source: mainline/generic/src/mm/as.c@ 1ec1fd8

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 1ec1fd8 was 1ec1fd8, checked in by Ondrej Palkovsky <ondrap@…>, 19 years ago

Slightly better behaviour with caching on memory sharing.

  • Property mode set to 100644
File size: 40.9 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/**
30 * @file as.c
31 * @brief Address space related functions.
32 *
33 * This file contains address space manipulation functions.
34 * Roughly speaking, this is a higher-level client of
35 * Virtual Address Translation (VAT) subsystem.
36 *
37 * Functionality provided by this file allows one to
38 * create address space and create, resize and share
39 * address space areas.
40 *
41 * @see page.c
42 *
43 */
44
45#include <mm/as.h>
46#include <arch/mm/as.h>
47#include <mm/page.h>
48#include <mm/frame.h>
49#include <mm/slab.h>
50#include <mm/tlb.h>
51#include <arch/mm/page.h>
52#include <genarch/mm/page_pt.h>
53#include <genarch/mm/page_ht.h>
54#include <mm/asid.h>
55#include <arch/mm/asid.h>
56#include <synch/spinlock.h>
57#include <synch/mutex.h>
58#include <adt/list.h>
59#include <adt/btree.h>
60#include <proc/task.h>
61#include <proc/thread.h>
62#include <arch/asm.h>
63#include <panic.h>
64#include <debug.h>
65#include <print.h>
66#include <memstr.h>
67#include <macros.h>
68#include <arch.h>
69#include <errno.h>
70#include <config.h>
71#include <align.h>
72#include <arch/types.h>
73#include <typedefs.h>
74#include <syscall/copy.h>
75#include <arch/interrupt.h>
76
77as_operations_t *as_operations = NULL;
78
79/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
80SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
81
82/**
83 * This list contains address spaces that are not active on any
84 * processor and that have valid ASID.
85 */
86LIST_INITIALIZE(inactive_as_with_asid_head);
87
88/** Kernel address space. */
89as_t *AS_KERNEL = NULL;
90
91static int area_flags_to_page_flags(int aflags);
92static as_area_t *find_area_and_lock(as_t *as, __address va);
93static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
94static void sh_info_remove_reference(share_info_t *sh_info);
95
96/** Initialize address space subsystem. */
97void as_init(void)
98{
99 as_arch_init();
100 AS_KERNEL = as_create(FLAG_AS_KERNEL);
101 if (!AS_KERNEL)
102 panic("can't create kernel address space\n");
103
104}
105
106/** Create address space.
107 *
108 * @param flags Flags that influence way in wich the address space is created.
109 */
110as_t *as_create(int flags)
111{
112 as_t *as;
113
114 as = (as_t *) malloc(sizeof(as_t), 0);
115 link_initialize(&as->inactive_as_with_asid_link);
116 mutex_initialize(&as->lock);
117 btree_create(&as->as_area_btree);
118
119 if (flags & FLAG_AS_KERNEL)
120 as->asid = ASID_KERNEL;
121 else
122 as->asid = ASID_INVALID;
123
124 as->refcount = 0;
125 as->cpu_refcount = 0;
126 as->page_table = page_table_create(flags);
127
128 return as;
129}
130
131/** Destroy adress space.
132 *
133 * When there are no tasks referencing this address space (i.e. its refcount is zero),
134 * the address space can be destroyed.
135 */
136void as_destroy(as_t *as)
137{
138 ipl_t ipl;
139 link_t *cur;
140
141 ASSERT(as->refcount == 0);
142
143 /*
144 * Since there is no reference to this area,
145 * it is safe not to lock its mutex.
146 */
147
148 ipl = interrupts_disable();
149 spinlock_lock(&inactive_as_with_asid_lock);
150 if (as->asid != ASID_INVALID && as->asid != ASID_KERNEL) {
151 list_remove(&as->inactive_as_with_asid_link);
152 asid_put(as->asid);
153 }
154 spinlock_unlock(&inactive_as_with_asid_lock);
155
156 /*
157 * Destroy address space areas of the address space.
158 */
159 for (cur = as->as_area_btree.leaf_head.next; cur != &as->as_area_btree.leaf_head; cur = cur->next) {
160 btree_node_t *node;
161 int i;
162
163 node = list_get_instance(cur, btree_node_t, leaf_link);
164 for (i = 0; i < node->keys; i++)
165 as_area_destroy(as, node->key[i]);
166 }
167
168 btree_destroy(&as->as_area_btree);
169 page_table_destroy(as->page_table);
170
171 interrupts_restore(ipl);
172
173 free(as);
174}
175
176/** Create address space area of common attributes.
177 *
178 * The created address space area is added to the target address space.
179 *
180 * @param as Target address space.
181 * @param flags Flags of the area memory.
182 * @param size Size of area.
183 * @param base Base address of area.
184 * @param attrs Attributes of the area.
185 * @param backend Address space area backend. NULL if no backend is used.
186 * @param backend_data NULL or a pointer to an array holding two void *.
187 *
188 * @return Address space area on success or NULL on failure.
