source: mainline/generic/src/mm/as.c@ 1e0a5fc

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 1e0a5fc was fbf7b4c, checked in by Martin Decky <martin@…>, 20 years ago

make kernel prints case consistent

  • Property mode set to 100644
File size: 41.0 KB
Line 
1/*
2 * Copyright (C) 2001-2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29 /** @addtogroup genericmm
30 * @{
31 */
32
33/**
34 * @file
35 * @brief Address space related functions.
36 *
37 * This file contains address space manipulation functions.
38 * Roughly speaking, this is a higher-level client of
39 * Virtual Address Translation (VAT) subsystem.
40 *
41 * Functionality provided by this file allows one to
42 * create address space and create, resize and share
43 * address space areas.
44 *
45 * @see page.c
46 *
47 */
48
49#include <mm/as.h>
50#include <arch/mm/as.h>
51#include <mm/page.h>
52#include <mm/frame.h>
53#include <mm/slab.h>
54#include <mm/tlb.h>
55#include <arch/mm/page.h>
56#include <genarch/mm/page_pt.h>
57#include <genarch/mm/page_ht.h>
58#include <mm/asid.h>
59#include <arch/mm/asid.h>
60#include <synch/spinlock.h>
61#include <synch/mutex.h>
62#include <adt/list.h>
63#include <adt/btree.h>
64#include <proc/task.h>
65#include <proc/thread.h>
66#include <arch/asm.h>
67#include <panic.h>
68#include <debug.h>
69#include <print.h>
70#include <memstr.h>
71#include <macros.h>
72#include <arch.h>
73#include <errno.h>
74#include <config.h>
75#include <align.h>
76#include <arch/types.h>
77#include <typedefs.h>
78#include <syscall/copy.h>
79#include <arch/interrupt.h>
80
81as_operations_t *as_operations = NULL;
82
83/** This lock protects inactive_as_with_asid_head list. It must be acquired before as_t mutex. */
84SPINLOCK_INITIALIZE(inactive_as_with_asid_lock);
85
86/**
87 * This list contains address spaces that are not active on any
88 * processor and that have valid ASID.
89 */
90LIST_INITIALIZE(inactive_as_with_asid_head);
91
92/** Kernel address space. */
93as_t *AS_KERNEL = NULL;
94
95static int area_flags_to_page_flags(int aflags);
96static as_area_t *find_area_and_lock(as_t *as, __address va);
97static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area);
98static void sh_info_remove_reference(share_info_t *sh_info);
99
100/** Initialize address space subsystem. */
101void as_init(void)
102{
103 as_arch_init();
104 AS_KERNEL = as_create(FLAG_AS_KERNEL);
105 if (!AS_KERNEL)
106 panic("can't create kernel address space\n");
107
108}
109
110/** Create address space.
111 *
112 * @param flags Flags that influence way in wich the address space is created.
113 */
114as_t *as_create(int flags)
115{
116 as_t *as;
117
118 as = (as_t *) malloc(sizeof(as_t), 0);
119 link_initialize(&as->inactive_as_with_asid_link);
120 mutex_initialize(&as->lock);
121 btree_create(&as->as_area_btree);
122
123 if (flags & FLAG_AS_KERNEL)
124 as->asid = ASID_KERNEL;
125 else
126 as->asid = ASID_INVALID;
127
128 as->refcount = 0;
129 as->cpu_refcount = 0;
130 as->page_table = page_table_create(flags);
131
132 return as;
133}
134
135/** Destroy adress space.
136 *
137 * When there are no tasks referencing this address space (i.e. its refcount is zero),
138 * the address space can be destroyed.
139 */
140void as_destroy(as_t *as)
141{
142 ipl_t ipl;
143 bool cond;
144
145 ASSERT(as->refcount == 0);
146
147 /*
148 * Since there is no reference to this area,
149 * it is safe not to lock its mutex.
150 */
151 ipl = interrupts_disable();
152 spinlock_lock(&inactive_as_with_asid_lock);
153 if (as->asid != ASID_INVALID && as != AS_KERNEL) {
154 if (as != AS && as->cpu_refcount == 0)
155 list_remove(&as->inactive_as_with_asid_link);
156 asid_put(as->asid);
157 }
158 spinlock_unlock(&inactive_as_with_asid_lock);
159
160 /*
161 * Destroy address space areas of the address space.
162 * The B+tee must be walked carefully because it is
163 * also being destroyed.
