << cache->order) - sizeof(slab_t)) / cache->size;
|
---|
473 | else
|
---|
474 | return (PAGE_SIZE << cache->order) / cache->size;
|
---|
475 | }
|
---|
476 |
|
---|
477 | /** Return wasted space in slab */
|
---|
478 | static int badness(slab_cache_t *cache)
|
---|
479 | {
|
---|
480 | int objects;
|
---|
481 | int ssize;
|
---|
482 |
|
---|
483 | objects = comp_objects(cache);
|
---|
484 | ssize = PAGE_SIZE << cache->order;
|
---|
485 | if (cache->flags & SLAB_CACHE_SLINSIDE)
|
---|
486 | ssize -= sizeof(slab_t);
|
---|
487 | return ssize - objects*cache->size;
|
---|
488 | }
|
---|
489 |
|
---|
490 | /** Initialize allocated memory as a slab cache */
|
---|
491 | static void
|
---|
492 | _slab_cache_create(slab_cache_t *cache,
|
---|
493 | char *name,
|
---|
494 | size_t size,
|
---|
495 | size_t align,
|
---|
496 | int (*constructor)(void *obj, int kmflag),
|
---|
497 | void (*destructor)(void *obj),
|
---|
498 | int flags)
|
---|
499 | {
|
---|
500 | int i;
|
---|
501 | int pages;
|
---|
502 |
|
---|
503 | memsetb((__address)cache, sizeof(*cache), 0);
|
---|
504 | cache->name = name;
|
---|
505 |
|
---|
506 | if (align < sizeof(__native))
|
---|
507 | align = sizeof(__native);
|
---|
508 | size = ALIGN_UP(size, align);
|
---|
509 |
|
---|
510 | cache->size = size;
|
---|
511 |
|
---|
512 | cache->constructor = constructor;
|
---|
513 | cache->destructor = destructor;
|
---|
514 | cache->flags = flags;
|
---|
515 |
|
---|
516 | list_initialize(&cache->full_slabs);
|
---|
517 | list_initialize(&cache->partial_slabs);
|
---|
518 | list_initialize(&cache->magazines);
|
---|
519 | spinlock_initialize(&cache->lock, "cachelock");
|
---|
520 | if (! (cache->flags & SLAB_CACHE_NOMAGAZINE)) {
|
---|
521 | for (i=0; i < config.cpu_count; i++) {
|
---|
522 | memsetb((__address)&cache->mag_cache[i],
|
---|
523 | sizeof(cache->mag_cache[i]), 0);
|
---|
524 | spinlock_initialize(&cache->mag_cache[i].lock,
|
---|
525 | "cpucachelock");
|
---|
526 | }
|
---|
527 | }
|
---|
528 |
|
---|
529 | /* Compute slab sizes, object counts in slabs etc. */
|
---|
530 | if (cache->size < SLAB_INSIDE_SIZE)
|
---|
531 | cache->flags |= SLAB_CACHE_SLINSIDE;
|
---|
532 |
|
---|
533 | /* Minimum slab order */
|
---|
534 | pages = ((cache->size-1) >> PAGE_WIDTH) + 1;
|
---|
535 | cache->order = fnzb(pages);
|
---|
536 |
|
---|
537 | while (badness(cache) > SLAB_MAX_BADNESS(cache)) {
|
---|
538 | cache->order += 1;
|
---|
539 | }
|
---|
540 | cache->objects = comp_objects(cache);
|
---|
541 | /* If info fits in, put it inside */
|
---|
542 | if (badness(cache) > sizeof(slab_t))
|
---|
543 | cache->flags |= SLAB_CACHE_SLINSIDE;
|
---|
544 |
|
---|
545 | spinlock_lock(&slab_cache_lock);
|
---|
546 |
|
---|
547 | list_append(&cache->link, &slab_cache_list);
|
---|
548 |
|
---|
549 | spinlock_unlock(&slab_cache_lock);
|
---|
550 | }
|
---|
551 |
|
---|
552 | /** Create slab cache */
|
---|
553 | slab_cache_t * slab_cache_create(char *name,