189 */
190as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
191 mem_backend_t *backend, mem_backend_data_t *backend_data)
192{
193 ipl_t ipl;
194 as_area_t *a;
195
196 if (base % PAGE_SIZE)
197 return NULL;
198
199 if (!size)
200 return NULL;
201
202 /* Writeable executable areas are not supported. */
203 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
204 return NULL;
205
206 ipl = interrupts_disable();
207 mutex_lock(&as->lock);
208
209 if (!check_area_conflicts(as, base, size, NULL)) {
210 mutex_unlock(&as->lock);
211 interrupts_restore(ipl);
212 return NULL;
213 }
214
215 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
216
217 mutex_initialize(&a->lock);
218
219 a->as = as;
220 a->flags = flags;
221 a->attributes = attrs;
222 a->pages = SIZE2FRAMES(size);
223 a->base = base;
224 a->sh_info = NULL;
225 a->backend = backend;
226 if (backend_data)
227 a->backend_data = *backend_data;
228 else
229 memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
230
231 btree_create(&a->used_space);
232
233 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
234
235 mutex_unlock(&as->lock);
236 interrupts_restore(ipl);
237
238 return a;
239}
240
241/** Find address space area and change it.
242 *
243 * @param as Address space.
244 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
245 * @param size New size of the virtual memory block starting at address.
246 * @param flags Flags influencing the remap operation. Currently unused.
247 *
248 * @return Zero on success or a value from @ref errno.h otherwise.
249 */
250int as_area_resize(as_t *as, __address address, size_t size, int flags)
251{
252 as_area_t *area;
253 ipl_t ipl;
254 size_t pages;
255
256 ipl = interrupts_disable();
257 mutex_lock(&as->lock);
258
259 /*
260 * Locate the area.
261 */
262 area = find_area_and_lock(as, address);
263 if (!area) {
264 mutex_unlock(&as->lock);
265 interrupts_restore(ipl);
266 return ENOENT;
267 }
268
269 if (area->backend == &phys_backend) {
270 /*
271 * Remapping of address space areas associated
272 * with memory mapped devices is not supported.
273 */
274 mutex_unlock(&area->lock);
275 mutex_unlock(&as->lock);
276 interrupts_restore(ipl);
277 return ENOTSUP;
278 }
279 if (area->sh_info) {
280 /*
281 * Remapping of shared address space areas
282 * is not supported.
283 */
284 mutex_unlock(&area->lock);
285 mutex_unlock(&as->lock);
286 interrupts_restore(ipl);
287 return ENOTSUP;
288 }
289
290 pages = SIZE2FRAMES((address - area->base) + size);
291 if (!pages) {
292 /*
293 * Zero size address space areas are not allowed.
294 */
295 mutex_unlock(&area->lock);
296 mutex_unlock(&as->lock);
297 interrupts_restore(ipl);
298 return EPERM;
299 }
300
301 if (pages < area->pages) {
302 bool cond;
303 __address start_free = area->base + pages*PAGE_SIZE;
304
305 /*
306 * Shrinking the area.
307 * No need to check for overlaps.
308 */
309
310 /*
311 * Start TLB shootdown sequence.
312 */
313 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
314
315 /*
316 * Remove frames belonging to used space starting from
317 * the highest addresses downwards until an overlap with
318 * the resized address space area is found. Note that this
319 * is also the right way to remove part of the used_space
320 * B+tree leaf list.
321 */
322 for (cond = true; cond;) {
323 btree_node_t *node;
324
325 ASSERT(!list_empty(&area->used_space.leaf_head));
326 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
327 if ((cond = (bool) node->keys)) {
328 __address b = node->key[node->keys - 1];
329 count_t c = (count_t) node->value[node->keys - 1];
330 int i = 0;
331
332 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
333
334 if (b + c*PAGE_SIZE <= start_free) {
335 /*
336 * The whole interval fits completely
337 * in the resized address space area.
338 */
339 break;
340 }
341
342 /*
343 * Part of the interval corresponding to b and c
344 * overlaps with the resized address space area.
345 */
346
347 cond = false; /* we are almost done */
348 i = (start_free - b) >> PAGE_WIDTH;
349 if (!used_space_remove(area, start_free, c - i))
350 panic("Could not remove used space.");
351 } else {
352 /*
353 * The interval of used space can be completely removed.
354 */
355 if (!used_space_remove(area, b, c))
356 panic("Could not remove used space.\n");
357 }
358
359 for (; i < c; i++) {
360 pte_t *pte;
361
362 page_table_lock(as, false);
363 pte = page_mapping_find(as, b + i*PAGE_SIZE);
364 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
365 if (area->backend && area->backend->frame_free) {
366 area->backend->frame_free(area,
367 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
368 }
369 page_mapping_remove(as, b + i*PAGE_SIZE);
370 page_table_unlock(as, false);
371 }
372 }
373 }
374
375 /*
376 * Finish TLB shootdown sequence.
377 */
378 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
379 tlb_shootdown_finalize();
380 } else {
381 /*
382 * Growing the area.
383 * Check for overlaps with other address space areas.
384 */
385 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
386 mutex_unlock(&area->lock);
387 mutex_unlock(&as->lock);
388 interrupts_restore(ipl);
389 return EADDRNOTAVAIL;
390 }
391 }
392
393 area->pages = pages;
394
395 mutex_unlock(&area->lock);
396 mutex_unlock(&as->lock);
397 interrupts_restore(ipl);
398
399 return 0;
400}
401
402/** Destroy address space area.
403 *
404 * @param as Address space.
405 * @param address Address withing the area to be deleted.