164 */
165 for (cond = true; cond; ) {
166 btree_node_t *node;
167
168 ASSERT(!list_empty(&as->as_area_btree.leaf_head));
169 node = list_get_instance(as->as_area_btree.leaf_head.next, btree_node_t, leaf_link);
170
171 if ((cond = node->keys)) {
172 as_area_destroy(as, node->key[0]);
173 }
174 }
175
176 btree_destroy(&as->as_area_btree);
177 page_table_destroy(as->page_table);
178
179 interrupts_restore(ipl);
180
181 free(as);
182}
183
184/** Create address space area of common attributes.
185 *
186 * The created address space area is added to the target address space.
187 *
188 * @param as Target address space.
189 * @param flags Flags of the area memory.
190 * @param size Size of area.
191 * @param base Base address of area.
192 * @param attrs Attributes of the area.
193 * @param backend Address space area backend. NULL if no backend is used.
194 * @param backend_data NULL or a pointer to an array holding two void *.
195 *
196 * @return Address space area on success or NULL on failure.
197 */
198as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs,
199 mem_backend_t *backend, mem_backend_data_t *backend_data)
200{
201 ipl_t ipl;
202 as_area_t *a;
203
204 if (base % PAGE_SIZE)
205 return NULL;
206
207 if (!size)
208 return NULL;
209
210 /* Writeable executable areas are not supported. */
211 if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE))
212 return NULL;
213
214 ipl = interrupts_disable();
215 mutex_lock(&as->lock);
216
217 if (!check_area_conflicts(as, base, size, NULL)) {
218 mutex_unlock(&as->lock);
219 interrupts_restore(ipl);
220 return NULL;
221 }
222
223 a = (as_area_t *) malloc(sizeof(as_area_t), 0);
224
225 mutex_initialize(&a->lock);
226
227 a->as = as;
228 a->flags = flags;
229 a->attributes = attrs;
230 a->pages = SIZE2FRAMES(size);
231 a->base = base;
232 a->sh_info = NULL;
233 a->backend = backend;
234 if (backend_data)
235 a->backend_data = *backend_data;
236 else
237 memsetb((__address) &a->backend_data, sizeof(a->backend_data), 0);
238
239 btree_create(&a->used_space);
240
241 btree_insert(&as->as_area_btree, base, (void *) a, NULL);
242
243 mutex_unlock(&as->lock);
244 interrupts_restore(ipl);
245
246 return a;
247}
248
249/** Find address space area and change it.
250 *
251 * @param as Address space.
252 * @param address Virtual address belonging to the area to be changed. Must be page-aligned.
253 * @param size New size of the virtual memory block starting at address.
254 * @param flags Flags influencing the remap operation. Currently unused.
255 *
256 * @return Zero on success or a value from @ref errno.h otherwise.
257 */
258int as_area_resize(as_t *as, __address address, size_t size, int flags)
259{
260 as_area_t *area;
261 ipl_t ipl;
262 size_t pages;
263
264 ipl = interrupts_disable();
265 mutex_lock(&as->lock);
266
267 /*
268 * Locate the area.
269 */
270 area = find_area_and_lock(as, address);
271 if (!area) {
272 mutex_unlock(&as->lock);
273 interrupts_restore(ipl);
274 return ENOENT;
275 }
276
277 if (area->backend == &phys_backend) {
278 /*
279 * Remapping of address space areas associated
280 * with memory mapped devices is not supported.
281 */
282 mutex_unlock(&area->lock);
283 mutex_unlock(&as->lock);
284 interrupts_restore(ipl);
285 return ENOTSUP;
286 }
287 if (area->sh_info) {
288 /*
289 * Remapping of shared address space areas
290 * is not supported.
291 */
292 mutex_unlock(&area->lock);
293 mutex_unlock(&as->lock);
294 interrupts_restore(ipl);
295 return ENOTSUP;
296 }
297
298 pages = SIZE2FRAMES((address - area->base) + size);
299 if (!pages) {
300 /*
301 * Zero size address space areas are not allowed.
302 */
303 mutex_unlock(&area->lock);
304 mutex_unlock(&as->lock);
305 interrupts_restore(ipl);
306 return EPERM;
307 }
308
309 if (pages < area->pages) {
310 bool cond;
311 __address start_free = area->base + pages*PAGE_SIZE;
312
313 /*
314 * Shrinking the area.
315 * No need to check for overlaps.
316 */
317
318 /*
319 * Start TLB shootdown sequence.
