source: mainline/generic/src/mm/as.c@ 76d7305

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 76d7305 was 76d7305, checked in by Ondrej Palkovsky <ondrap@…>, 20 years ago

Slightly changed semantics of AS_AREA_SEND/RECV.

  • Property mode set to 100644
File size: 40.0 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/**
30 * @file as.c
31 * @brief Address space related functions.
32 *
33 * This file contains address space manipulation functions.
34 * Roughly speaking, this is a higher-level client of
35 * Virtual Address Translation (VAT) subsystem.
36 *
37 * Functionality provided by this file allows one to
38 * create address space and create, resize and share
39 * address space areas.
40 *
41 * @see page.c
42 *
43 */
44
45#include <mm/as.h>
46#include <arch/mm/as.h>
47#include <mm/page.h>
48#include <mm/frame.h>
49#include <mm/slab.h>
50#include <mm/tlb.h>
51#include <arch/mm/page.h>
52#include <genarch/mm/page_pt.h>
53#include <genarch/mm/page_ht.h>
54#include <mm/asid.h>
55#include <arch/mm/asid.h>
56#include <synch/spinlock.h>
57#include <synch/mutex.h>
58#include <adt/list.h>
59#include <adt/btree.h>
60#include <proc/task.h>
61#include <proc/thread.h>
62#include <arch/asm.h>
63#include <panic.h>
64#include <debug.h>
65#include <print.h>
66#include <memstr.h>
67#include <macros.h>
68#include <arch.h>
69#include <errno.h>
70#include <config.h>
71#include <align.h>
72#include <arch/types.h>
73#include <typedefs.h>
74#include <syscall/copy.h>
75#include <arch/interrupt.h>
76
77as_operations_t *as_operations = NULL;
78
79/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
81
82/**
83 * This list contains address spaces that are not active on any
84 * processor and that have valid ASID.
85 */
86LIST_INITIALIZE(inactive_as_with_asid_head);
87
88/** Kernel address space. */
89as_t *AS_KERNEL = NULL;
90
91static int area_flags_to_page_flags(int aflags);
92static as_area_t *find_area_and_lock(as_t *as, __address va);
93static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
94static void sh_info_remove_reference(share_info_t *sh_info);
95
96/** Initialize address space subsystem. */
97void as_init(void)
98{
99 as_arch_init();
100 AS_KERNEL = as_create(FLAG_AS_KERNEL);
101 if (!AS_KERNEL)
102 panic("can't create kernel address space\n");
103
104}
105
106/** Create address space.
107 *
108 * @param flags Flags that influence way in wich the address space is created.
109 */
110as_t *as_create(int flags)
111{
112 as_t *as;
113
114 as = (as_t *) malloc(sizeof(as_t), 0);
115 link_initialize(&as->inactive_as_with_asid_link);
116 mutex_initialize(&as->lock);
117 btree_create(&as->as_area_btree);
118
119 if (flags & FLAG_AS_KERNEL)
120 as->asid = ASID_KERNEL;
121 else
122 as->asid = ASID_INVALID;
123
124 as->cpu_refcount = 0;
125 as->page_table = page_table_create(flags);
126
127 return as;
128}
129
130/** Free Adress space */
131void as_free(as_t *as)
132{
133 ASSERT(as->cpu_refcount == 0);
134
135 /* TODO: free as_areas and other resources held by as */
136 /* TODO: free page table */
137 free(as);
138}
139
140/** Create address space area of common attributes.
141 *
142 * The created address space area is added to the target address space.
143 *
144 * @param as Target address space.
145 * @param flags Flags of the area memory.
146 * @param size Size of area.
147 * @param base Base address of area.
148 * @param attrs Attributes of the area.
149 * @param backend Address space area backend. NULL if no backend is used.
150 * @param backend_data NULL or a pointer to an array holding two void *.
151 *
152 * @return Address space area on success or NULL on failure.
153 */
154as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
155 mem_backend_t *backend, mem_backend_data_t *backend_data)
156{
157 ipl_t ipl;
158 as_area_t *a;
159
160 if (base % PAGE_SIZE)
161 return NULL;
162
163 if (!size)
164 return NULL;
165
166 /* Writeable executable areas are not supported. */
167 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
168 return NULL;
169
170 ipl = interrupts_disable();
171 mutex_lock(&as->lock);
172
173 if (!check_area_conflicts(as, base, size, NULL)) {
174 mutex_unlock(&as->lock);
175 interrupts_restore(ipl);
176 return NULL;
177 }
178
179 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
180
181 mutex_initialize(&a->lock);
182
183 a->as = as;
184 a->flags = flags;
185 a->attributes = attrs;
186 a->pages = SIZE2FRAMES(size);
187 a->base = base;
188 a->sh_info = NULL;
189 a->backend = backend;
190 if (backend_data)
191 a->backend_data = *backend_data;
192 else
193 memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
194
195 btree_create(&a->used_space);
196
197 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
198
199 mutex_unlock(&as->lock);
200 interrupts_restore(ipl);
201
202 return a;
203}
204
205/** Find address space area and change it.
206 *
207 * @param as Address space.