406 *
407 * @return Zero on success or a value from @ref errno.h on failure.
408 */
409int as_area_destroy(as_t *as, __address address)
410{
411 as_area_t *area;
412 __address base;
413 link_t *cur;
414 ipl_t ipl;
415
416 ipl = interrupts_disable();
417 mutex_lock(&as->lock);
418
419 area = find_area_and_lock(as, address);
420 if (!area) {
421 mutex_unlock(&as->lock);
422 interrupts_restore(ipl);
423 return ENOENT;
424 }
425
426 base = area->base;
427
428 /*
429 * Start TLB shootdown sequence.
430 */
431 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
432
433 /*
434 * Visit only the pages mapped by used_space B+tree.
435 */
436 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
437 btree_node_t *node;
438 int i;
439
440 node = list_get_instance(cur, btree_node_t, leaf_link);
441 for (i = 0; i < node->keys; i++) {
442 __address b = node->key[i];
443 count_t j;
444 pte_t *pte;
445
446 for (j = 0; j < (count_t) node->value[i]; j++) {
447 page_table_lock(as, false);
448 pte = page_mapping_find(as, b + j*PAGE_SIZE);
449 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
450 if (area->backend && area->backend->frame_free) {
451 area->backend->frame_free(area,
452 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
453 }
454 page_mapping_remove(as, b + j*PAGE_SIZE);
455 page_table_unlock(as, false);
456 }
457 }
458 }
459
460 /*
461 * Finish TLB shootdown sequence.
462 */
463 tlb_invalidate_pages(AS->asid, area->base, area->pages);
464 tlb_shootdown_finalize();
465
466 btree_destroy(&area->used_space);
467
468 area->attributes |= AS_AREA_ATTR_PARTIAL;
469
470 if (area->sh_info)
471 sh_info_remove_reference(area->sh_info);
472
473 mutex_unlock(&area->lock);
474
475 /*
476 * Remove the empty area from address space.
477 */
478 btree_remove(&AS->as_area_btree, base, NULL);
479
480 free(area);
481
482 mutex_unlock(&AS->lock);
483 interrupts_restore(ipl);
484 return 0;
485}
486
487/** Share address space area with another or the same address space.
488 *
489 * Address space area mapping is shared with a new address space area.
490 * If the source address space area has not been shared so far,
491 * a new sh_info is created. The new address space area simply gets the
492 * sh_info of the source area. The process of duplicating the
493 * mapping is done through the backend share function.
494 *
495 * @param src_as Pointer to source address space.
496 * @param src_base Base address of the source address space area.
497 * @param acc_size Expected size of the source area.
498 * @param dst_as Pointer to destination address space.
499 * @param dst_base Target base address.
500 * @param dst_flags_mask Destination address space area flags mask.
501 *
502 * @return Zero on success or ENOENT if there is no such task or
503 * if there is no such address space area,
504 * EPERM if there was a problem in accepting the area or
505 * ENOMEM if there was a problem in allocating destination
506 * address space area. ENOTSUP is returned if an attempt
507 * to share non-anonymous address space area is detected.
508 */
509int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
510 as_t *dst_as, __address dst_base, int dst_flags_mask)
511{
512 ipl_t ipl;
513 int src_flags;
514 size_t src_size;
515 as_area_t *src_area, *dst_area;
516 share_info_t *sh_info;
517 mem_backend_t *src_backend;
518 mem_backend_data_t src_backend_data;
519
520 ipl = interrupts_disable();
521 mutex_lock(&src_as->lock);
522 src_area = find_area_and_lock(src_as, src_base);
523 if (!src_area) {
524 /*
525 * Could not find the source address space area.
526 */
527 mutex_unlock(&src_as->lock);
528 interrupts_restore(ipl);
529 return ENOENT;
530 }
531
532 if (!src_area->backend || !src_area->backend->share) {
533 /*
534 * There is now backend or the backend does not
535 * know how to share the area.
536 */
537 mutex_unlock(&src_area->lock);
538 mutex_unlock(&src_as->lock);
539 interrupts_restore(ipl);
540 return ENOTSUP;
541 }
542
543 src_size = src_area->pages * PAGE_SIZE;
544 src_flags = src_area->flags;
545 src_backend = src_area->backend;
546 src_backend_data = src_area->backend_data;
547
548 /* Share the cacheable flag from the original mapping */
549 if (src_flags & AS_AREA_CACHEABLE)
550 dst_flags_mask |= AS_AREA_CACHEABLE;
551
552 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
553 mutex_unlock(&src_area->lock);
554 mutex_unlock(&src_as->lock);
555 interrupts_restore(ipl);
556 return EPERM;
557 }
558
559 /*
560 * Now we are committed to sharing the area.
561 * First prepare the area for sharing.
562 * Then it will be safe to unlock it.
563 */
564 sh_info = src_area->sh_info;
565 if (!sh_info) {
566 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
567 mutex_initialize(&sh_info->lock);
568 sh_info->refcount = 2;
569 btree_create(&sh_info->pagemap);
570 src_area->sh_info = sh_info;
571 } else {
572 mutex_lock(&sh_info->lock);
573 sh_info->refcount++;
574 mutex_unlock(&sh_info->lock);
575 }
576
577 src_area->backend->share(src_area);
578
579 mutex_unlock(&src_area->lock);
580 mutex_unlock(&src_as->lock);
581
582 /*
583 * Create copy of the source address space area.