320 */
321 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
322
323 /*
324 * Remove frames belonging to used space starting from
325 * the highest addresses downwards until an overlap with
326 * the resized address space area is found. Note that this
327 * is also the right way to remove part of the used_space
328 * B+tree leaf list.
329 */
330 for (cond = true; cond;) {
331 btree_node_t *node;
332
333 ASSERT(!list_empty(&area->used_space.leaf_head));
334 node = list_get_instance(area->used_space.leaf_head.prev, btree_node_t, leaf_link);
335 if ((cond = (bool) node->keys)) {
336 __address b = node->key[node->keys - 1];
337 count_t c = (count_t) node->value[node->keys - 1];
338 int i = 0;
339
340 if (overlaps(b, c*PAGE_SIZE, area->base, pages*PAGE_SIZE)) {
341
342 if (b + c*PAGE_SIZE <= start_free) {
343 /*
344 * The whole interval fits completely
345 * in the resized address space area.
346 */
347 break;
348 }
349
350 /*
351 * Part of the interval corresponding to b and c
352 * overlaps with the resized address space area.
353 */
354
355 cond = false; /* we are almost done */
356 i = (start_free - b) >> PAGE_WIDTH;
357 if (!used_space_remove(area, start_free, c - i))
358 panic("Could not remove used space.");
359 } else {
360 /*
361 * The interval of used space can be completely removed.
362 */
363 if (!used_space_remove(area, b, c))
364 panic("Could not remove used space.\n");
365 }
366
367 for (; i < c; i++) {
368 pte_t *pte;
369
370 page_table_lock(as, false);
371 pte = page_mapping_find(as, b + i*PAGE_SIZE);
372 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
373 if (area->backend && area->backend->frame_free) {
374 area->backend->frame_free(area,
375 b + i*PAGE_SIZE, PTE_GET_FRAME(pte));
376 }
377 page_mapping_remove(as, b + i*PAGE_SIZE);
378 page_table_unlock(as, false);
379 }
380 }
381 }
382
383 /*
384 * Finish TLB shootdown sequence.
385 */
386 tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages);
387 tlb_shootdown_finalize();
388 } else {
389 /*
390 * Growing the area.
391 * Check for overlaps with other address space areas.
392 */
393 if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) {
394 mutex_unlock(&area->lock);
395 mutex_unlock(&as->lock);
396 interrupts_restore(ipl);
397 return EADDRNOTAVAIL;
398 }
399 }
400
401 area->pages = pages;
402
403 mutex_unlock(&area->lock);
404 mutex_unlock(&as->lock);
405 interrupts_restore(ipl);
406
407 return 0;
408}
409
410/** Destroy address space area.
411 *
412 * @param as Address space.
413 * @param address Address withing the area to be deleted.
414 *
415 * @return Zero on success or a value from @ref errno.h on failure.
416 */
417int as_area_destroy(as_t *as, __address address)
418{
419 as_area_t *area;
420 __address base;
421 link_t *cur;
422 ipl_t ipl;
423
424 ipl = interrupts_disable();
425 mutex_lock(&as->lock);
426
427 area = find_area_and_lock(as, address);
428 if (!area) {
429 mutex_unlock(&as->lock);
430 interrupts_restore(ipl);
431 return ENOENT;
432 }
433
434 base = area->base;
435
436 /*
437 * Start TLB shootdown sequence.
438 */
439 tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages);
440
441 /*
442 * Visit only the pages mapped by used_space B+tree.
443 */
444 for (cur = area->used_space.leaf_head.next; cur != &area->used_space.leaf_head; cur = cur->next) {
445 btree_node_t *node;
446 int i;
447
448 node = list_get_instance(cur, btree_node_t, leaf_link);
449 for (i = 0; i < node->keys; i++) {
450 __address b = node->key[i];
451 count_t j;
452 pte_t *pte;
453
454 for (j = 0; j < (count_t) node->value[i]; j++) {
455 page_table_lock(as, false);
456 pte = page_mapping_find(as, b + j*PAGE_SIZE);
457 ASSERT(pte && PTE_VALID(pte) && PTE_PRESENT(pte));
458 if (area->backend && area->backend->frame_free) {
459 area->backend->frame_free(area,
460 b + j*PAGE_SIZE, PTE_GET_FRAME(pte));
461 }
462 page_mapping_remove(as, b + j*PAGE_SIZE);
463 page_table_unlock(as, false);
464 }
465 }
466 }
467
468 /*
469 * Finish TLB shootdown sequence.
