source: mainline/generic/src/mm/as.c@ 567807b1

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 567807b1 was 567807b1, checked in by Jakub Jermar <jakub@…>, 19 years ago

Modify the hierarchy of page fault handlers to pass access mode that caused the fault.
Architectures are required to pass either PF_ACCESS_READ, PF_ACCESS_WRITE or PF_ACCESS_EXEC
to as_page_fault(), depending on the cause of the fault.

  • Property mode set to 100644
File size: 42.8 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/**
30 * @file as.c
31 * @brief Address space related functions.
32 *
33 * This file contains address space manipulation functions.
34 * Roughly speaking, this is a higher-level client of
35 * Virtual Address Translation (VAT) subsystem.
36 *
37 * Functionality provided by this file allows one to
38 * create address space and create, resize and share
39 * address space areas.
40 *
41 * @see page.c
42 *
43 */
44
45#include <mm/as.h>
46#include <arch/mm/as.h>
47#include <mm/page.h>
48#include <mm/frame.h>
49#include <mm/slab.h>
50#include <mm/tlb.h>
51#include <arch/mm/page.h>
52#include <genarch/mm/page_pt.h>
53#include <genarch/mm/page_ht.h>
54#include <mm/asid.h>
55#include <arch/mm/asid.h>
56#include <synch/spinlock.h>
57#include <synch/mutex.h>
58#include <adt/list.h>
59#include <adt/btree.h>
60#include <proc/task.h>
61#include <proc/thread.h>
62#include <arch/asm.h>
63#include <panic.h>
64#include <debug.h>
65#include <print.h>
66#include <memstr.h>
67#include <macros.h>
68#include <arch.h>
69#include <errno.h>
70#include <config.h>
71#include <align.h>
72#include <arch/types.h>
73#include <typedefs.h>
74#include <syscall/copy.h>
75#include <arch/interrupt.h>
76
77/** This structure contains information associated with the shared address space area. */
78struct share_info {
79 mutex_t lock; /**< This lock must be acquired only when the as_area lock is held. */
80 count_t refcount; /**< This structure can be deallocated if refcount drops to 0. */
81 btree_t pagemap; /**< B+tree containing complete map of anonymous pages of the shared area. */
82};
83
84as_operations_t *as_operations = NULL;
85
86/** Address space lock. It protects inactive_as_with_asid_head. Must be acquired before as_t mutex. */
87SPINLOCK_INITIALIZE(as_lock);
88
89/**
90 * This list contains address spaces that are not active on any
91 * processor and that have valid ASID.
92 */
93LIST_INITIALIZE(inactive_as_with_asid_head);
94
95/** Kernel address space. */
96as_t *AS_KERNEL = NULL;
97
98static int area_flags_to_page_flags(int aflags);
99static as_area_t *find_area_and_lock(as_t *as, __address va);
100static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
101static void sh_info_remove_reference(share_info_t *sh_info);
102
103/** Initialize address space subsystem. */
104void as_init(void)
105{
106 as_arch_init();
107 AS_KERNEL = as_create(FLAG_AS_KERNEL);
108 if (!AS_KERNEL)
109 panic("can't create kernel address space\n");
110
111}
112
113/** Create address space.
114 *
115 * @param flags Flags that influence way in wich the address space is created.
116 */
117as_t *as_create(int flags)
118{
119 as_t *as;
120
121 as = (as_t *) malloc(sizeof(as_t), 0);
122 link_initialize(&as->inactive_as_with_asid_link);
123 mutex_initialize(&as->lock);
124 btree_create(&as->as_area_btree);
125
126 if (flags & FLAG_AS_KERNEL)
127 as->asid = ASID_KERNEL;
128 else
129 as->asid = ASID_INVALID;
130
131 as->refcount = 0;
132 as->page_table = page_table_create(flags);
133
134 return as;
135}
136
137/** Free Adress space */
138void as_free(as_t *as)
139{
140 ASSERT(as->refcount == 0);
141
142 /* TODO: free as_areas and other resources held by as */
143 /* TODO: free page table */
144 free(as);
145}
146
147/** Create address space area of common attributes.
148 *
149 * The created address space area is added to the target address space.
150 *
151 * @param as Target address space.
152 * @param flags Flags of the area memory.
153 * @param size Size of area.
154 * @param base Base address of area.
155 * @param attrs Attributes of the area.
156 * @param backend Address space area backend. NULL if no backend is used.
157 * @param backend_data NULL or a pointer to an array holding two void *.
158 *
159 * @return Address space area on success or NULL on failure.
160 */
161as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
162 mem_backend_t *backend, void **backend_data)
163{
164 ipl_t ipl;
165 as_area_t *a;
166
167 if (base % PAGE_SIZE)
168 return NULL;
169
170 if (!size)
171 return NULL;
172
173 /* Writeable executable areas are not supported. */
174 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
175 return NULL;
176
177 ipl = interrupts_disable();
178 mutex_lock(&as->lock);
179
180 if (!check_area_conflicts(as, base, size, NULL)) {
181 mutex_unlock(&as->lock);
182 interrupts_restore(ipl);
183 return NULL;
184 }
185
186 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
187
188 mutex_initialize(&a->lock);
189
190 a->flags = flags;
191 a->attributes = attrs;
192 a->pages = SIZE2FRAMES(size);
193 a->base = base;
194 a->sh_info = NULL;
195 a->backend = backend;
196 if (backend_data) {
197 a->backend_data[0] = backend_data[0];
198 a->backend_data[1] = backend_data[1];
199 }
200 btree_create(&a->used_space);
201
202 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
203
204 mutex_unlock(&as->lock);
205 interrupts_restore(ipl);
206
207 return a;
208}
209
210/** Find address space area and change it.