584 * The destination area is created with AS_AREA_ATTR_PARTIAL
585 * attribute set which prevents race condition with
586 * preliminary as_page_fault() calls.
587 * The flags of the source area are masked against dst_flags_mask
588 * to support sharing in less privileged mode.
589 */
590 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
591 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
592 if (!dst_area) {
593 /*
594 * Destination address space area could not be created.
595 */
596 sh_info_remove_reference(sh_info);
597
598 interrupts_restore(ipl);
599 return ENOMEM;
600 }
601
602 /*
603 * Now the destination address space area has been
604 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
605 * attribute and set the sh_info.
606 */
607 mutex_lock(&dst_area->lock);
608 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
609 dst_area->sh_info = sh_info;
610 mutex_unlock(&dst_area->lock);
611
612 interrupts_restore(ipl);
613
614 return 0;
615}
616
617/** Check access mode for address space area.
618 *
619 * The address space area must be locked prior to this call.
620 *
621 * @param area Address space area.
622 * @param access Access mode.
623 *
624 * @return False if access violates area's permissions, true otherwise.
625 */
626bool as_area_check_access(as_area_t *area, pf_access_t access)
627{
628 int flagmap[] = {
629 [PF_ACCESS_READ] = AS_AREA_READ,
630 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
631 [PF_ACCESS_EXEC] = AS_AREA_EXEC
632 };
633
634 if (!(area->flags & flagmap[access]))
635 return false;
636
637 return true;
638}
639
640/** Handle page fault within the current address space.
641 *
642 * This is the high-level page fault handler. It decides
643 * whether the page fault can be resolved by any backend
644 * and if so, it invokes the backend to resolve the page
645 * fault.
646 *
647 * Interrupts are assumed disabled.
648 *
649 * @param page Faulting page.
650 * @param access Access mode that caused the fault (i.e. read/write/exec).
651 * @param istate Pointer to interrupted state.
652 *
653 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
654 * fault was caused by copy_to_uspace() or copy_from_uspace().
655 */
656int as_page_fault(__address page, pf_access_t access, istate_t *istate)
657{
658 pte_t *pte;
659 as_area_t *area;
660
661 if (!THREAD)
662 return AS_PF_FAULT;
663
664 ASSERT(AS);
665
666 mutex_lock(&AS->lock);
667 area = find_area_and_lock(AS, page);
668 if (!area) {
669 /*
670 * No area contained mapping for 'page'.
671 * Signal page fault to low-level handler.
672 */
673 mutex_unlock(&AS->lock);
674 goto page_fault;
675 }
676
677 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
678 /*
679 * The address space area is not fully initialized.
680 * Avoid possible race by returning error.
681 */
682 mutex_unlock(&area->lock);
683 mutex_unlock(&AS->lock);
684 goto page_fault;
685 }
686
687 if (!area->backend || !area->backend->page_fault) {
688 /*
689 * The address space area is not backed by any backend
690 * or the backend cannot handle page faults.
691 */
692 mutex_unlock(&area->lock);
693 mutex_unlock(&AS->lock);
694 goto page_fault;
695 }
696
697 page_table_lock(AS, false);
698
699 /*
700 * To avoid race condition between two page faults
701 * on the same address, we need to make sure
702 * the mapping has not been already inserted.
703 */
704 if ((pte = page_mapping_find(AS, page))) {
705 if (PTE_PRESENT(pte)) {
706 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
707 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
708 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
709 page_table_unlock(AS, false);
710 mutex_unlock(&area->lock);
711 mutex_unlock(&AS->lock);
712 return AS_PF_OK;
713 }
714 }
715 }
716
717 /*
718 * Resort to the backend page fault handler.
719 */
720 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
721 page_table_unlock(AS, false);
722 mutex_unlock(&area->lock);
723 mutex_unlock(&AS->lock);
724 goto page_fault;
725 }
726
727 page_table_unlock(AS, false);
728 mutex_unlock(&area->lock);
729 mutex_unlock(&AS->lock);
730 return AS_PF_OK;
731
732page_fault:
733 if (THREAD->in_copy_from_uspace) {
734 THREAD->in_copy_from_uspace = false;
735 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
736 } else if (THREAD->in_copy_to_uspace) {
737 THREAD->in_copy_to_uspace = false;
738 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
739 } else {
740 return AS_PF_FAULT;
741 }
742
743 return AS_PF_DEFER;
744}
745
746/** Switch address spaces.
747 *
748 * Note that this function cannot sleep as it is essentially a part of
749 * scheduling. Sleeping here would lead to deadlock on wakeup.
750 *
751 * @param old Old address space or NULL.
752 * @param new New address space.
753 */
754void as_switch(as_t *old, as_t *new)
755{
756 ipl_t ipl;
757 bool needs_asid = false;
758
759 ipl = interrupts_disable();
760 spinlock_lock(&inactive_as_with_asid_lock);
761
762 /*
763 * First, take care of the old address space.
764 */
765 if (old) {
766 mutex_lock_active(&old->lock);
767 ASSERT(old->cpu_refcount);
768 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
769 /*
770 * The old address space is no longer active on
771 * any processor. It can be appended to the
772 * list of inactive address spaces with assigned
773 * ASID.