470 */
471 tlb_invalidate_pages(AS->asid, area->base, area->pages);
472 tlb_shootdown_finalize();
473
474 btree_destroy(&area->used_space);
475
476 area->attributes |= AS_AREA_ATTR_PARTIAL;
477
478 if (area->sh_info)
479 sh_info_remove_reference(area->sh_info);
480
481 mutex_unlock(&area->lock);
482
483 /*
484 * Remove the empty area from address space.
485 */
486 btree_remove(&AS->as_area_btree, base, NULL);
487
488 free(area);
489
490 mutex_unlock(&AS->lock);
491 interrupts_restore(ipl);
492 return 0;
493}
494
495/** Share address space area with another or the same address space.
496 *
497 * Address space area mapping is shared with a new address space area.
498 * If the source address space area has not been shared so far,
499 * a new sh_info is created. The new address space area simply gets the
500 * sh_info of the source area. The process of duplicating the
501 * mapping is done through the backend share function.
502 *
503 * @param src_as Pointer to source address space.
504 * @param src_base Base address of the source address space area.
505 * @param acc_size Expected size of the source area.
506 * @param dst_as Pointer to destination address space.
507 * @param dst_base Target base address.
508 * @param dst_flags_mask Destination address space area flags mask.
509 *
510 * @return Zero on success or ENOENT if there is no such task or
511 * if there is no such address space area,
512 * EPERM if there was a problem in accepting the area or
513 * ENOMEM if there was a problem in allocating destination
514 * address space area. ENOTSUP is returned if an attempt
515 * to share non-anonymous address space area is detected.
516 */
517int as_area_share(as_t *src_as, __address src_base, size_t acc_size,
518 as_t *dst_as, __address dst_base, int dst_flags_mask)
519{
520 ipl_t ipl;
521 int src_flags;
522 size_t src_size;
523 as_area_t *src_area, *dst_area;
524 share_info_t *sh_info;
525 mem_backend_t *src_backend;
526 mem_backend_data_t src_backend_data;
527
528 ipl = interrupts_disable();
529 mutex_lock(&src_as->lock);
530 src_area = find_area_and_lock(src_as, src_base);
531 if (!src_area) {
532 /*
533 * Could not find the source address space area.
534 */
535 mutex_unlock(&src_as->lock);
536 interrupts_restore(ipl);
537 return ENOENT;
538 }
539
540 if (!src_area->backend || !src_area->backend->share) {
541 /*
542 * There is now backend or the backend does not
543 * know how to share the area.
544 */
545 mutex_unlock(&src_area->lock);
546 mutex_unlock(&src_as->lock);
547 interrupts_restore(ipl);
548 return ENOTSUP;
549 }
550
551 src_size = src_area->pages * PAGE_SIZE;
552 src_flags = src_area->flags;
553 src_backend = src_area->backend;
554 src_backend_data = src_area->backend_data;
555
556 /* Share the cacheable flag from the original mapping */
557 if (src_flags & AS_AREA_CACHEABLE)
558 dst_flags_mask |= AS_AREA_CACHEABLE;
559
560 if (src_size != acc_size || (src_flags & dst_flags_mask) != dst_flags_mask) {
561 mutex_unlock(&src_area->lock);
562 mutex_unlock(&src_as->lock);
563 interrupts_restore(ipl);
564 return EPERM;
565 }
566
567 /*
568 * Now we are committed to sharing the area.
569 * First prepare the area for sharing.
570 * Then it will be safe to unlock it.
571 */
572 sh_info = src_area->sh_info;
573 if (!sh_info) {
574 sh_info = (share_info_t *) malloc(sizeof(share_info_t), 0);
575 mutex_initialize(&sh_info->lock);
576 sh_info->refcount = 2;
577 btree_create(&sh_info->pagemap);
578 src_area->sh_info = sh_info;
579 } else {
580 mutex_lock(&sh_info->lock);
581 sh_info->refcount++;
582 mutex_unlock(&sh_info->lock);
583 }
584
585 src_area->backend->share(src_area);
586
587 mutex_unlock(&src_area->lock);
588 mutex_unlock(&src_as->lock);
589
590 /*
591 * Create copy of the source address space area.
592 * The destination area is created with AS_AREA_ATTR_PARTIAL
593 * attribute set which prevents race condition with
594 * preliminary as_page_fault() calls.
595 * The flags of the source area are masked against dst_flags_mask
596 * to support sharing in less privileged mode.