208 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
209 * @param size New size of the virtual memory block starting at address.
210 * @param flags Flags influencing the remap operation. Currently unused.
211 *
212 * @return Zero on success or a value from @ref errno.h otherwise.
213 */
214int as_area_resize(as_t *as, __address address, size_t size, int flags)
215{
216 as_area_t *area;
217 ipl_t ipl;
218 size_t pages;
219
220 ipl = interrupts_disable();
221 mutex_lock(&as->lock);
222
223 /*
224 * Locate the area.
225 */
226 area = find_area_and_lock(as, address);
227 if (!area) {
228 mutex_unlock(&as->lock);
229 interrupts_restore(ipl);
230 return ENOENT;
231 }
232
233 if (area->backend == &phys_backend) {
234 /*
235 * Remapping of address space areas associated
236 * with memory mapped devices is not supported.
237 */
238 mutex_unlock(&area->lock);
239 mutex_unlock(&as->lock);
240 interrupts_restore(ipl);
241 return ENOTSUP;
242 }
243 if (area->sh_info) {
244 /*
245 * Remapping of shared address space areas
246 * is not supported.
247 */
248 mutex_unlock(&area->lock);
249 mutex_unlock(&as->lock);
250 interrupts_restore(ipl);
251 return ENOTSUP;
252 }
253
254 pages = SIZE2FRAMES((address - area->base) + size);
255 if (!pages) {
256 /*
257 * Zero size address space areas are not allowed.
258 */
259 mutex_unlock(&area->lock);
260 mutex_unlock(&as->lock);
261 interrupts_restore(ipl);
262 return EPERM;
263 }
264
265 if (pages < area->pages) {
266 bool cond;
267 __address start_free = area->base + pages*PAGE_SIZE;
268
269 /*
270 * Shrinking the area.
271 * No need to check for overlaps.
272 */
273
274 /*
275 * Start TLB shootdown sequence.
276 */
277 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
278
279 /*
280 * Remove frames belonging to used space starting from
281 * the highest addresses downwards until an overlap with
282 * the resized address space area is found. Note that this
283 * is also the right way to remove part of the used_space
284 * B+tree leaf list.
285 */
286 for (cond = true; cond;) {
287 btree_node_t *node;
288
289 ASSERT(!list_empty(&area->used_space.leaf_head));
290 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
291 if ((cond = (bool) node->keys)) {
292 __address b = node->key[node->keys - 1];
293 count_t c = (count_t) node->value[node->keys - 1];
294 int i = 0;
295
296 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
297
298 if (b + c*PAGE_SIZE <= start_free) {
299 /*
300 * The whole interval fits completely
301 * in the resized address space area.
302 */
303 break;
304 }
305
306 /*
307 * Part of the interval corresponding to b and c
308 * overlaps with the resized address space area.
309 */
310
311 cond = false; /* we are almost done */
312 i = (start_free - b) >> PAGE_WIDTH;
313 if (!used_space_remove(area, start_free, c - i))
314 panic("Could not remove used space.");
315 } else {
316 /*
317 * The interval of used space can be completely removed.
318 */
319 if (!used_space_remove(area, b, c))
320 panic("Could not remove used space.\n");
321 }
322
323 for (; i < c; i++) {
324 pte_t *pte;
325
326 page_table_lock(as, false);
327 pte = page_mapping_find(as, b + i*PAGE_SIZE);
328 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
329 if (area->backend && area->backend->frame_free) {
330 area->backend->frame_free(area,
331 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
332 }
333 page_mapping_remove(as, b + i*PAGE_SIZE);
334 page_table_unlock(as, false);
335 }
336 }
337 }
338
339 /*
340 * Finish TLB shootdown sequence.
341 */
342 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
343 tlb_shootdown_finalize();
344 } else {
345 /*
346 * Growing the area.
347 * Check for overlaps with other address space areas.
348 */
349 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
350 mutex_unlock(&area->lock);
351 mutex_unlock(&as->lock);
352 interrupts_restore(ipl);
353 return EADDRNOTAVAIL;
354 }
355 }
356
357 area->pages = pages;
358
359 mutex_unlock(&area->lock);
360 mutex_unlock(&as->lock);
361 interrupts_restore(ipl);
362
363 return 0;
364}
365
366/** Destroy address space area.
367 *
368 * @param as Address space.
369 * @param address Address withing the area to be deleted.
370 *
371 * @return Zero on success or a value from @ref errno.h on failure.
372 */
373int as_area_destroy(as_t *as, __address address)
374{
375 as_area_t *area;
376 __address base;
377 ipl_t ipl;
378 bool cond;
379
380 ipl = interrupts_disable();
381 mutex_lock(&as->lock);
382
383 area = find_area_and_lock(as, address);
384 if (!area) {
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return ENOENT;
388 }
389
390 base = area->base;
391
392 /*
393 * Start TLB shootdown sequence.
394 */
395 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
396
397 /*
398 * Visit only the pages mapped by used_space B+tree.
399 * Note that we must be very careful when walking the tree
400 * leaf list and removing used space as the leaf list changes
401 * unpredictibly after each remove. The solution is to actually
402 * not walk the tree at all, but to remove items from the head
403 * of the leaf list until there are some keys left.