211 *
212 * @param as Address space.
213 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
214 * @param size New size of the virtual memory block starting at address.
215 * @param flags Flags influencing the remap operation. Currently unused.
216 *
217 * @return Zero on success or a value from @ref errno.h otherwise.
218 */
219int as_area_resize(as_t *as, __address address, size_t size, int flags)
220{
221 as_area_t *area;
222 ipl_t ipl;
223 size_t pages;
224
225 ipl = interrupts_disable();
226 mutex_lock(&as->lock);
227
228 /*
229 * Locate the area.
230 */
231 area = find_area_and_lock(as, address);
232 if (!area) {
233 mutex_unlock(&as->lock);
234 interrupts_restore(ipl);
235 return ENOENT;
236 }
237
238 if (area->flags & AS_AREA_DEVICE) {
239 /*
240 * Remapping of address space areas associated
241 * with memory mapped devices is not supported.
242 */
243 mutex_unlock(&area->lock);
244 mutex_unlock(&as->lock);
245 interrupts_restore(ipl);
246 return ENOTSUP;
247 }
248 if (area->sh_info) {
249 /*
250 * Remapping of shared address space areas
251 * is not supported.
252 */
253 mutex_unlock(&area->lock);
254 mutex_unlock(&as->lock);
255 interrupts_restore(ipl);
256 return ENOTSUP;
257 }
258
259 pages = SIZE2FRAMES((address - area->base) + size);
260 if (!pages) {
261 /*
262 * Zero size address space areas are not allowed.
263 */
264 mutex_unlock(&area->lock);
265 mutex_unlock(&as->lock);
266 interrupts_restore(ipl);
267 return EPERM;
268 }
269
270 if (pages < area->pages) {
271 bool cond;
272 __address start_free = area->base + pages*PAGE_SIZE;
273
274 /*
275 * Shrinking the area.
276 * No need to check for overlaps.
277 */
278
279 /*
280 * Remove frames belonging to used space starting from
281 * the highest addresses downwards until an overlap with
282 * the resized address space area is found. Note that this
283 * is also the right way to remove part of the used_space
284 * B+tree leaf list.
285 */
286 for (cond = true; cond;) {
287 btree_node_t *node;
288
289 ASSERT(!list_empty(&area->used_space.leaf_head));
290 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
291 if ((cond = (bool) node->keys)) {
292 __address b = node->key[node->keys - 1];
293 count_t c = (count_t) node->value[node->keys - 1];
294 int i = 0;
295
296 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
297
298 if (b + c*PAGE_SIZE <= start_free) {
299 /*
300 * The whole interval fits completely
301 * in the resized address space area.
302 */
303 break;
304 }
305
306 /*
307 * Part of the interval corresponding to b and c
308 * overlaps with the resized address space area.
309 */
310
311 cond = false; /* we are almost done */
312 i = (start_free - b) >> PAGE_WIDTH;
313 if (!used_space_remove(area, start_free, c - i))
314 panic("Could not remove used space.");
315 } else {
316 /*
317 * The interval of used space can be completely removed.
318 */
319 if (!used_space_remove(area, b, c))
320 panic("Could not remove used space.\n");
321 }
322
323 for (; i < c; i++) {
324 pte_t *pte;
325
326 page_table_lock(as, false);
327 pte = page_mapping_find(as, b + i*PAGE_SIZE);
328 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
329 if (area->backend && area->backend->backend_frame_free) {
330 area->backend->backend_frame_free(area,
331 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
332 }
333 page_mapping_remove(as, b + i*PAGE_SIZE);
334 page_table_unlock(as, false);
335 }
336 }
337 }
338 /*
339 * Invalidate TLB's.
340 */
341 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
342 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
343 tlb_shootdown_finalize();
344 } else {
345 /*
346 * Growing the area.
347 * Check for overlaps with other address space areas.
348 */
349 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
350 mutex_unlock(&area->lock);
351 mutex_unlock(&as->lock);
352 interrupts_restore(ipl);
353 return EADDRNOTAVAIL;
354 }
355 }
356
357 area->pages = pages;
358
359 mutex_unlock(&area->lock);
360 mutex_unlock(&as->lock);
361 interrupts_restore(ipl);
362
363 return 0;
364}
365
366/** Destroy address space area.
367 *
368 * @param as Address space.
369 * @param address Address withing the area to be deleted.
370 *
371 * @return Zero on success or a value from @ref errno.h on failure.
372 */
373int as_area_destroy(as_t *as, __address address)
374{
375 as_area_t *area;
376 __address base;
377 ipl_t ipl;
378 bool cond;
379
380 ipl = interrupts_disable();
381 mutex_lock(&as->lock);
382
383 area = find_area_and_lock(as, address);
384 if (!area) {
385 mutex_unlock(&as->lock);
386 interrupts_restore(ipl);
387 return ENOENT;
388 }
389
390 base = area->base;
391
392 /*
393 * Visit only the pages mapped by used_space B+tree.
394 * Note that we must be very careful when walking the tree
395 * leaf list and removing used space as the leaf list changes
396 * unpredictibly after each remove. The solution is to actually
397 * not walk the tree at all, but to remove items from the head
398 * of the leaf list until there are some keys left.
399 */
400 for (cond = true; cond;) {
401 btree_node_t *node;
402
403 ASSERT(!list_empty(&area->used_space.leaf_head));
404 node = list_get_instance(area->used_space.leaf_head.next, btree_node_t, leaf_link);
405 if ((cond = (bool) node->keys)) {
406 __address b = node->key[0];
407 count_t i;
408 pte_t *pte;
409
410 for (i = 0; i < (count_t) node->value[0]; i++) {
411 page_table_lock(as, false);
412 pte = page_mapping_find(as, b + i*PAGE_SIZE);
413 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
414 if (area->backend && area->backend->backend_frame_free) {
415 area->backend->backend_frame_free(area,
416 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
417 }
418 page_mapping_remove(as, b + i*PAGE_SIZE);
419 page_table_unlock(as, false);
420 }
421 if (!used_space_remove(area, b, i))
422 panic("Could not remove used space.\n");
423 }
424 }
425 btree_destroy(&area->used_space);
426
427 /*
428 * Invalidate TLB's.