597 */
598 dst_area = as_area_create(dst_as, dst_flags_mask, src_size, dst_base,
599 AS_AREA_ATTR_PARTIAL, src_backend, &src_backend_data);
600 if (!dst_area) {
601 /*
602 * Destination address space area could not be created.
603 */
604 sh_info_remove_reference(sh_info);
605
606 interrupts_restore(ipl);
607 return ENOMEM;
608 }
609
610 /*
611 * Now the destination address space area has been
612 * fully initialized. Clear the AS_AREA_ATTR_PARTIAL
613 * attribute and set the sh_info.
614 */
615 mutex_lock(&dst_area->lock);
616 dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL;
617 dst_area->sh_info = sh_info;
618 mutex_unlock(&dst_area->lock);
619
620 interrupts_restore(ipl);
621
622 return 0;
623}
624
625/** Check access mode for address space area.
626 *
627 * The address space area must be locked prior to this call.
628 *
629 * @param area Address space area.
630 * @param access Access mode.
631 *
632 * @return False if access violates area's permissions, true otherwise.
633 */
634bool as_area_check_access(as_area_t *area, pf_access_t access)
635{
636 int flagmap[] = {
637 [PF_ACCESS_READ] = AS_AREA_READ,
638 [PF_ACCESS_WRITE] = AS_AREA_WRITE,
639 [PF_ACCESS_EXEC] = AS_AREA_EXEC
640 };
641
642 if (!(area->flags & flagmap[access]))
643 return false;
644
645 return true;
646}
647
648/** Handle page fault within the current address space.
649 *
650 * This is the high-level page fault handler. It decides
651 * whether the page fault can be resolved by any backend
652 * and if so, it invokes the backend to resolve the page
653 * fault.
654 *
655 * Interrupts are assumed disabled.
656 *
657 * @param page Faulting page.
658 * @param access Access mode that caused the fault (i.e. read/write/exec).
659 * @param istate Pointer to interrupted state.
660 *
661 * @return AS_PF_FAULT on page fault, AS_PF_OK on success or AS_PF_DEFER if the
662 * fault was caused by copy_to_uspace() or copy_from_uspace().
663 */
664int as_page_fault(__address page, pf_access_t access, istate_t *istate)
665{
666 pte_t *pte;
667 as_area_t *area;
668
669 if (!THREAD)
670 return AS_PF_FAULT;
671
672 ASSERT(AS);
673
674 mutex_lock(&AS->lock);
675 area = find_area_and_lock(AS, page);
676 if (!area) {
677 /*
678 * No area contained mapping for 'page'.
679 * Signal page fault to low-level handler.
680 */
681 mutex_unlock(&AS->lock);
682 goto page_fault;
683 }
684
685 if (area->attributes & AS_AREA_ATTR_PARTIAL) {
686 /*
687 * The address space area is not fully initialized.
688 * Avoid possible race by returning error.
689 */
690 mutex_unlock(&area->lock);
691 mutex_unlock(&AS->lock);
692 goto page_fault;
693 }
694
695 if (!area->backend || !area->backend->page_fault) {
696 /*
697 * The address space area is not backed by any backend
698 * or the backend cannot handle page faults.
699 */
700 mutex_unlock(&area->lock);
701 mutex_unlock(&AS->lock);
702 goto page_fault;
703 }
704
705 page_table_lock(AS, false);
706
707 /*
708 * To avoid race condition between two page faults
709 * on the same address, we need to make sure
710 * the mapping has not been already inserted.
711 */
712 if ((pte = page_mapping_find(AS, page))) {
713 if (PTE_PRESENT(pte)) {
714 if (((access == PF_ACCESS_READ) && PTE_READABLE(pte)) ||
715 (access == PF_ACCESS_WRITE && PTE_WRITABLE(pte)) ||
716 (access == PF_ACCESS_EXEC && PTE_EXECUTABLE(pte))) {
717 page_table_unlock(AS, false);
718 mutex_unlock(&area->lock);
719 mutex_unlock(&AS->lock);
720 return AS_PF_OK;
721 }
722 }
723 }
724
725 /*
726 * Resort to the backend page fault handler.