404 */
405 for (cond = true; cond;) {
406 btree_node_t *node;
407
408 ASSERT(!list_empty(&area->used_space.leaf_head));
409 node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
410 if ((cond = (bool) node->keys)) {
411 __address b = node->key[0];
412 count_t i;
413 pte_t *pte;
414
415 for (i = 0; i < (count_t) node->value[0]; i++) {
416 page_table_lock(as, false);
417 pte = page_mapping_find(as, b + i*PAGE_SIZE);
418 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
419 if (area->backend && area->backend->frame_free) {
420 area->backend->frame_free(area,
421 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
422 }
423 page_mapping_remove(as, b + i*PAGE_SIZE);
424 page_table_unlock(as, false);
425 }
426 if (!used_space_remove(area, b, i))
427 panic("Could not remove used space.\n");
428 }
429 }
430
431 /*
432 * Finish TLB shootdown sequence.
433 */
434 tlb_invalidate_pages(AS->asid, area->base, area->pages);
435 tlb_shootdown_finalize();
436
437 btree_destroy(&area->used_space);
438
439 area->attributes |= AS_AREA_ATTR_PARTIAL;
440
441 if (area->sh_info)
442 sh_info_remove_reference(area->sh_info);
443
444 mutex_unlock(&area->lock);
445
446 /*
447 * Remove the empty area from address space.
448 */
449 btree_remove(&AS->as_area_btree, base, NULL);
450
451 free(area);
452
453 mutex_unlock(&AS->lock);
454 interrupts_restore(ipl);
455 return 0;
456}
457
458/** Share address space area with another or the same address space.
459 *
460 * Address space area mapping is shared with a new address space area.
461 * If the source address space area has not been shared so far,
462 * a new sh_info is created. The new address space area simply gets the
463 * sh_info of the source area. The process of duplicating the
464 * mapping is done through the backend share function.
465 *
466 * @param src_as Pointer to source address space.
467 * @param src_base Base address of the source address space area.
468 * @param acc_size Expected size of the source area.
469 * @param dst_as Pointer to destination address space.
470 * @param dst_base Target base address.
471 * @param dst_flags_mask Destination address space area flags mask.
472 *
473 * @return Zero on success or ENOENT if there is no such task or
474 * if there is no such address space area,
475 * EPERM if there was a problem in accepting the area or
476 * ENOMEM if there was a problem in allocating destination
477 * address space area. ENOTSUP is returned if an attempt
478 * to share non-anonymous address space area is detected.
479 */
480int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
481 as_t *dst_as, __address dst_base, int dst_flags_mask)
482{
483 ipl_t ipl;
484 int src_flags;
485 size_t src_size;
486 as_area_t *src_area, *dst_area;
487 share_info_t *sh_info;
488 mem_backend_t *src_backend;
489 mem_backend_data_t src_backend_data;
490
491 ipl = interrupts_disable();
492 mutex_lock(&src_as->lock);
493 src_area = find_area_and_lock(src_as, src_base);
494 if (!src_area) {
495 /*
496 * Could not find the source address space area.
497 */
498 mutex_unlock(&src_as->lock);
499 interrupts_restore(ipl);
500 return ENOENT;
501 }
502
503 if (!src_area->backend || !src_area->backend->share) {
504 /*
505 * There is now backend or the backend does not
506 * know how to share the area.
507 */
508 mutex_unlock(&src_area->lock);
509 mutex_unlock(&src_as->lock);
510 interrupts_restore(ipl);
511 return ENOTSUP;
512 }
513
514 src_size = src_area->pages * PAGE_SIZE;
515 src_flags = src_area->flags;
516 src_backend = src_area->backend;
517 src_backend_data = src_area->backend_data;
518
519 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
520 mutex_unlock(&src_area->lock);
521 mutex_unlock(&src_as->lock);
522 interrupts_restore(ipl);
523 return EPERM;
524 }
525
526 /*
527 * Now we are committed to sharing the area.
528 * First prepare the area for sharing.
529 * Then it will be safe to unlock it.
530 */
531 sh_info = src_area->sh_info;
532 if (!sh_info) {
533 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
534 mutex_initialize(&sh_info->lock);
535 sh_info->refcount = 2;
536 btree_create(&sh_info->pagemap);
537 src_area->sh_info = sh_info;
538 } else {
539 mutex_lock(&sh_info->lock);
540 sh_info->refcount++;
541 mutex_unlock(&sh_info->lock);
542 }
543
544 src_area->backend->share(src_area);
545
546 mutex_unlock(&src_area->lock);
547 mutex_unlock(&src_as->lock);
548
549 /*
550 * Create copy of the source address space area.
551 * The destination area is created with AS_AREA_ATTR_PARTIAL
552 * attribute set which prevents race condition with
553 * preliminary as_page_fault() calls.
554 * The flags of the source area are masked against dst_flags_mask
555 * to support sharing in less privileged mode.
556 */
557 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
558 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
559 if (!dst_area) {
560 /*
561 * Destination address space area could not be created.