429 */
430 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
431 tlb_invalidate_pages(AS->asid, area->base, area->pages);
432 tlb_shootdown_finalize();
433
434 area->attributes |= AS_AREA_ATTR_PARTIAL;
435
436 if (area->sh_info)
437 sh_info_remove_reference(area->sh_info);
438
439 mutex_unlock(&area->lock);
440
441 /*
442 * Remove the empty area from address space.
443 */
444 btree_remove(&AS->as_area_btree, base, NULL);
445
446 free(area);
447
448 mutex_unlock(&AS->lock);
449 interrupts_restore(ipl);
450 return 0;
451}
452
453/** Steal address space area from another task.
454 *
455 * Address space area is stolen from another task
456 * Moreover, any existing mapping
457 * is copied as well, providing thus a mechanism
458 * for sharing group of pages. The source address
459 * space area and any associated mapping is preserved.
460 *
461 * @param src_task Pointer of source task
462 * @param src_base Base address of the source address space area.
463 * @param acc_size Expected size of the source area
464 * @param dst_base Target base address
465 *
466 * @return Zero on success or ENOENT if there is no such task or
467 * if there is no such address space area,
468 * EPERM if there was a problem in accepting the area or
469 * ENOMEM if there was a problem in allocating destination
470 * address space area.
471 */
472int as_area_steal(task_t *src_task, __address src_base, size_t acc_size,
473 __address dst_base)
474{
475 ipl_t ipl;
476 count_t i;
477 as_t *src_as;
478 int src_flags;
479 size_t src_size;
480 as_area_t *src_area, *dst_area;
481
482 ipl = interrupts_disable();
483 spinlock_lock(&src_task->lock);
484 src_as = src_task->as;
485
486 mutex_lock(&src_as->lock);
487 src_area = find_area_and_lock(src_as, src_base);
488 if (!src_area) {
489 /*
490 * Could not find the source address space area.
491 */
492 spinlock_unlock(&src_task->lock);
493 mutex_unlock(&src_as->lock);
494 interrupts_restore(ipl);
495 return ENOENT;
496 }
497 src_size = src_area->pages * PAGE_SIZE;
498 src_flags = src_area->flags;
499 mutex_unlock(&src_area->lock);
500 mutex_unlock(&src_as->lock);
501
502 if (src_size != acc_size) {
503 spinlock_unlock(&src_task->lock);
504 interrupts_restore(ipl);
505 return EPERM;
506 }
507 /*
508 * Create copy of the source address space area.
509 * The destination area is created with AS_AREA_ATTR_PARTIAL
510 * attribute set which prevents race condition with
511 * preliminary as_page_fault() calls.
512 */
513 dst_area = as_area_create(AS, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL, &anon_backend, NULL);
514 if (!dst_area) {
515 /*
516 * Destination address space area could not be created.
517 */
518 spinlock_unlock(&src_task->lock);
519 interrupts_restore(ipl);
520 return ENOMEM;
521 }
522
523 spinlock_unlock(&src_task->lock);
524
525 /*
526 * Avoid deadlock by first locking the address space with lower address.
527 */
528 if (AS < src_as) {
529 mutex_lock(&AS->lock);
530 mutex_lock(&src_as->lock);
531 } else {
532 mutex_lock(&AS->lock);
533 mutex_lock(&src_as->lock);
534 }
535
536 for (i = 0; i < SIZE2FRAMES(src_size); i++) {
537 pte_t *pte;
538 __address frame;
539
540 page_table_lock(src_as, false);
541 pte = page_mapping_find(src_as, src_base + i*PAGE_SIZE);
542 if (pte && PTE_VALID(pte)) {
543 ASSERT(PTE_PRESENT(pte));
544 frame = PTE_GET_FRAME(pte);
545 if (!(src_flags & AS_AREA_DEVICE))
546 frame_reference_add(ADDR2PFN(frame));
547 page_table_unlock(src_as, false);
548 } else {
549 page_table_unlock(src_as, false);
550 continue;
551 }
552
553 page_table_lock(AS, false);
554 page_mapping_insert(AS, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags));
555 page_table_unlock(AS, false);
556 }
557
558 /*
559 * Now the destination address space area has been
560 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
561 * attribute.
562 */
563 mutex_lock(&dst_area->lock);
564 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
565 mutex_unlock(&dst_area->lock);
566
567 mutex_unlock(&AS->lock);
568 mutex_unlock(&src_as->lock);
569 interrupts_restore(ipl);
570
571 return 0;
572}
573
574/** Initialize mapping for one page of address space.
575 *
576 * This functions maps 'page' to 'frame' according
577 * to attributes of the address space area to
578 * wich 'page' belongs.
579 *
580 * @param as Target address space.
581 * @param page Virtual page within the area.
582 * @param frame Physical frame to which page will be mapped.
583 */
584void as_set_mapping(as_t *as, __address page, __address frame)
585{
586 as_area_t *area;
587 ipl_t ipl;
588
589 ipl = interrupts_disable();
590 page_table_lock(as, true);
591
592 area = find_area_and_lock(as, page);
593 if (!area) {
594 panic("Page not part of any as_area.\n");
595 }
596
597 ASSERT(!area->backend);
598
599 page_mapping_insert(as, page, frame, as_area_get_flags(area));
600 if (!used_space_insert(area, page, 1))
601 panic("Could not insert used space.\n");
602
603 mutex_unlock(&area->lock);
604 page_table_unlock(as, true);
605 interrupts_restore(ipl);
606}
607
608/** Handle page fault within the current address space.