774 */
775 ASSERT(old->asid != ASID_INVALID);
776 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
777 }
778 mutex_unlock(&old->lock);
779 }
780
781 /*
782 * Second, prepare the new address space.
783 */
784 mutex_lock_active(&new->lock);
785 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
786 if (new->asid != ASID_INVALID)
787 list_remove(&new->inactive_as_with_asid_link);
788 else
789 needs_asid = true; /* defer call to asid_get() until new->lock is released */
790 }
791 SET_PTL0_ADDRESS(new->page_table);
792 mutex_unlock(&new->lock);
793
794 if (needs_asid) {
795 /*
796 * Allocation of new ASID was deferred
797 * until now in order to avoid deadlock.
798 */
799 asid_t asid;
800
801 asid = asid_get();
802 mutex_lock_active(&new->lock);
803 new->asid = asid;
804 mutex_unlock(&new->lock);
805 }
806 spinlock_unlock(&inactive_as_with_asid_lock);
807 interrupts_restore(ipl);
808
809 /*
810 * Perform architecture-specific steps.
811 * (e.g. write ASID to hardware register etc.)
812 */
813 as_install_arch(new);
814
815 AS = new;
816}
817
818/** Convert address space area flags to page flags.
819 *
820 * @param aflags Flags of some address space area.
821 *
822 * @return Flags to be passed to page_mapping_insert().
823 */
824int area_flags_to_page_flags(int aflags)
825{
826 int flags;
827
828 flags = PAGE_USER | PAGE_PRESENT;
829
830 if (aflags & AS_AREA_READ)
831 flags |= PAGE_READ;
832
833 if (aflags & AS_AREA_WRITE)
834 flags |= PAGE_WRITE;
835
836 if (aflags & AS_AREA_EXEC)
837 flags |= PAGE_EXEC;
838
839 if (aflags & AS_AREA_CACHEABLE)
840 flags |= PAGE_CACHEABLE;
841
842 return flags;
843}
844
845/** Compute flags for virtual address translation subsytem.
846 *
847 * The address space area must be locked.
848 * Interrupts must be disabled.
849 *
850 * @param a Address space area.
851 *
852 * @return Flags to be used in page_mapping_insert().
853 */
854int as_area_get_flags(as_area_t *a)
855{
856 return area_flags_to_page_flags(a->flags);
857}
858
859/** Create page table.
860 *
861 * Depending on architecture, create either address space
862 * private or global page table.
863 *
864 * @param flags Flags saying whether the page table is for kernel address space.
865 *
866 * @return First entry of the page table.
867 */
868pte_t *page_table_create(int flags)
869{
870 ASSERT(as_operations);
871 ASSERT(as_operations->page_table_create);
872
873 return as_operations->page_table_create(flags);
874}
875
876/** Destroy page table.
877 *
878 * Destroy page table in architecture specific way.
879 *
880 * @param page_table Physical address of PTL0.
881 */
882void page_table_destroy(pte_t *page_table)
883{
884 ASSERT(as_operations);
885 ASSERT(as_operations->page_table_destroy);
886
887 as_operations->page_table_destroy(page_table);
888}
889
890/** Lock page table.
891 *
892 * This function should be called before any page_mapping_insert(),
893 * page_mapping_remove() and page_mapping_find().
894 *
895 * Locking order is such that address space areas must be locked
896 * prior to this call. Address space can be locked prior to this
897 * call in which case the lock argument is false.
898 *
899 * @param as Address space.
900 * @param lock If false, do not attempt to lock as->lock.
901 */
902void page_table_lock(as_t *as, bool lock)
903{
904 ASSERT(as_operations);
905 ASSERT(as_operations->page_table_lock);
906
907 as_operations->page_table_lock(as, lock);
908}
909
910/** Unlock page table.
911 *
912 * @param as Address space.
913 * @param unlock If false, do not attempt to unlock as->lock.
914 */
915void page_table_unlock(as_t *as, bool unlock)
916{
917 ASSERT(as_operations);
918 ASSERT(as_operations->page_table_unlock);
919
920 as_operations->page_table_unlock(as, unlock);
921}
922
923
924/** Find address space area and lock it.
925 *
926 * The address space must be locked and interrupts must be disabled.
927 *
928 * @param as Address space.
929 * @param va Virtual address.
930 *
931 * @return Locked address space area containing va on success or NULL on failure.
932 */
933as_area_t *find_area_and_lock(as_t *as, __address va)
934{
935 as_area_t *a;
936 btree_node_t *leaf, *lnode;
937 int i;
938
939 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
940 if (a) {
941 /* va is the base address of an address space area */
942 mutex_lock(&a->lock);
943 return a;
944 }
945
946 /*
947 * Search the leaf node and the righmost record of its left neighbour
948 * to find out whether this is a miss or va belongs to an address
949 * space area found there.
950 */
951
952 /* First, search the leaf node itself. */
953 for (i = 0; i < leaf->keys; i++) {
954 a = (as_area_t *) leaf->value[i];
955 mutex_lock(&a->lock);
956 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
957 return a;
958 }
959 mutex_unlock(&a->lock);
960 }
961
962 /*
963 * Second, locate the left neighbour and test its last record.
964 * Because of its position in the B+tree, it must have base < va.