562 */
563 sh_info_remove_reference(sh_info);
564
565 interrupts_restore(ipl);
566 return ENOMEM;
567 }
568
569 /*
570 * Now the destination address space area has been
571 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
572 * attribute and set the sh_info.
573 */
574 mutex_lock(&dst_area->lock);
575 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
576 dst_area->sh_info = sh_info;
577 mutex_unlock(&dst_area->lock);
578
579 interrupts_restore(ipl);
580
581 return 0;
582}
583
584/** Check access mode for address space area.
585 *
586 * The address space area must be locked prior to this call.
587 *
588 * @param area Address space area.
589 * @param access Access mode.
590 *
591 * @return False if access violates area's permissions, true otherwise.
592 */
593bool as_area_check_access(as_area_t *area, pf_access_t access)
594{
595 int flagmap[] = {
596 [PF_ACCESS_READ] = AS_AREA_READ,
597 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
598 [PF_ACCESS_EXEC] = AS_AREA_EXEC
599 };
600
601 if (!(area->flags & flagmap[access]))
602 return false;
603
604 return true;
605}
606
607/** Handle page fault within the current address space.
608 *
609 * This is the high-level page fault handler. It decides
610 * whether the page fault can be resolved by any backend
611 * and if so, it invokes the backend to resolve the page
612 * fault.
613 *
614 * Interrupts are assumed disabled.
615 *
616 * @param page Faulting page.
617 * @param access Access mode that caused the fault (i.e. read/write/exec).
618 * @param istate Pointer to interrupted state.
619 *
620 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
621 * fault was caused by copy_to_uspace() or copy_from_uspace().
622 */
623int as_page_fault(__address page, pf_access_t access, istate_t *istate)
624{
625 pte_t *pte;
626 as_area_t *area;
627
628 if (!THREAD)
629 return AS_PF_FAULT;
630
631 ASSERT(AS);
632
633 mutex_lock(&AS->lock);
634 area = find_area_and_lock(AS, page);
635 if (!area) {
636 /*
637 * No area contained mapping for 'page'.
638 * Signal page fault to low-level handler.
639 */
640 mutex_unlock(&AS->lock);
641 goto page_fault;
642 }
643
644 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
645 /*
646 * The address space area is not fully initialized.
647 * Avoid possible race by returning error.
648 */
649 mutex_unlock(&area->lock);
650 mutex_unlock(&AS->lock);
651 goto page_fault;
652 }
653
654 if (!area->backend || !area->backend->page_fault) {
655 /*
656 * The address space area is not backed by any backend
657 * or the backend cannot handle page faults.
658 */
659 mutex_unlock(&area->lock);
660 mutex_unlock(&AS->lock);
661 goto page_fault;
662 }
663
664 page_table_lock(AS, false);
665
666 /*
667 * To avoid race condition between two page faults
668 * on the same address, we need to make sure
669 * the mapping has not been already inserted.
670 */
671 if ((pte = page_mapping_find(AS, page))) {
672 if (PTE_PRESENT(pte)) {
673 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
674 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
675 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
676 page_table_unlock(AS, false);
677 mutex_unlock(&area->lock);
678 mutex_unlock(&AS->lock);
679 return AS_PF_OK;
680 }
681 }
682 }
683
684 /*
685 * Resort to the backend page fault handler.
686 */
687 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
688 page_table_unlock(AS, false);
689 mutex_unlock(&area->lock);
690 mutex_unlock(&AS->lock);
691 goto page_fault;
692 }
693
694 page_table_unlock(AS, false);
695 mutex_unlock(&area->lock);
696 mutex_unlock(&AS->lock);
697 return AS_PF_OK;
698
699page_fault:
700 if (THREAD->in_copy_from_uspace) {
701 THREAD->in_copy_from_uspace = false;
702 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
703 } else if (THREAD->in_copy_to_uspace) {
704 THREAD->in_copy_to_uspace = false;
705 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
706 } else {
707 return AS_PF_FAULT;
708 }
709
710 return AS_PF_DEFER;
711}
712
713/** Switch address spaces.
714 *
715 * Note that this function cannot sleep as it is essentially a part of
716 * scheduling. Sleeping here would lead to deadlock on wakeup.
717 *
718 * @param old Old address space or NULL.
719 * @param new New address space.
720 */
721void as_switch(as_t *old, as_t *new)
722{
723 ipl_t ipl;
724 bool needs_asid = false;
725
726 ipl = interrupts_disable();
727 spinlock_lock(&inactive_as_with_asid_lock);
728
729 /*
730 * First, take care of the old address space.
731 */
732 if (old) {
733 mutex_lock_active(&old->lock);
734 ASSERT(old->cpu_refcount);
735 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
736 /*
737 * The old address space is no longer active on
738 * any processor. It can be appended to the
739 * list of inactive address spaces with assigned
740 * ASID.
741 */
742 ASSERT(old->asid != ASID_INVALID);
743 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
744 }
745 mutex_unlock(&old->lock);
746 }
747
748 /*
749 * Second, prepare the new address space.