609 *
610 * This is the high-level page fault handler. It decides
611 * whether the page fault can be resolved by any backend
612 * and if so, it invokes the backend to resolve the page
613 * fault.
614 *
615 * Interrupts are assumed disabled.
616 *
617 * @param page Faulting page.
618 * @param access Access mode that caused the fault (i.e. read/write/exec).
619 * @param istate Pointer to interrupted state.
620 *
621 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
622 * fault was caused by copy_to_uspace() or copy_from_uspace().
623 */
624int as_page_fault(__address page, pf_access_t access, istate_t *istate)
625{
626 pte_t *pte;
627 as_area_t *area;
628
629 if (!THREAD)
630 return AS_PF_FAULT;
631
632 ASSERT(AS);
633
634 mutex_lock(&AS->lock);
635 area = find_area_and_lock(AS, page);
636 if (!area) {
637 /*
638 * No area contained mapping for 'page'.
639 * Signal page fault to low-level handler.
640 */
641 mutex_unlock(&AS->lock);
642 goto page_fault;
643 }
644
645 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
646 /*
647 * The address space area is not fully initialized.
648 * Avoid possible race by returning error.
649 */
650 mutex_unlock(&area->lock);
651 mutex_unlock(&AS->lock);
652 goto page_fault;
653 }
654
655 if (!area->backend || !area->backend->backend_page_fault) {
656 /*
657 * The address space area is not backed by any backend
658 * or the backend cannot handle page faults.
659 */
660 mutex_unlock(&area->lock);
661 mutex_unlock(&AS->lock);
662 goto page_fault;
663 }
664
665 page_table_lock(AS, false);
666
667 /*
668 * To avoid race condition between two page faults
669 * on the same address, we need to make sure
670 * the mapping has not been already inserted.
671 */
672 if ((pte = page_mapping_find(AS, page))) {
673 if (PTE_PRESENT(pte)) {
674 page_table_unlock(AS, false);
675 mutex_unlock(&area->lock);
676 mutex_unlock(&AS->lock);
677 return AS_PF_OK;
678 }
679 }
680
681 /*
682 * Resort to the backend page fault handler.
683 */
684 if (area->backend->backend_page_fault(area, page, access) != AS_PF_OK) {
685 page_table_unlock(AS, false);
686 mutex_unlock(&area->lock);
687 mutex_unlock(&AS->lock);
688 goto page_fault;
689 }
690
691 page_table_unlock(AS, false);
692 mutex_unlock(&area->lock);
693 mutex_unlock(&AS->lock);
694 return AS_PF_OK;
695
696page_fault:
697 if (THREAD->in_copy_from_uspace) {
698 THREAD->in_copy_from_uspace = false;
699 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
700 } else if (THREAD->in_copy_to_uspace) {
701 THREAD->in_copy_to_uspace = false;
702 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
703 } else {
704 return AS_PF_FAULT;
705 }
706
707 return AS_PF_DEFER;
708}
709
710/** Switch address spaces.
711 *
712 * Note that this function cannot sleep as it is essentially a part of
713 * the scheduling. Sleeping here would lead to deadlock on wakeup.
714 *
715 * @param old Old address space or NULL.
716 * @param new New address space.
717 */
718void as_switch(as_t *old, as_t *new)
719{
720 ipl_t ipl;
721 bool needs_asid = false;
722
723 ipl = interrupts_disable();
724 spinlock_lock(&as_lock);
725
726 /*
727 * First, take care of the old address space.
728 */
729 if (old) {
730 mutex_lock_active(&old->lock);
731 ASSERT(old->refcount);
732 if((--old->refcount == 0) && (old != AS_KERNEL)) {
733 /*
734 * The old address space is no longer active on
735 * any processor. It can be appended to the
736 * list of inactive address spaces with assigned
737 * ASID.
738 */
739 ASSERT(old->asid != ASID_INVALID);
740 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
741 }
742 mutex_unlock(&old->lock);
743 }
744
745 /*
746 * Second, prepare the new address space.
747 */
748 mutex_lock_active(&new->lock);
749 if ((new->refcount++ == 0) && (new != AS_KERNEL)) {
750 if (new->asid != ASID_INVALID)
751 list_remove(&new->inactive_as_with_asid_link);
752 else
753 needs_asid = true; /* defer call to asid_get() until new->lock is released */
754 }
755 SET_PTL0_ADDRESS(new->page_table);
756 mutex_unlock(&new->lock);
757
758 if (needs_asid) {
759 /*
760 * Allocation of new ASID was deferred
761 * until now in order to avoid deadlock.
762 */
763 asid_t asid;
764
765 asid = asid_get();
766 mutex_lock_active(&new->lock);
767 new->asid = asid;
768 mutex_unlock(&new->lock);
769 }
770 spinlock_unlock(&as_lock);
771 interrupts_restore(ipl);
772
773 /*
774 * Perform architecture-specific steps.
775 * (e.g. write ASID to hardware register etc.)
776 */
777 as_install_arch(new);
778
779 AS = new;
780}
781
782/** Convert address space area flags to page flags.
783 *
784 * @param aflags Flags of some address space area.
785 *
786 * @return Flags to be passed to page_mapping_insert().