727 */
728 if (area->backend->page_fault(area, page, access) != AS_PF_OK) {
729 page_table_unlock(AS, false);
730 mutex_unlock(&area->lock);
731 mutex_unlock(&AS->lock);
732 goto page_fault;
733 }
734
735 page_table_unlock(AS, false);
736 mutex_unlock(&area->lock);
737 mutex_unlock(&AS->lock);
738 return AS_PF_OK;
739
740page_fault:
741 if (THREAD->in_copy_from_uspace) {
742 THREAD->in_copy_from_uspace = false;
743 istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address);
744 } else if (THREAD->in_copy_to_uspace) {
745 THREAD->in_copy_to_uspace = false;
746 istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address);
747 } else {
748 return AS_PF_FAULT;
749 }
750
751 return AS_PF_DEFER;
752}
753
754/** Switch address spaces.
755 *
756 * Note that this function cannot sleep as it is essentially a part of
757 * scheduling. Sleeping here would lead to deadlock on wakeup.
758 *
759 * @param old Old address space or NULL.
760 * @param new New address space.
761 */
762void as_switch(as_t *old, as_t *new)
763{
764 ipl_t ipl;
765 bool needs_asid = false;
766
767 ipl = interrupts_disable();
768 spinlock_lock(&inactive_as_with_asid_lock);
769
770 /*
771 * First, take care of the old address space.
772 */
773 if (old) {
774 mutex_lock_active(&old->lock);
775 ASSERT(old->cpu_refcount);
776 if((--old->cpu_refcount == 0) && (old != AS_KERNEL)) {
777 /*
778 * The old address space is no longer active on
779 * any processor. It can be appended to the
780 * list of inactive address spaces with assigned
781 * ASID.
782 */
783 ASSERT(old->asid != ASID_INVALID);
784 list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head);
785 }
786 mutex_unlock(&old->lock);
787 }
788
789 /*
790 * Second, prepare the new address space.
791 */
792 mutex_lock_active(&new->lock);
793 if ((new->cpu_refcount++ == 0) && (new != AS_KERNEL)) {
794 if (new->asid != ASID_INVALID)
795 list_remove(&new->inactive_as_with_asid_link);
796 else
797 needs_asid = true; /* defer call to asid_get() until new->lock is released */
798 }
799 SET_PTL0_ADDRESS(new->page_table);
800 mutex_unlock(&new->lock);
801
802 if (needs_asid) {
803 /*
804 * Allocation of new ASID was deferred
805 * until now in order to avoid deadlock.
806 */
807 asid_t asid;
808
809 asid = asid_get();
810 mutex_lock_active(&new->lock);
811 new->asid = asid;
812 mutex_unlock(&new->lock);
813 }
814 spinlock_unlock(&inactive_as_with_asid_lock);
815 interrupts_restore(ipl);
816
817 /*
818 * Perform architecture-specific steps.
819 * (e.g. write ASID to hardware register etc.)
820 */
821 as_install_arch(new);
822
823 AS = new;
824}
825
826/** Convert address space area flags to page flags.
827 *
828 * @param aflags Flags of some address space area.
829 *
830 * @return Flags to be passed to page_mapping_insert().
831 */
832int area_flags_to_page_flags(int aflags)
833{
834 int flags;
835
836 flags = PAGE_USER | PAGE_PRESENT;
837
838 if (aflags & AS_AREA_READ)
839 flags |= PAGE_READ;
840
841 if (aflags & AS_AREA_WRITE)
842 flags |= PAGE_WRITE;
843
844 if (aflags & AS_AREA_EXEC)
845 flags |= PAGE_EXEC;
846
847 if (aflags & AS_AREA_CACHEABLE)
848 flags |= PAGE_CACHEABLE;
849
850 return flags;
851}
852
853/** Compute flags for virtual address translation subsytem.
854 *
855 * The address space area must be locked.
856 * Interrupts must be disabled.
857 *
858 * @param a Address space area.
859 *
860 * @return Flags to be used in page_mapping_insert().
861 */
862int as_area_get_flags(as_area_t *a)
863{
864 return area_flags_to_page_flags(a->flags);
865}
866
867/** Create page table.
868 *
869 * Depending on architecture, create either address space
870 * private or global page table.
871 *
872 * @param flags Flags saying whether the page table is for kernel address space.
873 *
874 * @return First entry of the page table.
875 */
876pte_t *page_table_create(int flags)
877{
878 ASSERT(as_operations);
879 ASSERT(as_operations->page_table_create);
880
881 return as_operations->page_table_create(flags);
882}
883
884/** Destroy page table.
885 *
886 * Destroy page table in architecture specific way.
887 *
888 * @param page_table Physical address of PTL0.
889 */
890void page_table_destroy(pte_t *page_table)
891{
892 ASSERT(as_operations);
893 ASSERT(as_operations->page_table_destroy);
894
895 as_operations->page_table_destroy(page_table);
896}
897
898/** Lock page table.