750 */
751 mutex_lock_active(&new->lock);
752 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
753 if (new->asid != ASID_INVALID)
754 list_remove(&new->inactive_as_with_asid_link);
755 else
756 needs_asid = true; /* defer call to asid_get() until new->lock is released */
757 }
758 SET_PTL0_ADDRESS(new->page_table);
759 mutex_unlock(&new->lock);
760
761 if (needs_asid) {
762 /*
763 * Allocation of new ASID was deferred
764 * until now in order to avoid deadlock.
765 */
766 asid_t asid;
767
768 asid = asid_get();
769 mutex_lock_active(&new->lock);
770 new->asid = asid;
771 mutex_unlock(&new->lock);
772 }
773 spinlock_unlock(&inactive_as_with_asid_lock);
774 interrupts_restore(ipl);
775
776 /*
777 * Perform architecture-specific steps.
778 * (e.g. write ASID to hardware register etc.)
779 */
780 as_install_arch(new);
781
782 AS = new;
783}
784
785/** Convert address space area flags to page flags.
786 *
787 * @param aflags Flags of some address space area.
788 *
789 * @return Flags to be passed to page_mapping_insert().
790 */
791int area_flags_to_page_flags(int aflags)
792{
793 int flags;
794
795 flags = PAGE_USER | PAGE_PRESENT;
796
797 if (aflags & AS_AREA_READ)
798 flags |= PAGE_READ;
799
800 if (aflags & AS_AREA_WRITE)
801 flags |= PAGE_WRITE;
802
803 if (aflags & AS_AREA_EXEC)
804 flags |= PAGE_EXEC;
805
806 if (aflags & AS_AREA_CACHEABLE)
807 flags |= PAGE_CACHEABLE;
808
809 return flags;
810}
811
812/** Compute flags for virtual address translation subsytem.
813 *
814 * The address space area must be locked.
815 * Interrupts must be disabled.
816 *
817 * @param a Address space area.
818 *
819 * @return Flags to be used in page_mapping_insert().
820 */
821int as_area_get_flags(as_area_t *a)
822{
823 return area_flags_to_page_flags(a->flags);
824}
825
826/** Create page table.
827 *
828 * Depending on architecture, create either address space
829 * private or global page table.
830 *
831 * @param flags Flags saying whether the page table is for kernel address space.
832 *
833 * @return First entry of the page table.
834 */
835pte_t *page_table_create(int flags)
836{
837 ASSERT(as_operations);
838 ASSERT(as_operations->page_table_create);
839
840 return as_operations->page_table_create(flags);
841}
842
843/** Lock page table.
844 *
845 * This function should be called before any page_mapping_insert(),
846 * page_mapping_remove() and page_mapping_find().
847 *
848 * Locking order is such that address space areas must be locked
849 * prior to this call. Address space can be locked prior to this
850 * call in which case the lock argument is false.
851 *
852 * @param as Address space.
853 * @param lock If false, do not attempt to lock as->lock.
854 */
855void page_table_lock(as_t *as, bool lock)
856{
857 ASSERT(as_operations);
858 ASSERT(as_operations->page_table_lock);
859
860 as_operations->page_table_lock(as, lock);
861}
862
863/** Unlock page table.
864 *
865 * @param as Address space.
866 * @param unlock If false, do not attempt to unlock as->lock.
867 */
868void page_table_unlock(as_t *as, bool unlock)
869{
870 ASSERT(as_operations);
871 ASSERT(as_operations->page_table_unlock);
872
873 as_operations->page_table_unlock(as, unlock);
874}
875
876
877/** Find address space area and lock it.
878 *
879 * The address space must be locked and interrupts must be disabled.
880 *
881 * @param as Address space.
882 * @param va Virtual address.
883 *
884 * @return Locked address space area containing va on success or NULL on failure.
885 */
886as_area_t *find_area_and_lock(as_t *as, __address va)
887{
888 as_area_t *a;
889 btree_node_t *leaf, *lnode;
890 int i;
891
892 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
893 if (a) {
894 /* va is the base address of an address space area */
895 mutex_lock(&a->lock);
896 return a;
897 }
898
899 /*
900 * Search the leaf node and the righmost record of its left neighbour
901 * to find out whether this is a miss or va belongs to an address
902 * space area found there.
903 */
904
905 /* First, search the leaf node itself. */
906 for (i = 0; i < leaf->keys; i++) {
907 a = (as_area_t *) leaf->value[i];
908 mutex_lock(&a->lock);
909 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
910 return a;
911 }
912 mutex_unlock(&a->lock);
913 }
914
915 /*
916 * Second, locate the left neighbour and test its last record.
917 * Because of its position in the B+tree, it must have base < va.
918 */
919 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
920 a = (as_area_t *) lnode->value[lnode->keys - 1];
921 mutex_lock(&a->lock);
922 if (va < a->base + a->pages * PAGE_SIZE) {
923 return a;
924 }
925 mutex_unlock(&a->lock);
926 }
927
928 return NULL;
929}
930
931/** Check area conflicts with other areas.
932 *
933 * The address space must be locked and interrupts must be disabled.
934 *
935 * @param as Address space.
936 * @param va Starting virtual address of the area being tested.