787 */
788int area_flags_to_page_flags(int aflags)
789{
790 int flags;
791
792 flags = PAGE_USER | PAGE_PRESENT;
793
794 if (aflags & AS_AREA_READ)
795 flags |= PAGE_READ;
796
797 if (aflags & AS_AREA_WRITE)
798 flags |= PAGE_WRITE;
799
800 if (aflags & AS_AREA_EXEC)
801 flags |= PAGE_EXEC;
802
803 if (!(aflags & AS_AREA_DEVICE))
804 flags |= PAGE_CACHEABLE;
805
806 return flags;
807}
808
809/** Compute flags for virtual address translation subsytem.
810 *
811 * The address space area must be locked.
812 * Interrupts must be disabled.
813 *
814 * @param a Address space area.
815 *
816 * @return Flags to be used in page_mapping_insert().
817 */
818int as_area_get_flags(as_area_t *a)
819{
820 return area_flags_to_page_flags(a->flags);
821}
822
823/** Create page table.
824 *
825 * Depending on architecture, create either address space
826 * private or global page table.
827 *
828 * @param flags Flags saying whether the page table is for kernel address space.
829 *
830 * @return First entry of the page table.
831 */
832pte_t *page_table_create(int flags)
833{
834 ASSERT(as_operations);
835 ASSERT(as_operations->page_table_create);
836
837 return as_operations->page_table_create(flags);
838}
839
840/** Lock page table.
841 *
842 * This function should be called before any page_mapping_insert(),
843 * page_mapping_remove() and page_mapping_find().
844 *
845 * Locking order is such that address space areas must be locked
846 * prior to this call. Address space can be locked prior to this
847 * call in which case the lock argument is false.
848 *
849 * @param as Address space.
850 * @param lock If false, do not attempt to lock as->lock.
851 */
852void page_table_lock(as_t *as, bool lock)
853{
854 ASSERT(as_operations);
855 ASSERT(as_operations->page_table_lock);
856
857 as_operations->page_table_lock(as, lock);
858}
859
860/** Unlock page table.
861 *
862 * @param as Address space.
863 * @param unlock If false, do not attempt to unlock as->lock.
864 */
865void page_table_unlock(as_t *as, bool unlock)
866{
867 ASSERT(as_operations);
868 ASSERT(as_operations->page_table_unlock);
869
870 as_operations->page_table_unlock(as, unlock);
871}
872
873
874/** Find address space area and lock it.
875 *
876 * The address space must be locked and interrupts must be disabled.
877 *
878 * @param as Address space.
879 * @param va Virtual address.
880 *
881 * @return Locked address space area containing va on success or NULL on failure.
882 */
883as_area_t *find_area_and_lock(as_t *as, __address va)
884{
885 as_area_t *a;
886 btree_node_t *leaf, *lnode;
887 int i;
888
889 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
890 if (a) {
891 /* va is the base address of an address space area */
892 mutex_lock(&a->lock);
893 return a;
894 }
895
896 /*
897 * Search the leaf node and the righmost record of its left neighbour
898 * to find out whether this is a miss or va belongs to an address
899 * space area found there.
900 */
901
902 /* First, search the leaf node itself. */
903 for (i = 0; i < leaf->keys; i++) {
904 a = (as_area_t *) leaf->value[i];
905 mutex_lock(&a->lock);
906 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
907 return a;
908 }
909 mutex_unlock(&a->lock);
910 }
911
912 /*
913 * Second, locate the left neighbour and test its last record.
914 * Because of its position in the B+tree, it must have base < va.
915 */
916 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
917 a = (as_area_t *) lnode->value[lnode->keys - 1];
918 mutex_lock(&a->lock);
919 if (va < a->base + a->pages * PAGE_SIZE) {
920 return a;
921 }
922 mutex_unlock(&a->lock);
923 }
924
925 return NULL;
926}
927
928/** Check area conflicts with other areas.
929 *
930 * The address space must be locked and interrupts must be disabled.
931 *
932 * @param as Address space.
933 * @param va Starting virtual address of the area being tested.
934 * @param size Size of the area being tested.
935 * @param avoid_area Do not touch this area.
936 *
937 * @return True if there is no conflict, false otherwise.
938 */
939bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
940{
941 as_area_t *a;
942 btree_node_t *leaf, *node;
943 int i;
944
945 /*
946 * We don't want any area to have conflicts with NULL page.
947 */
948 if (overlaps(va, size, NULL, PAGE_SIZE))
949 return false;
950
951 /*
952 * The leaf node is found in O(log n), where n is proportional to
953 * the number of address space areas belonging to as.
954 * The check for conflicts is then attempted on the rightmost
955 * record in the left neighbour, the leftmost record in the right
956 * neighbour and all records in the leaf node itself.
957 */
958
959 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
960 if (a != avoid_area)
961 return false;
962 }
963
964 /* First, check the two border cases. */
965 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
966 a = (as_area_t *) node->value[node->keys - 1];
967 mutex_lock(&a->lock);
968 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
969 mutex_unlock(&a->lock);
970 return false;
971 }
972 mutex_unlock(&a->lock);
973 }
974 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
975 a = (as_area_t *) node->value[0];
976 mutex_lock(&a->lock);
977 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
978 mutex_unlock(&a->lock);
979 return false;
980 }
981 mutex_unlock(&a->lock);
982 }
983
984 /* Second, check the leaf node. */
985 for (i = 0; i < leaf->keys; i++) {
986 a = (as_area_t *) leaf->value[i];
987
988 if (a == avoid_area)
989 continue;
990
991 mutex_lock(&a->lock);
992 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
993 mutex_unlock(&a->lock);
994 return false;
995 }
996 mutex_unlock(&a->lock);
997 }
998
999 /*
1000 * So far, the area does not conflict with other areas.
1001 * Check if it doesn't conflict with kernel address space.