|
---|
554 | size_t size,
|
---|
555 | size_t align,
|
---|
556 | int (*constructor)(void *obj, int kmflag),
|
---|
557 | void (*destructor)(void *obj),
|
---|
558 | int flags)
|
---|
559 | {
|
---|
560 | slab_cache_t *cache;
|
---|
561 |
|
---|
562 | cache = slab_alloc(&slab_cache_cache, 0);
|
---|
563 | _slab_cache_create(cache, name, size, align, constructor, destructor,
|
---|
564 | flags);
|
---|
565 | return cache;
|
---|
566 | }
|
---|
567 |
|
---|
568 | /**
|
---|
569 | * Reclaim space occupied by objects that are already free
|
---|
570 | *
|
---|
571 | * @param flags If contains SLAB_RECLAIM_ALL, do aggressive freeing
|
---|
572 | * @return Number of freed pages
|
---|
573 | */
|
---|
574 | static count_t _slab_reclaim(slab_cache_t *cache, int flags)
|
---|
575 | {
|
---|
576 | int i;
|
---|
577 | slab_magazine_t *mag;
|
---|
578 | link_t *cur;
|
---|
579 | count_t frames = 0;
|
---|
580 |
|
---|
581 | if (cache->flags & SLAB_CACHE_NOMAGAZINE)
|
---|
582 | return 0; /* Nothing to do */
|
---|
583 |
|
---|
584 | /* First lock all cpu caches, then the complete cache lock */
|
---|
585 | if (flags & SLAB_RECLAIM_ALL) {
|
---|
586 | for (i=0; i < config.cpu_count; i++)
|
---|
587 | spinlock_lock(&cache->mag_cache[i].lock);
|
---|
588 | }
|
---|
589 | spinlock_lock(&cache->lock);
|
---|
590 |
|
---|
591 | if (flags & SLAB_RECLAIM_ALL) {
|
---|
592 | /* Aggressive memfree */
|
---|
593 | /* Destroy CPU magazines */
|
---|
594 | for (i=0; i<config.cpu_count; i++) {
|
---|
595 | mag = cache->mag_cache[i].current;
|
---|
596 | if (mag)
|
---|
597 | frames += magazine_destroy(cache, mag);
|
---|
598 | cache->mag_cache[i].current = NULL;
|
---|
599 |
|
---|
600 | mag = cache->mag_cache[i].last;
|
---|
601 | if (mag)
|
---|
602 | frames += magazine_destroy(cache, mag);
|
---|
603 | cache->mag_cache[i].last = NULL;
|
---|
604 | }
|
---|
605 | }
|
---|
606 | /* Destroy full magazines */
|
---|
607 | cur=cache->magazines.prev;
|
---|
608 |
|
---|
609 | while (cur != &cache->magazines) {
|
---|
610 | mag = list_get_instance(cur, slab_magazine_t, link);
|
---|
611 |
|
---|
612 | cur = cur->prev;
|
---|
613 | list_remove(&mag->link);
|
---|
614 | frames += magazine_destroy(cache,mag);
|
---|
615 | /* If we do not do full reclaim, break
|
---|
616 | * as soon as something is freed */
|
---|
617 | if (!(flags & SLAB_RECLAIM_ALL) && frames)
|
---|
618 | break;
|
---|
619 | }
|
---|
620 |
|
---|
621 | spinlock_unlock(&cache->lock);
|
---|
622 | if (flags & SLAB_RECLAIM_ALL) {
|
---|
623 | for (i=0; i < config.cpu_count; i++)
|
---|
624 | spinlock_unlock(&cache->mag_cache[i].lock);
|
---|
625 | }
|
---|
626 |
|
---|
627 | return frames;
|
---|
628 | }
|
---|
629 |
|
---|
630 | /** Check that there are no slabs and remove cache from system */
|
---|
631 | void slab_cache_destroy(slab_cache_t *cache)
|
---|
632 | {
|
---|
633 | /* Do not lock anything, we assume the software is correct and
|
---|