899 *
900 * This function should be called before any page_mapping_insert(),
901 * page_mapping_remove() and page_mapping_find().
902 *
903 * Locking order is such that address space areas must be locked
904 * prior to this call. Address space can be locked prior to this
905 * call in which case the lock argument is false.
906 *
907 * @param as Address space.
908 * @param lock If false, do not attempt to lock as->lock.
909 */
910void page_table_lock(as_t *as, bool lock)
911{
912 ASSERT(as_operations);
913 ASSERT(as_operations->page_table_lock);
914
915 as_operations->page_table_lock(as, lock);
916}
917
918/** Unlock page table.
919 *
920 * @param as Address space.
921 * @param unlock If false, do not attempt to unlock as->lock.
922 */
923void page_table_unlock(as_t *as, bool unlock)
924{
925 ASSERT(as_operations);
926 ASSERT(as_operations->page_table_unlock);
927
928 as_operations->page_table_unlock(as, unlock);
929}
930
931
932/** Find address space area and lock it.
933 *
934 * The address space must be locked and interrupts must be disabled.
935 *
936 * @param as Address space.
937 * @param va Virtual address.
938 *
939 * @return Locked address space area containing va on success or NULL on failure.
940 */
941as_area_t *find_area_and_lock(as_t *as, __address va)
942{
943 as_area_t *a;
944 btree_node_t *leaf, *lnode;
945 int i;
946
947 a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf);
948 if (a) {
949 /* va is the base address of an address space area */
950 mutex_lock(&a->lock);
951 return a;
952 }
953
954 /*
955 * Search the leaf node and the righmost record of its left neighbour
956 * to find out whether this is a miss or va belongs to an address
957 * space area found there.
958 */
959
960 /* First, search the leaf node itself. */
961 for (i = 0; i < leaf->keys; i++) {
962 a = (as_area_t *) leaf->value[i];
963 mutex_lock(&a->lock);
964 if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) {
965 return a;
966 }
967 mutex_unlock(&a->lock);
968 }
969
970 /*
971 * Second, locate the left neighbour and test its last record.
972 * Because of its position in the B+tree, it must have base < va.
973 */
974 if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
975 a = (as_area_t *) lnode->value[lnode->keys - 1];
976 mutex_lock(&a->lock);
977 if (va < a->base + a->pages * PAGE_SIZE) {
978 return a;
979 }
980 mutex_unlock(&a->lock);
981 }
982
983 return NULL;
984}
985
986/** Check area conflicts with other areas.
987 *
988 * The address space must be locked and interrupts must be disabled.
989 *
990 * @param as Address space.
991 * @param va Starting virtual address of the area being tested.
992 * @param size Size of the area being tested.
993 * @param avoid_area Do not touch this area.
994 *
995 * @return True if there is no conflict, false otherwise.
996 */
997bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area)
998{
999 as_area_t *a;
1000 btree_node_t *leaf, *node;
1001 int i;
1002
1003 /*
1004 * We don't want any area to have conflicts with NULL page.
1005 */
1006 if (overlaps(va, size, NULL, PAGE_SIZE))
1007 return false;
1008
1009 /*
1010 * The leaf node is found in O(log n), where n is proportional to
1011 * the number of address space areas belonging to as.
1012 * The check for conflicts is then attempted on the rightmost
1013 * record in the left neighbour, the leftmost record in the right
1014 * neighbour and all records in the leaf node itself.
1015 */
1016
1017 if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) {
1018 if (a != avoid_area)
1019 return false;
1020 }
1021
1022 /* First, check the two border cases. */
1023 if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) {
1024 a = (as_area_t *) node->value[node->keys - 1];
1025 mutex_lock(&a->lock);
1026 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1027 mutex_unlock(&a->lock);
1028 return false;
1029 }
1030 mutex_unlock(&a->lock);
1031 }
1032 if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) {
1033 a = (as_area_t *) node->value[0];
1034 mutex_lock(&a->lock);
1035 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1036 mutex_unlock(&a->lock);
1037 return false;
1038 }
1039 mutex_unlock(&a->lock);
1040 }
1041
1042 /* Second, check the leaf node. */
1043 for (i = 0; i < leaf->keys; i++) {
1044 a = (as_area_t *) leaf->value[i];
1045
1046 if (a == avoid_area)
1047 continue;
1048
1049 mutex_lock(&a->lock);
1050 if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) {
1051 mutex_unlock(&a->lock);
1052 return false;
1053 }
1054 mutex_unlock(&a->lock);
1055 }
1056
1057 /*
1058 * So far, the area does not conflict with other areas.