937 * @param size Size of the area being tested.
938 * @param avoid_area Do not touch this area.
939 *
940 * @return True if there is no conflict, false otherwise.
941 */
942bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
943{
944 as_area_t *a;
945 btree_node_t *leaf, *node;
946 int i;
947
948 /*
949 * We don't want any area to have conflicts with NULL page.
950 */
951 if (overlaps(va, size, NULL, PAGE_SIZE))
952 return false;
953
954 /*
955 * The leaf node is found in O(log n), where n is proportional to
956 * the number of address space areas belonging to as.
957 * The check for conflicts is then attempted on the rightmost
958 * record in the left neighbour, the leftmost record in the right
959 * neighbour and all records in the leaf node itself.
960 */
961
962 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
963 if (a != avoid_area)
964 return false;
965 }
966
967 /* First, check the two border cases. */
968 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
969 a = (as_area_t *) node->value[node->keys - 1];
970 mutex_lock(&a->lock);
971 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
972 mutex_unlock(&a->lock);
973 return false;
974 }
975 mutex_unlock(&a->lock);
976 }
977 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
978 a = (as_area_t *) node->value[0];
979 mutex_lock(&a->lock);
980 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
981 mutex_unlock(&a->lock);
982 return false;
983 }
984 mutex_unlock(&a->lock);
985 }
986
987 /* Second, check the leaf node. */
988 for (i = 0; i < leaf->keys; i++) {
989 a = (as_area_t *) leaf->value[i];
990
991 if (a == avoid_area)
992 continue;
993
994 mutex_lock(&a->lock);
995 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
996 mutex_unlock(&a->lock);
997 return false;
998 }
999 mutex_unlock(&a->lock);
1000 }
1001
1002 /*
1003 * So far, the area does not conflict with other areas.
1004 * Check if it doesn't conflict with kernel address space.
1005 */
1006 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1007 return !overlaps(va, size,
1008 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1009 }
1010
1011 return true;
1012}
1013
1014/** Return size of the address space area with given base. */
1015size_t as_get_size(__address base)
1016{
1017 ipl_t ipl;
1018 as_area_t *src_area;
1019 size_t size;
1020
1021 ipl = interrupts_disable();
1022 src_area = find_area_and_lock(AS, base);
1023 if (src_area){
1024 size = src_area->pages * PAGE_SIZE;
1025 mutex_unlock(&src_area->lock);
1026 } else {
1027 size = 0;
1028 }
1029 interrupts_restore(ipl);
1030 return size;
1031}
1032
1033/** Mark portion of address space area as used.
1034 *
1035 * The address space area must be already locked.
1036 *
1037 * @param a Address space area.
1038 * @param page First page to be marked.
1039 * @param count Number of page to be marked.
1040 *
1041 * @return 0 on failure and 1 on success.
1042 */
1043int used_space_insert(as_area_t *a, __address page, count_t count)
1044{
1045 btree_node_t *leaf, *node;
1046 count_t pages;
1047 int i;
1048
1049 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1050 ASSERT(count);
1051
1052 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1053 if (pages) {
1054 /*
1055 * We hit the beginning of some used space.
1056 */
1057 return 0;
1058 }
1059
1060 if (!leaf->keys) {
1061 btree_insert(&a->used_space, page, (void *) count, leaf);
1062 return 1;
1063 }
1064
1065 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1066 if (node) {
1067 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1068 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1069
1070 /*
1071 * Examine the possibility that the interval fits
1072 * somewhere between the rightmost interval of
1073 * the left neigbour and the first interval of the leaf.
1074 */
1075
1076 if (page >= right_pg) {
1077 /* Do nothing. */
1078 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1079 /* The interval intersects with the left interval. */
1080 return 0;
1081 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1082 /* The interval intersects with the right interval. */
1083 return 0;
1084 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1085 /* The interval can be added by merging the two already present intervals. */
1086 node->value[node->keys - 1] += count + right_cnt;
1087 btree_remove(&a->used_space, right_pg, leaf);
1088 return 1;
1089 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1090 /* The interval can be added by simply growing the left interval. */
1091 node->value[node->keys - 1] += count;
1092 return 1;
1093 } else if (page + count*PAGE_SIZE == right_pg) {
1094 /*
1095 * The interval can be addded by simply moving base of the right
1096 * interval down and increasing its size accordingly.
1097 */
1098 leaf->value[0] += count;
1099 leaf->key[0] = page;
1100 return 1;
1101 } else {
1102 /*
1103 * The interval is between both neigbouring intervals,
1104 * but cannot be merged with any of them.
1105 */
1106 btree_insert(&a->used_space, page, (void *) count, leaf);
1107 return 1;
1108 }
1109 } else if (page < leaf->key[0]) {
1110 __address right_pg = leaf->key[0];
1111 count_t right_cnt = (count_t) leaf->value[0];
1112
1113 /*
1114 * Investigate the border case in which the left neighbour does not
1115 * exist but the interval fits from the left.
1116 */
1117
1118 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1119 /* The interval intersects with the right interval. */
1120 return 0;
1121 } else if (page + count*PAGE_SIZE == right_pg) {
1122 /*
1123 * The interval can be added by moving the base of the right interval down
1124 * and increasing its size accordingly.