634 | * does not touch the cache when it decides to destroy it */
|
---|
635 |
|
---|
636 | /* Destroy all magazines */
|
---|
637 | _slab_reclaim(cache, SLAB_RECLAIM_ALL);
|
---|
638 |
|
---|
639 | /* All slabs must be empty */
|
---|
640 | if (!list_empty(&cache->full_slabs) \
|
---|
641 | || !list_empty(&cache->partial_slabs))
|
---|
642 | panic("Destroying cache that is not empty.");
|
---|
643 |
|
---|
644 | spinlock_lock(&slab_cache_lock);
|
---|
645 | list_remove(&cache->link);
|
---|
646 | spinlock_unlock(&slab_cache_lock);
|
---|
647 |
|
---|
648 | slab_free(&slab_cache_cache, cache);
|
---|
649 | }
|
---|
650 |
|
---|
651 | /** Allocate new object from cache - if no flags given, always returns
|
---|
652 | memory */
|
---|
653 | void * slab_alloc(slab_cache_t *cache, int flags)
|
---|
654 | {
|
---|
655 | ipl_t ipl;
|
---|
656 | void *result = NULL;
|
---|
657 |
|
---|
658 | /* Disable interrupts to avoid deadlocks with interrupt handlers */
|
---|
659 | ipl = interrupts_disable();
|
---|
660 |
|
---|
661 | if (!(cache->flags & SLAB_CACHE_NOMAGAZINE))
|
---|
662 | result = magazine_obj_get(cache);
|
---|
663 |
|
---|
664 | if (!result) {
|
---|
665 | spinlock_lock(&cache->lock);
|
---|
666 | result = slab_obj_create(cache, flags);
|
---|
667 | spinlock_unlock(&cache->lock);
|
---|
668 | }
|
---|
669 |
|
---|
670 | interrupts_restore(ipl);
|
---|
671 |
|
---|
672 | if (result)
|
---|
673 | atomic_inc(&cache->allocated_objs);
|
---|
674 |
|
---|
675 | return result;
|
---|
676 | }
|
---|
677 |
|
---|
678 | /** Return object to cache, use slab if known */
|
---|
679 | static void _slab_free(slab_cache_t *cache, void *obj, slab_t *slab)
|
---|
680 | {
|
---|
681 | ipl_t ipl;
|
---|
682 |
|
---|
683 | ipl = interrupts_disable();
|
---|
684 |
|
---|
685 | if ((cache->flags & SLAB_CACHE_NOMAGAZINE) \
|
---|
686 | || magazine_obj_put(cache, obj)) {
|
---|
687 | spinlock_lock(&cache->lock);
|
---|
688 | slab_obj_destroy(cache, obj, slab);
|
---|
689 | spinlock_unlock(&cache->lock);
|
---|
690 | }
|
---|
691 | interrupts_restore(ipl);
|
---|
692 | atomic_dec(&cache->allocated_objs);
|
---|
693 | }
|
---|
694 |
|
---|
695 | /** Return slab object to cache */
|
---|
696 | void slab_free(slab_cache_t *cache, void *obj)
|
---|
697 | {
|
---|
698 | _slab_free(cache,obj,NULL);
|
---|
699 | }
|
---|
700 |
|
---|
701 | /* Go through all caches and reclaim what is possible */
|
---|
702 | count_t slab_reclaim(int flags)
|
---|
703 | {
|
---|
704 | slab_cache_t *cache;
|
---|
705 | link_t *cur;
|
---|
706 | count_t frames = 0;
|
---|
707 |
|
---|
708 | spinlock_lock(&slab_cache_lock);
|
---|
709 |
|
---|
710 | for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
|
---|
711 | cache = list_get_instance(cur, slab_cache_t, link);
|
---|
712 | frames += _slab_reclaim(cache, flags);
|
---|
713 | }
|
---|
714 |
|
---|
715 | spinlock_unlock(&slab_cache_lock);
|
---|
716 |
|
---|
717 | return frames;
|
---|
718 | }
|
---|
719 |