965 */
966 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
967 a = (as_area_t *) lnode->value[lnode->keys - 1];
968 mutex_lock(&a->lock);
969 if (va < a->base + a->pages * PAGE_SIZE) {
970 return a;
971 }
972 mutex_unlock(&a->lock);
973 }
974
975 return NULL;
976}
977
978/** Check area conflicts with other areas.
979 *
980 * The address space must be locked and interrupts must be disabled.
981 *
982 * @param as Address space.
983 * @param va Starting virtual address of the area being tested.
984 * @param size Size of the area being tested.
985 * @param avoid_area Do not touch this area.
986 *
987 * @return True if there is no conflict, false otherwise.
988 */
989bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
990{
991 as_area_t *a;
992 btree_node_t *leaf, *node;
993 int i;
994
995 /*
996 * We don't want any area to have conflicts with NULL page.
997 */
998 if (overlaps(va, size, NULL, PAGE_SIZE))
999 return false;
1000
1001 /*
1002 * The leaf node is found in O(log n), where n is proportional to
1003 * the number of address space areas belonging to as.
1004 * The check for conflicts is then attempted on the rightmost
1005 * record in the left neighbour, the leftmost record in the right
1006 * neighbour and all records in the leaf node itself.
1007 */
1008
1009 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1010 if (a != avoid_area)
1011 return false;
1012 }
1013
1014 /* First, check the two border cases. */
1015 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1016 a = (as_area_t *) node->value[node->keys - 1];
1017 mutex_lock(&a->lock);
1018 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1019 mutex_unlock(&a->lock);
1020 return false;
1021 }
1022 mutex_unlock(&a->lock);
1023 }
1024 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1025 a = (as_area_t *) node->value[0];
1026 mutex_lock(&a->lock);
1027 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1028 mutex_unlock(&a->lock);
1029 return false;
1030 }
1031 mutex_unlock(&a->lock);
1032 }
1033
1034 /* Second, check the leaf node. */
1035 for (i = 0; i < leaf->keys; i++) {
1036 a = (as_area_t *) leaf->value[i];
1037
1038 if (a == avoid_area)
1039 continue;
1040
1041 mutex_lock(&a->lock);
1042 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1043 mutex_unlock(&a->lock);
1044 return false;
1045 }
1046 mutex_unlock(&a->lock);
1047 }
1048
1049 /*
1050 * So far, the area does not conflict with other areas.
1051 * Check if it doesn't conflict with kernel address space.
1052 */
1053 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1054 return !overlaps(va, size,
1055 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1056 }
1057
1058 return true;
1059}
1060
1061/** Return size of the address space area with given base. */
1062size_t as_get_size(__address base)
1063{
1064 ipl_t ipl;
1065 as_area_t *src_area;
1066 size_t size;
1067
1068 ipl = interrupts_disable();
1069 src_area = find_area_and_lock(AS, base);
1070 if (src_area){
1071 size = src_area->pages * PAGE_SIZE;
1072 mutex_unlock(&src_area->lock);
1073 } else {
1074 size = 0;
1075 }
1076 interrupts_restore(ipl);
1077 return size;
1078}
1079
1080/** Mark portion of address space area as used.
1081 *
1082 * The address space area must be already locked.
1083 *
1084 * @param a Address space area.
1085 * @param page First page to be marked.
1086 * @param count Number of page to be marked.
1087 *
1088 * @return 0 on failure and 1 on success.
1089 */
1090int used_space_insert(as_area_t *a, __address page, count_t count)
1091{
1092 btree_node_t *leaf, *node;
1093 count_t pages;
1094 int i;
1095
1096 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1097 ASSERT(count);
1098
1099 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1100 if (pages) {
1101 /*
1102 * We hit the beginning of some used space.
1103 */
1104 return 0;
1105 }
1106
1107 if (!leaf->keys) {
1108 btree_insert(&a->used_space, page, (void *) count, leaf);
1109 return 1;
1110 }
1111
1112 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1113 if (node) {
1114 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1115 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1116
1117 /*
1118 * Examine the possibility that the interval fits
1119 * somewhere between the rightmost interval of
1120 * the left neigbour and the first interval of the leaf.
1121 */
1122
1123 if (page >= right_pg) {
1124 /* Do nothing. */
1125 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1126 /* The interval intersects with the left interval. */
1127 return 0;
1128 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1129 /* The interval intersects with the right interval. */
1130 return 0;
1131 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1132 /* The interval can be added by merging the two already present intervals. */
1133 node->value[node->keys - 1] += count + right_cnt;
1134 btree_remove(&a->used_space, right_pg, leaf);
1135 return 1;
1136 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1137 /* The interval can be added by simply growing the left interval. */
1138 node->value[node->keys - 1] += count;
1139 return 1;
1140 } else if (page + count*PAGE_SIZE == right_pg) {
1141 /*
1142 * The interval can be addded by simply moving base of the right
1143 * interval down and increasing its size accordingly.
1144 */
1145 leaf->value[0] += count;
1146 leaf->key[0] = page;
1147 return 1;
1148 } else {
1149 /*
1150 * The interval is between both neigbouring intervals,
1151 * but cannot be merged with any of them.
1152 */
1153 btree_insert(&a->used_space, page, (void *) count, leaf);
1154 return 1;
1155 }
1156 } else if (page < leaf->key[0]) {
1157 __address right_pg = leaf->key[0];
1158 count_t right_cnt = (count_t) leaf->value[0];
1159
1160 /*
1161 * Investigate the border case in which the left neighbour does not
1162 * exist but the interval fits from the left.