1002 */
1003 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1004 return !overlaps(va, size,
1005 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1006 }
1007
1008 return true;
1009}
1010
1011/** Return size of the address space area with given base. */
1012size_t as_get_size(__address base)
1013{
1014 ipl_t ipl;
1015 as_area_t *src_area;
1016 size_t size;
1017
1018 ipl = interrupts_disable();
1019 src_area = find_area_and_lock(AS, base);
1020 if (src_area){
1021 size = src_area->pages * PAGE_SIZE;
1022 mutex_unlock(&src_area->lock);
1023 } else {
1024 size = 0;
1025 }
1026 interrupts_restore(ipl);
1027 return size;
1028}
1029
1030/** Mark portion of address space area as used.
1031 *
1032 * The address space area must be already locked.
1033 *
1034 * @param a Address space area.
1035 * @param page First page to be marked.
1036 * @param count Number of page to be marked.
1037 *
1038 * @return 0 on failure and 1 on success.
1039 */
1040int used_space_insert(as_area_t *a, __address page, count_t count)
1041{
1042 btree_node_t *leaf, *node;
1043 count_t pages;
1044 int i;
1045
1046 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1047 ASSERT(count);
1048
1049 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1050 if (pages) {
1051 /*
1052 * We hit the beginning of some used space.
1053 */
1054 return 0;
1055 }
1056
1057 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1058 if (node) {
1059 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1060 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1061
1062 /*
1063 * Examine the possibility that the interval fits
1064 * somewhere between the rightmost interval of
1065 * the left neigbour and the first interval of the leaf.
1066 */
1067
1068 if (page >= right_pg) {
1069 /* Do nothing. */
1070 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1071 /* The interval intersects with the left interval. */
1072 return 0;
1073 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1074 /* The interval intersects with the right interval. */
1075 return 0;
1076 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1077 /* The interval can be added by merging the two already present intervals. */
1078 node->value[node->keys - 1] += count + right_cnt;
1079 btree_remove(&a->used_space, right_pg, leaf);
1080 return 1;
1081 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1082 /* The interval can be added by simply growing the left interval. */
1083 node->value[node->keys - 1] += count;
1084 return 1;
1085 } else if (page + count*PAGE_SIZE == right_pg) {
1086 /*
1087 * The interval can be addded by simply moving base of the right
1088 * interval down and increasing its size accordingly.
1089 */
1090 leaf->value[0] += count;
1091 leaf->key[0] = page;
1092 return 1;
1093 } else {
1094 /*
1095 * The interval is between both neigbouring intervals,
1096 * but cannot be merged with any of them.
1097 */
1098 btree_insert(&a->used_space, page, (void *) count, leaf);
1099 return 1;
1100 }
1101 } else if (page < leaf->key[0]) {
1102 __address right_pg = leaf->key[0];
1103 count_t right_cnt = (count_t) leaf->value[0];
1104
1105 /*
1106 * Investigate the border case in which the left neighbour does not
1107 * exist but the interval fits from the left.
1108 */
1109
1110 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1111 /* The interval intersects with the right interval. */
1112 return 0;
1113 } else if (page + count*PAGE_SIZE == right_pg) {
1114 /*
1115 * The interval can be added by moving the base of the right interval down
1116 * and increasing its size accordingly.
1117 */
1118 leaf->key[0] = page;
1119 leaf->value[0] += count;
1120 return 1;
1121 } else {
1122 /*
1123 * The interval doesn't adjoin with the right interval.
1124 * It must be added individually.
1125 */
1126 btree_insert(&a->used_space, page, (void *) count, leaf);
1127 return 1;
1128 }
1129 }
1130
1131 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1132 if (node) {
1133 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1134 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1135
1136 /*
1137 * Examine the possibility that the interval fits
1138 * somewhere between the leftmost interval of
1139 * the right neigbour and the last interval of the leaf.
1140 */
1141
1142 if (page < left_pg) {
1143 /* Do nothing. */
1144 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1145 /* The interval intersects with the left interval. */
1146 return 0;
1147 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1148 /* The interval intersects with the right interval. */
1149 return 0;
1150 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1151 /* The interval can be added by merging the two already present intervals. */
1152 leaf->value[leaf->keys - 1] += count + right_cnt;
1153 btree_remove(&a->used_space, right_pg, node);
1154 return 1;
1155 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1156 /* The interval can be added by simply growing the left interval. */
1157 leaf->value[leaf->keys - 1] += count;
1158 return 1;
1159 } else if (page + count*PAGE_SIZE == right_pg) {
1160 /*
1161 * The interval can be addded by simply moving base of the right
1162 * interval down and increasing its size accordingly.
1163 */
1164 node->value[0] += count;
1165 node->key[0] = page;
1166 return 1;
1167 } else {
1168 /*
1169 * The interval is between both neigbouring intervals,
1170 * but cannot be merged with any of them.
1171 */
1172 btree_insert(&a->used_space, page, (void *) count, leaf);
1173 return 1;
1174 }
1175 } else if (page >= leaf->key[leaf->keys - 1]) {
1176 __address left_pg = leaf->key[leaf->keys - 1];
1177 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1178
1179 /*
1180 * Investigate the border case in which the right neighbour does not
1181 * exist but the interval fits from the right.
1182 */
1183
1184 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1185 /* The interval intersects with the left interval. */
1186 return 0;
1187 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1188 /* The interval can be added by growing the left interval. */
1189 leaf->value[leaf->keys - 1] += count;
1190 return 1;
1191 } else {
1192 /*
1193 * The interval doesn't adjoin with the left interval.
1194 * It must be added individually.
1195 */
1196 btree_insert(&a->used_space, page, (void *) count, leaf);
1197 return 1;
1198 }
1199 }
1200
1201 /*
1202 * Note that if the algorithm made it thus far, the interval can fit only
1203 * between two other intervals of the leaf. The two border cases were already
1204 * resolved.