1125 */
1126 leaf->key[0] = page;
1127 leaf->value[0] += count;
1128 return 1;
1129 } else {
1130 /*
1131 * The interval doesn't adjoin with the right interval.
1132 * It must be added individually.
1133 */
1134 btree_insert(&a->used_space, page, (void *) count, leaf);
1135 return 1;
1136 }
1137 }
1138
1139 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1140 if (node) {
1141 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1142 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1143
1144 /*
1145 * Examine the possibility that the interval fits
1146 * somewhere between the leftmost interval of
1147 * the right neigbour and the last interval of the leaf.
1148 */
1149
1150 if (page < left_pg) {
1151 /* Do nothing. */
1152 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1153 /* The interval intersects with the left interval. */
1154 return 0;
1155 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1156 /* The interval intersects with the right interval. */
1157 return 0;
1158 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1159 /* The interval can be added by merging the two already present intervals. */
1160 leaf->value[leaf->keys - 1] += count + right_cnt;
1161 btree_remove(&a->used_space, right_pg, node);
1162 return 1;
1163 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1164 /* The interval can be added by simply growing the left interval. */
1165 leaf->value[leaf->keys - 1] += count;
1166 return 1;
1167 } else if (page + count*PAGE_SIZE == right_pg) {
1168 /*
1169 * The interval can be addded by simply moving base of the right
1170 * interval down and increasing its size accordingly.
1171 */
1172 node->value[0] += count;
1173 node->key[0] = page;
1174 return 1;
1175 } else {
1176 /*
1177 * The interval is between both neigbouring intervals,
1178 * but cannot be merged with any of them.
1179 */
1180 btree_insert(&a->used_space, page, (void *) count, leaf);
1181 return 1;
1182 }
1183 } else if (page >= leaf->key[leaf->keys - 1]) {
1184 __address left_pg = leaf->key[leaf->keys - 1];
1185 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1186
1187 /*
1188 * Investigate the border case in which the right neighbour does not
1189 * exist but the interval fits from the right.
1190 */
1191
1192 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1193 /* The interval intersects with the left interval. */
1194 return 0;
1195 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1196 /* The interval can be added by growing the left interval. */
1197 leaf->value[leaf->keys - 1] += count;
1198 return 1;
1199 } else {
1200 /*
1201 * The interval doesn't adjoin with the left interval.
1202 * It must be added individually.
1203 */
1204 btree_insert(&a->used_space, page, (void *) count, leaf);
1205 return 1;
1206 }
1207 }
1208
1209 /*
1210 * Note that if the algorithm made it thus far, the interval can fit only
1211 * between two other intervals of the leaf. The two border cases were already
1212 * resolved.
1213 */
1214 for (i = 1; i < leaf->keys; i++) {
1215 if (page < leaf->key[i]) {
1216 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1217 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1218
1219 /*
1220 * The interval fits between left_pg and right_pg.
1221 */
1222
1223 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1224 /* The interval intersects with the left interval. */
1225 return 0;
1226 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1227 /* The interval intersects with the right interval. */
1228 return 0;
1229 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1230 /* The interval can be added by merging the two already present intervals. */
1231 leaf->value[i - 1] += count + right_cnt;
1232 btree_remove(&a->used_space, right_pg, leaf);
1233 return 1;
1234 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1235 /* The interval can be added by simply growing the left interval. */
1236 leaf->value[i - 1] += count;
1237 return 1;
1238 } else if (page + count*PAGE_SIZE == right_pg) {
1239 /*
1240 * The interval can be addded by simply moving base of the right
1241 * interval down and increasing its size accordingly.
1242 */
1243 leaf->value[i] += count;
1244 leaf->key[i] = page;
1245 return 1;
1246 } else {
1247 /*
1248 * The interval is between both neigbouring intervals,
1249 * but cannot be merged with any of them.
1250 */
1251 btree_insert(&a->used_space, page, (void *) count, leaf);
1252 return 1;
1253 }
1254 }
1255 }
1256
1257 panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1258}
1259
1260/** Mark portion of address space area as unused.
1261 *
1262 * The address space area must be already locked.
1263 *
1264 * @param a Address space area.
1265 * @param page First page to be marked.
1266 * @param count Number of page to be marked.
1267 *
1268 * @return 0 on failure and 1 on success.
1269 */
1270int used_space_remove(as_area_t *a, __address page, count_t count)
1271{
1272 btree_node_t *leaf, *node;
1273 count_t pages;
1274 int i;
1275
1276 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1277 ASSERT(count);
1278
1279 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1280 if (pages) {
1281 /*
1282 * We are lucky, page is the beginning of some interval.
1283 */
1284 if (count > pages) {
1285 return 0;
1286 } else if (count == pages) {
1287 btree_remove(&a->used_space, page, leaf);
1288 return 1;
1289 } else {
1290 /*
1291 * Find the respective interval.
1292 * Decrease its size and relocate its start address.