1163 */
1164
1165 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1166 /* The interval intersects with the right interval. */
1167 return 0;
1168 } else if (page + count*PAGE_SIZE == right_pg) {
1169 /*
1170 * The interval can be added by moving the base of the right interval down
1171 * and increasing its size accordingly.
1172 */
1173 leaf->key[0] = page;
1174 leaf->value[0] += count;
1175 return 1;
1176 } else {
1177 /*
1178 * The interval doesn't adjoin with the right interval.
1179 * It must be added individually.
1180 */
1181 btree_insert(&a->used_space, page, (void *) count, leaf);
1182 return 1;
1183 }
1184 }
1185
1186 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1187 if (node) {
1188 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1189 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1190
1191 /*
1192 * Examine the possibility that the interval fits
1193 * somewhere between the leftmost interval of
1194 * the right neigbour and the last interval of the leaf.
1195 */
1196
1197 if (page < left_pg) {
1198 /* Do nothing. */
1199 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1200 /* The interval intersects with the left interval. */
1201 return 0;
1202 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1203 /* The interval intersects with the right interval. */
1204 return 0;
1205 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1206 /* The interval can be added by merging the two already present intervals. */
1207 leaf->value[leaf->keys - 1] += count + right_cnt;
1208 btree_remove(&a->used_space, right_pg, node);
1209 return 1;
1210 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1211 /* The interval can be added by simply growing the left interval. */
1212 leaf->value[leaf->keys - 1] += count;
1213 return 1;
1214 } else if (page + count*PAGE_SIZE == right_pg) {
1215 /*
1216 * The interval can be addded by simply moving base of the right
1217 * interval down and increasing its size accordingly.
1218 */
1219 node->value[0] += count;
1220 node->key[0] = page;
1221 return 1;
1222 } else {
1223 /*
1224 * The interval is between both neigbouring intervals,
1225 * but cannot be merged with any of them.
1226 */
1227 btree_insert(&a->used_space, page, (void *) count, leaf);
1228 return 1;
1229 }
1230 } else if (page >= leaf->key[leaf->keys - 1]) {
1231 __address left_pg = leaf->key[leaf->keys - 1];
1232 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1233
1234 /*
1235 * Investigate the border case in which the right neighbour does not
1236 * exist but the interval fits from the right.
1237 */
1238
1239 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1240 /* The interval intersects with the left interval. */
1241 return 0;
1242 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1243 /* The interval can be added by growing the left interval. */
1244 leaf->value[leaf->keys - 1] += count;
1245 return 1;
1246 } else {
1247 /*
1248 * The interval doesn't adjoin with the left interval.
1249 * It must be added individually.
1250 */
1251 btree_insert(&a->used_space, page, (void *) count, leaf);
1252 return 1;
1253 }
1254 }
1255
1256 /*
1257 * Note that if the algorithm made it thus far, the interval can fit only
1258 * between two other intervals of the leaf. The two border cases were already
1259 * resolved.
1260 */
1261 for (i = 1; i < leaf->keys; i++) {
1262 if (page < leaf->key[i]) {
1263 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1264 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1265
1266 /*
1267 * The interval fits between left_pg and right_pg.
1268 */
1269
1270 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1271 /* The interval intersects with the left interval. */
1272 return 0;
1273 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1274 /* The interval intersects with the right interval. */
1275 return 0;
1276 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1277 /* The interval can be added by merging the two already present intervals. */
1278 leaf->value[i - 1] += count + right_cnt;
1279 btree_remove(&a->used_space, right_pg, leaf);
1280 return 1;
1281 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1282 /* The interval can be added by simply growing the left interval. */
1283 leaf->value[i - 1] += count;
1284 return 1;
1285 } else if (page + count*PAGE_SIZE == right_pg) {
1286 /*
1287 * The interval can be addded by simply moving base of the right
1288 * interval down and increasing its size accordingly.
1289 */
1290 leaf->value[i] += count;
1291 leaf->key[i] = page;
1292 return 1;
1293 } else {
1294 /*
1295 * The interval is between both neigbouring intervals,
1296 * but cannot be merged with any of them.
1297 */
1298 btree_insert(&a->used_space, page, (void *) count, leaf);
1299 return 1;
1300 }
1301 }
1302 }
1303
1304 panic("Inconsistency detected while adding %d pages of used space at %P.\n", count, page);
1305}
1306
1307/** Mark portion of address space area as unused.
1308 *
1309 * The address space area must be already locked.
1310 *
1311 * @param a Address space area.
1312 * @param page First page to be marked.
1313 * @param count Number of page to be marked.
1314 *
1315 * @return 0 on failure and 1 on success.
1316 */
1317int used_space_remove(as_area_t *a, __address page, count_t count)
1318{
1319 btree_node_t *leaf, *node;
1320 count_t pages;
1321 int i;
1322
1323 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1324 ASSERT(count);
1325
1326 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1327 if (pages) {
1328 /*
1329 * We are lucky, page is the beginning of some interval.
1330 */
1331 if (count > pages) {
1332 return 0;
1333 } else if (count == pages) {
1334 btree_remove(&a->used_space, page, leaf);
1335 return 1;
1336 } else {
1337 /*
1338 * Find the respective interval.