1205 */
1206 for (i = 1; i < leaf->keys; i++) {
1207 if (page < leaf->key[i]) {
1208 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1209 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1210
1211 /*
1212 * The interval fits between left_pg and right_pg.
1213 */
1214
1215 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1216 /* The interval intersects with the left interval. */
1217 return 0;
1218 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1219 /* The interval intersects with the right interval. */
1220 return 0;
1221 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1222 /* The interval can be added by merging the two already present intervals. */
1223 leaf->value[i - 1] += count + right_cnt;
1224 btree_remove(&a->used_space, right_pg, leaf);
1225 return 1;
1226 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1227 /* The interval can be added by simply growing the left interval. */
1228 leaf->value[i - 1] += count;
1229 return 1;
1230 } else if (page + count*PAGE_SIZE == right_pg) {
1231 /*
1232 * The interval can be addded by simply moving base of the right
1233 * interval down and increasing its size accordingly.
1234 */
1235 leaf->value[i] += count;
1236 leaf->key[i] = page;
1237 return 1;
1238 } else {
1239 /*
1240 * The interval is between both neigbouring intervals,
1241 * but cannot be merged with any of them.
1242 */
1243 btree_insert(&a->used_space, page, (void *) count, leaf);
1244 return 1;
1245 }
1246 }
1247 }
1248
1249 panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1250}
1251
1252/** Mark portion of address space area as unused.
1253 *
1254 * The address space area must be already locked.
1255 *
1256 * @param a Address space area.
1257 * @param page First page to be marked.
1258 * @param count Number of page to be marked.
1259 *
1260 * @return 0 on failure and 1 on success.
1261 */
1262int used_space_remove(as_area_t *a, __address page, count_t count)
1263{
1264 btree_node_t *leaf, *node;
1265 count_t pages;
1266 int i;
1267
1268 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1269 ASSERT(count);
1270
1271 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1272 if (pages) {
1273 /*
1274 * We are lucky, page is the beginning of some interval.
1275 */
1276 if (count > pages) {
1277 return 0;
1278 } else if (count == pages) {
1279 btree_remove(&a->used_space, page, leaf);
1280 return 1;
1281 } else {
1282 /*
1283 * Find the respective interval.
1284 * Decrease its size and relocate its start address.
1285 */
1286 for (i = 0; i < leaf->keys; i++) {
1287 if (leaf->key[i] == page) {
1288 leaf->key[i] += count*PAGE_SIZE;
1289 leaf->value[i] -= count;
1290 return 1;
1291 }
1292 }
1293 goto error;
1294 }
1295 }
1296
1297 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1298 if (node && page < leaf->key[0]) {
1299 __address left_pg = node->key[node->keys - 1];
1300 count_t left_cnt = (count_t) node->value[node->keys - 1];
1301
1302 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1303 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1304 /*
1305 * The interval is contained in the rightmost interval
1306 * of the left neighbour and can be removed by
1307 * updating the size of the bigger interval.
1308 */
1309 node->value[node->keys - 1] -= count;
1310 return 1;
1311 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1312 count_t new_cnt;
1313
1314 /*
1315 * The interval is contained in the rightmost interval
1316 * of the left neighbour but its removal requires
1317 * both updating the size of the original interval and
1318 * also inserting a new interval.
1319 */
1320 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1321 node->value[node->keys - 1] -= count + new_cnt;
1322 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1323 return 1;
1324 }
1325 }
1326 return 0;
1327 } else if (page < leaf->key[0]) {
1328 return 0;
1329 }
1330
1331 if (page > leaf->key[leaf->keys - 1]) {
1332 __address left_pg = leaf->key[leaf->keys - 1];
1333 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1334
1335 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1336 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1337 /*
1338 * The interval is contained in the rightmost interval
1339 * of the leaf and can be removed by updating the size
1340 * of the bigger interval.
1341 */
1342 leaf->value[leaf->keys - 1] -= count;
1343 return 1;
1344 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1345 count_t new_cnt;
1346
1347 /*
1348 * The interval is contained in the rightmost interval
1349 * of the leaf but its removal requires both updating
1350 * the size of the original interval and
1351 * also inserting a new interval.
1352 */
1353 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1354 leaf->value[leaf->keys - 1] -= count + new_cnt;
1355 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1356 return 1;
1357 }
1358 }
1359 return 0;
1360 }
1361
1362 /*
1363 * The border cases have been already resolved.
1364 * Now the interval can be only between intervals of the leaf.
1365 */
1366 for (i = 1; i < leaf->keys - 1; i++) {
1367 if (page < leaf->key[i]) {
1368 __address left_pg = leaf->key[i - 1];
1369 count_t left_cnt = (count_t) leaf->value[i - 1];
1370
1371 /*
1372 * Now the interval is between intervals corresponding to (i - 1) and i.
1373 */
1374 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1375 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1376 /*
1377 * The interval is contained in the interval (i - 1)
1378 * of the leaf and can be removed by updating the size
1379 * of the bigger interval.
1380 */
1381 leaf->value[i - 1] -= count;
1382 return 1;
1383 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1384 count_t new_cnt;
1385
1386 /*
1387 * The interval is contained in the interval (i - 1)
1388 * of the leaf but its removal requires both updating
1389 * the size of the original interval and
1390 * also inserting a new interval.
1391 */
1392 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1393 leaf->value[i - 1] -= count + new_cnt;
1394 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1395 return 1;
1396 }
1397 }
1398 return 0;
1399 }
1400 }
1401
1402error:
1403 panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1404}
1405
1406/** Remove reference to address space area share info.
1407 *
1408 * If the reference count drops to 0, the sh_info is deallocated.