|
---|
720 |
|
---|
721 | /* Print list of slabs */
|
---|
722 | void slab_print_list(void)
|
---|
723 | {
|
---|
724 | slab_cache_t *cache;
|
---|
725 | link_t *cur;
|
---|
726 |
|
---|
727 | spinlock_lock(&slab_cache_lock);
|
---|
728 | printf("SLAB name\tOsize\tPages\tObj/pg\tSlabs\tCached\tAllocobjs\tCtl\n");
|
---|
729 | for (cur = slab_cache_list.next;cur!=&slab_cache_list; cur=cur->next) {
|
---|
730 | cache = list_get_instance(cur, slab_cache_t, link);
|
---|
731 | printf("%s\t%d\t%d\t%d\t%d\t%d\t%d\t\t%s\n", cache->name, cache->size,
|
---|
732 | (1 << cache->order), cache->objects,
|
---|
733 | atomic_get(&cache->allocated_slabs),
|
---|
734 | atomic_get(&cache->cached_objs),
|
---|
735 | atomic_get(&cache->allocated_objs),
|
---|
736 | cache->flags & SLAB_CACHE_SLINSIDE ? "In" : "Out");
|
---|
737 | }
|
---|
738 | spinlock_unlock(&slab_cache_lock);
|
---|
739 | }
|
---|
740 |
|
---|
741 | void slab_cache_init(void)
|
---|
742 | {
|
---|
743 | int i, size;
|
---|
744 |
|
---|
745 | /* Initialize magazine cache */
|
---|
746 | _slab_cache_create(&mag_cache,
|
---|
747 | "slab_magazine",
|
---|
748 | sizeof(slab_magazine_t)+SLAB_MAG_SIZE*sizeof(void*),
|
---|
749 | sizeof(__address),
|
---|
750 | NULL, NULL,
|
---|
751 | SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
|
---|
752 | /* Initialize slab_cache cache */
|
---|
753 | _slab_cache_create(&slab_cache_cache,
|
---|
754 | "slab_cache",
|
---|
755 | sizeof(slab_cache_cache) + config.cpu_count*sizeof(slab_cache_cache.mag_cache[0]),
|
---|
756 | sizeof(__address),
|
---|
757 | NULL, NULL,
|
---|
758 | SLAB_CACHE_NOMAGAZINE | SLAB_CACHE_SLINSIDE);
|
---|
759 | /* Initialize external slab cache */
|
---|
760 | slab_extern_cache = slab_cache_create("slab_extern",
|
---|
761 | sizeof(slab_t),
|
---|
762 | 0, NULL, NULL,
|
---|
763 | SLAB_CACHE_SLINSIDE);
|
---|
764 |
|
---|
765 | /* Initialize structures for malloc */
|
---|
766 | for (i=0, size=(1<<SLAB_MIN_MALLOC_W);
|
---|
767 | i < (SLAB_MAX_MALLOC_W-SLAB_MIN_MALLOC_W+1);
|
---|
768 | i++, size <<= 1) {
|
---|
769 | malloc_caches[i] = slab_cache_create(malloc_names[i],
|
---|
770 | size, 0,
|
---|
771 | NULL,NULL,0);
|
---|
772 | }
|
---|
773 | }
|
---|
774 |
|
---|
775 | /**************************************/
|
---|
776 | /* kalloc/kfree functions */
|
---|
777 | void * kalloc(unsigned int size, int flags)
|
---|
778 | {
|
---|
779 | int idx;
|
---|
780 |
|
---|
781 | ASSERT( size && size <= (1 << SLAB_MAX_MALLOC_W));
|
---|
782 |
|
---|
783 | if (size < (1 << SLAB_MIN_MALLOC_W))
|
---|
784 | size = (1 << SLAB_MIN_MALLOC_W);
|
---|
785 |
|
---|
786 | idx = fnzb(size-1) - SLAB_MIN_MALLOC_W + 1;
|
---|
787 |
|
---|
788 | return slab_alloc(malloc_caches[idx], flags);
|
---|
789 | }
|
---|
790 |
|
---|
791 |
|
---|
792 | void kfree(void *obj)
|
---|
793 | {
|
---|
794 | slab_t *slab = obj2slab(obj);
|
---|
795 |
|
---|
796 | _slab_free(slab->cache, obj, slab);
|
---|
797 | }
|
---|