1339 * Decrease its size and relocate its start address.
1340 */
1341 for (i = 0; i < leaf->keys; i++) {
1342 if (leaf->key[i] == page) {
1343 leaf->key[i] += count*PAGE_SIZE;
1344 leaf->value[i] -= count;
1345 return 1;
1346 }
1347 }
1348 goto error;
1349 }
1350 }
1351
1352 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1353 if (node && page < leaf->key[0]) {
1354 __address left_pg = node->key[node->keys - 1];
1355 count_t left_cnt = (count_t) node->value[node->keys - 1];
1356
1357 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1358 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1359 /*
1360 * The interval is contained in the rightmost interval
1361 * of the left neighbour and can be removed by
1362 * updating the size of the bigger interval.
1363 */
1364 node->value[node->keys - 1] -= count;
1365 return 1;
1366 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1367 count_t new_cnt;
1368
1369 /*
1370 * The interval is contained in the rightmost interval
1371 * of the left neighbour but its removal requires
1372 * both updating the size of the original interval and
1373 * also inserting a new interval.
1374 */
1375 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1376 node->value[node->keys - 1] -= count + new_cnt;
1377 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1378 return 1;
1379 }
1380 }
1381 return 0;
1382 } else if (page < leaf->key[0]) {
1383 return 0;
1384 }
1385
1386 if (page > leaf->key[leaf->keys - 1]) {
1387 __address left_pg = leaf->key[leaf->keys - 1];
1388 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1389
1390 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1391 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1392 /*
1393 * The interval is contained in the rightmost interval
1394 * of the leaf and can be removed by updating the size
1395 * of the bigger interval.
1396 */
1397 leaf->value[leaf->keys - 1] -= count;
1398 return 1;
1399 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1400 count_t new_cnt;
1401
1402 /*
1403 * The interval is contained in the rightmost interval
1404 * of the leaf but its removal requires both updating
1405 * the size of the original interval and
1406 * also inserting a new interval.
1407 */
1408 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1409 leaf->value[leaf->keys - 1] -= count + new_cnt;
1410 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1411 return 1;
1412 }
1413 }
1414 return 0;
1415 }
1416
1417 /*
1418 * The border cases have been already resolved.
1419 * Now the interval can be only between intervals of the leaf.
1420 */
1421 for (i = 1; i < leaf->keys - 1; i++) {
1422 if (page < leaf->key[i]) {
1423 __address left_pg = leaf->key[i - 1];
1424 count_t left_cnt = (count_t) leaf->value[i - 1];
1425
1426 /*
1427 * Now the interval is between intervals corresponding to (i - 1) and i.
1428 */
1429 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1430 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1431 /*
1432 * The interval is contained in the interval (i - 1)
1433 * of the leaf and can be removed by updating the size
1434 * of the bigger interval.
1435 */
1436 leaf->value[i - 1] -= count;
1437 return 1;
1438 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1439 count_t new_cnt;
1440
1441 /*
1442 * The interval is contained in the interval (i - 1)
1443 * of the leaf but its removal requires both updating
1444 * the size of the original interval and
1445 * also inserting a new interval.
1446 */
1447 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1448 leaf->value[i - 1] -= count + new_cnt;
1449 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1450 return 1;
1451 }
1452 }
1453 return 0;
1454 }
1455 }
1456
1457error:
1458 panic("Inconsistency detected while removing %d pages of used space from %P.\n", count, page);
1459}
1460
1461/** Remove reference to address space area share info.
1462 *
1463 * If the reference count drops to 0, the sh_info is deallocated.
1464 *
1465 * @param sh_info Pointer to address space area share info.
1466 */
1467void sh_info_remove_reference(share_info_t *sh_info)
1468{
1469 bool dealloc = false;
1470
1471 mutex_lock(&sh_info->lock);
1472 ASSERT(sh_info->refcount);
1473 if (--sh_info->refcount == 0) {
1474 dealloc = true;
1475 link_t *cur;
1476
1477 /*
1478 * Now walk carefully the pagemap B+tree and free/remove
1479 * reference from all frames found there.
1480 */
1481 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1482 btree_node_t *node;
1483 int i;
1484
1485 node = list_get_instance(cur, btree_node_t, leaf_link);
1486 for (i = 0; i < node->keys; i++)
1487 frame_free(ADDR2PFN((__address) node->value[i]));
1488 }
1489
1490 }
1491 mutex_unlock(&sh_info->lock);
1492
1493 if (dealloc) {
1494 btree_destroy(&sh_info->pagemap);
1495 free(sh_info);
1496 }
1497}
1498
1499/*
1500 * Address space related syscalls.
1501 */
1502
1503/** Wrapper for as_area_create(). */
1504__native sys_as_area_create(__address address, size_t size, int flags)
1505{
1506 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1507 return (__native) address;
1508 else
1509 return (__native) -1;
1510}
1511
1512/** Wrapper for as_area_resize. */
1513__native sys_as_area_resize(__address address, size_t size, int flags)
1514{
1515 return (__native) as_area_resize(AS, address, size, 0);
1516}
1517
1518/** Wrapper for as_area_destroy. */
1519__native sys_as_area_destroy(__address address)
1520{
1521 return (__native) as_area_destroy(AS, address);
1522}
Note: See TracBrowser for help on using the repository browser.