1409 *
1410 * @param sh_info Pointer to address space area share info.
1411 */
1412void sh_info_remove_reference(share_info_t *sh_info)
1413{
1414 bool dealloc = false;
1415
1416 mutex_lock(&sh_info->lock);
1417 ASSERT(sh_info->refcount);
1418 if (--sh_info->refcount == 0) {
1419 dealloc = true;
1420 bool cond;
1421
1422 /*
1423 * Now walk carefully the pagemap B+tree and free/remove
1424 * reference from all frames found there.
1425 */
1426 for (cond = true; cond;) {
1427 btree_node_t *node;
1428
1429 ASSERT(!list_empty(&sh_info->pagemap.leaf_head));
1430 node = list_get_instance(sh_info->pagemap.leaf_head.next, btree_node_t, leaf_link);
1431 if ((cond = node->keys)) {
1432 frame_free(ADDR2PFN((__address) node->value[0]));
1433 btree_remove(&sh_info->pagemap, node->key[0], node);
1434 }
1435 }
1436
1437 }
1438 mutex_unlock(&sh_info->lock);
1439
1440 if (dealloc) {
1441 btree_destroy(&sh_info->pagemap);
1442 free(sh_info);
1443 }
1444}
1445
1446static int anon_page_fault(as_area_t *area, __address addr, pf_access_t access);
1447static void anon_frame_free(as_area_t *area, __address page, __address frame);
1448
1449/*
1450 * Anonymous memory backend.
1451 */
1452mem_backend_t anon_backend = {
1453 .backend_page_fault = anon_page_fault,
1454 .backend_frame_free = anon_frame_free
1455};
1456
1457/** Service a page fault in the anonymous memory address space area.
1458 *
1459 * The address space area and page tables must be already locked.
1460 *
1461 * @param area Pointer to the address space area.
1462 * @param addr Faulting virtual address.
1463 * @param access Access mode that caused the fault (i.e. read/write/exec).
1464 *
1465 * @return AS_PF_FAULT on failure (i.e. page fault) or AS_PF_OK on success (i.e. serviced).
1466 */
1467int anon_page_fault(as_area_t *area, __address addr, pf_access_t access)
1468{
1469 __address frame;
1470
1471 if (area->sh_info) {
1472 btree_node_t *leaf;
1473
1474 /*
1475 * The area is shared, chances are that the mapping can be found
1476 * in the pagemap of the address space area share info structure.
1477 * In the case that the pagemap does not contain the respective
1478 * mapping, a new frame is allocated and the mapping is created.
1479 */
1480 mutex_lock(&area->sh_info->lock);
1481 frame = (__address) btree_search(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE), &leaf);
1482 if (!frame) {
1483 bool allocate = true;
1484 int i;
1485
1486 /*
1487 * Zero can be returned as a valid frame address.
1488 * Just a small workaround.
1489 */
1490 for (i = 0; i < leaf->keys; i++) {
1491 if (leaf->key[i] == ALIGN_DOWN(addr, PAGE_SIZE)) {
1492 allocate = false;
1493 break;
1494 }
1495 }
1496 if (allocate) {
1497 frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1498 memsetb(PA2KA(frame), FRAME_SIZE, 0);
1499
1500 /*
1501 * Insert the address of the newly allocated frame to the pagemap.
1502 */
1503 btree_insert(&area->sh_info->pagemap, ALIGN_DOWN(addr, PAGE_SIZE), (void *) frame, leaf);
1504 }
1505 }
1506 mutex_unlock(&area->sh_info->lock);
1507 } else {
1508
1509 /*
1510 * In general, there can be several reasons that
1511 * can have caused this fault.
1512 *
1513 * - non-existent mapping: the area is an anonymous
1514 * area (e.g. heap or stack) and so far has not been
1515 * allocated a frame for the faulting page
1516 *
1517 * - non-present mapping: another possibility,
1518 * currently not implemented, would be frame
1519 * reuse; when this becomes a possibility,
1520 * do not forget to distinguish between
1521 * the different causes
1522 */
1523 frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0));
1524 memsetb(PA2KA(frame), FRAME_SIZE, 0);
1525 }
1526
1527 /*
1528 * Map 'page' to 'frame'.
1529 * Note that TLB shootdown is not attempted as only new information is being
1530 * inserted into page tables.
1531 */
1532 page_mapping_insert(AS, addr, frame, as_area_get_flags(area));
1533 if (!used_space_insert(area, ALIGN_DOWN(addr, PAGE_SIZE), 1))
1534 panic("Could not insert used space.\n");
1535
1536 return AS_PF_OK;
1537}
1538
1539/** Free a frame that is backed by the anonymous memory backend.
1540 *
1541 * The address space area and page tables must be already locked.
1542 *
1543 * @param area Ignored.
1544 * @param page Ignored.
1545 * @param frame Frame to be released.
1546 */
1547void anon_frame_free(as_area_t *area, __address page, __address frame)
1548{
1549 frame_free(ADDR2PFN(frame));
1550}
1551
1552/*
1553 * Address space related syscalls.
1554 */
1555
1556/** Wrapper for as_area_create(). */
1557__native sys_as_area_create(__address address, size_t size, int flags)
1558{
1559 if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1560 return (__native) address;
1561 else
1562 return (__native) -1;
1563}
1564
1565/** Wrapper for as_area_resize. */
1566__native sys_as_area_resize(__address address, size_t size, int flags)
1567{
1568 return (__native) as_area_resize(AS, address, size, 0);
1569}
1570
1571/** Wrapper for as_area_destroy. */
1572__native sys_as_area_destroy(__address address)
1573{
1574 return (__native) as_area_destroy(AS, address);
1575}
Note: See TracBrowser for help on using the repository browser.