1293 */
1294 for (i = 0; i < leaf->keys; i++) {
1295 if (leaf->key[i] == page) {
1296 leaf->key[i] += count*PAGE_SIZE;
1297 leaf->value[i] -= count;
1298 return 1;
1299 }
1300 }
1301 goto error;
1302 }
1303 }
1304
1305 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1306 if (node && page < leaf->key[0]) {
1307 __address left_pg = node->key[node->keys - 1];
1308 count_t left_cnt = (count_t) node->value[node->keys - 1];
1309
1310 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1311 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1312 /*
1313 * The interval is contained in the rightmost interval
1314 * of the left neighbour and can be removed by
1315 * updating the size of the bigger interval.
1316 */
1317 node->value[node->keys - 1] -= count;
1318 return 1;
1319 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1320 count_t new_cnt;
1321
1322 /*
1323 * The interval is contained in the rightmost interval
1324 * of the left neighbour but its removal requires
1325 * both updating the size of the original interval and
1326 * also inserting a new interval.
1327 */
1328 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1329 node->value[node->keys - 1] -= count + new_cnt;
1330 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1331 return 1;
1332 }
1333 }
1334 return 0;
1335 } else if (page < leaf->key[0]) {
1336 return 0;
1337 }
1338
1339 if (page > leaf->key[leaf->keys - 1]) {
1340 __address left_pg = leaf->key[leaf->keys - 1];
1341 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1342
1343 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1344 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1345 /*
1346 * The interval is contained in the rightmost interval
1347 * of the leaf and can be removed by updating the size
1348 * of the bigger interval.
1349 */
1350 leaf->value[leaf->keys - 1] -= count;
1351 return 1;
1352 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1353 count_t new_cnt;
1354
1355 /*
1356 * The interval is contained in the rightmost interval
1357 * of the leaf but its removal requires both updating
1358 * the size of the original interval and
1359 * also inserting a new interval.
1360 */
1361 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1362 leaf->value[leaf->keys - 1] -= count + new_cnt;
1363 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1364 return 1;
1365 }
1366 }
1367 return 0;
1368 }
1369
1370 /*
1371 * The border cases have been already resolved.
1372 * Now the interval can be only between intervals of the leaf.
1373 */
1374 for (i = 1; i < leaf->keys - 1; i++) {
1375 if (page < leaf->key[i]) {
1376 __address left_pg = leaf->key[i - 1];
1377 count_t left_cnt = (count_t) leaf->value[i - 1];
1378
1379 /*
1380 * Now the interval is between intervals corresponding to (i - 1) and i.
1381 */
1382 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1383 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1384 /*
1385 * The interval is contained in the interval (i - 1)
1386 * of the leaf and can be removed by updating the size
1387 * of the bigger interval.
1388 */
1389 leaf->value[i - 1] -= count;
1390 return 1;
1391 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1392 count_t new_cnt;
1393
1394 /*
1395 * The interval is contained in the interval (i - 1)
1396 * of the leaf but its removal requires both updating
1397 * the size of the original interval and
1398 * also inserting a new interval.
1399 */
1400 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1401 leaf->value[i - 1] -= count + new_cnt;
1402 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1403 return 1;
1404 }
1405 }
1406 return 0;
1407 }
1408 }
1409
1410error:
1411 panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1412}
1413
1414/** Remove reference to address space area share info.
1415 *
1416 * If the reference count drops to 0, the sh_info is deallocated.
1417 *
1418 * @param sh_info Pointer to address space area share info.
1419 */
1420void sh_info_remove_reference(share_info_t *sh_info)
1421{
1422 bool dealloc = false;
1423
1424 mutex_lock(&sh_info->lock);
1425 ASSERT(sh_info->refcount);
1426 if (--sh_info->refcount == 0) {
1427 dealloc = true;
1428 bool cond;
1429
1430 /*
1431 * Now walk carefully the pagemap B+tree and free/remove
1432 * reference from all frames found there.
1433 */
1434 for (cond = true; cond;) {
1435 btree_node_t *node;
1436
1437 ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1438 node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1439 if ((cond = node->keys)) {
1440 frame_free(ADDR2PFN((__address) node->value[0]));
1441 btree_remove(&sh_info->pagemap, node->key[0], node);
1442 }
1443 }
1444
1445 }
1446 mutex_unlock(&sh_info->lock);
1447
1448 if (dealloc) {
1449 btree_destroy(&sh_info->pagemap);
1450 free(sh_info);
1451 }
1452}
1453
1454/*
1455 * Address space related syscalls.
1456 */
1457
1458/** Wrapper for as_area_create(). */
1459__native sys_as_area_create(__address address, size_t size, int flags)
1460{
1461 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1462 return (__native) address;
1463 else
1464 return (__native) -1;
1465}
1466
1467/** Wrapper for as_area_resize. */
1468__native sys_as_area_resize(__address address, size_t size, int flags)
1469{
1470 return (__native) as_area_resize(AS, address, size, 0);
1471}
1472
1473/** Wrapper for as_area_destroy. */
1474__native sys_as_area_destroy(__address address)
1475{
1476 return (__native) as_area_destroy(AS, address);
1477}
Note: See TracBrowser for help on using the repository browser.