1059 * Check if it doesn't conflict with kernel address space.
1060 */
1061 if (!KERNEL_ADDRESS_SPACE_SHADOWED) {
1062 return !overlaps(va, size,
1063 KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START);
1064 }
1065
1066 return true;
1067}
1068
1069/** Return size of the address space area with given base. */
1070size_t as_get_size(__address base)
1071{
1072 ipl_t ipl;
1073 as_area_t *src_area;
1074 size_t size;
1075
1076 ipl = interrupts_disable();
1077 src_area = find_area_and_lock(AS, base);
1078 if (src_area){
1079 size = src_area->pages * PAGE_SIZE;
1080 mutex_unlock(&src_area->lock);
1081 } else {
1082 size = 0;
1083 }
1084 interrupts_restore(ipl);
1085 return size;
1086}
1087
1088/** Mark portion of address space area as used.
1089 *
1090 * The address space area must be already locked.
1091 *
1092 * @param a Address space area.
1093 * @param page First page to be marked.
1094 * @param count Number of page to be marked.
1095 *
1096 * @return 0 on failure and 1 on success.
1097 */
1098int used_space_insert(as_area_t *a, __address page, count_t count)
1099{
1100 btree_node_t *leaf, *node;
1101 count_t pages;
1102 int i;
1103
1104 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1105 ASSERT(count);
1106
1107 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1108 if (pages) {
1109 /*
1110 * We hit the beginning of some used space.
1111 */
1112 return 0;
1113 }
1114
1115 if (!leaf->keys) {
1116 btree_insert(&a->used_space, page, (void *) count, leaf);
1117 return 1;
1118 }
1119
1120 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1121 if (node) {
1122 __address left_pg = node->key[node->keys - 1], right_pg = leaf->key[0];
1123 count_t left_cnt = (count_t) node->value[node->keys - 1], right_cnt = (count_t) leaf->value[0];
1124
1125 /*
1126 * Examine the possibility that the interval fits
1127 * somewhere between the rightmost interval of
1128 * the left neigbour and the first interval of the leaf.
1129 */
1130
1131 if (page >= right_pg) {
1132 /* Do nothing. */
1133 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1134 /* The interval intersects with the left interval. */
1135 return 0;
1136 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1137 /* The interval intersects with the right interval. */
1138 return 0;
1139 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1140 /* The interval can be added by merging the two already present intervals. */
1141 node->value[node->keys - 1] += count + right_cnt;
1142 btree_remove(&a->used_space, right_pg, leaf);
1143 return 1;
1144 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1145 /* The interval can be added by simply growing the left interval. */
1146 node->value[node->keys - 1] += count;
1147 return 1;
1148 } else if (page + count*PAGE_SIZE == right_pg) {
1149 /*
1150 * The interval can be addded by simply moving base of the right
1151 * interval down and increasing its size accordingly.
1152 */
1153 leaf->value[0] += count;
1154 leaf->key[0] = page;
1155 return 1;
1156 } else {
1157 /*
1158 * The interval is between both neigbouring intervals,
1159 * but cannot be merged with any of them.
1160 */
1161 btree_insert(&a->used_space, page, (void *) count, leaf);
1162 return 1;
1163 }
1164 } else if (page < leaf->key[0]) {
1165 __address right_pg = leaf->key[0];
1166 count_t right_cnt = (count_t) leaf->value[0];
1167
1168 /*
1169 * Investigate the border case in which the left neighbour does not
1170 * exist but the interval fits from the left.
1171 */
1172
1173 if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1174 /* The interval intersects with the right interval. */
1175 return 0;
1176 } else if (page + count*PAGE_SIZE == right_pg) {
1177 /*
1178 * The interval can be added by moving the base of the right interval down
1179 * and increasing its size accordingly.
1180 */
1181 leaf->key[0] = page;
1182 leaf->value[0] += count;
1183 return 1;
1184 } else {
1185 /*
1186 * The interval doesn't adjoin with the right interval.
1187 * It must be added individually.
1188 */
1189 btree_insert(&a->used_space, page, (void *) count, leaf);
1190 return 1;
1191 }
1192 }
1193
1194 node = btree_leaf_node_right_neighbour(&a->used_space, leaf);
1195 if (node) {
1196 __address left_pg = leaf->key[leaf->keys - 1], right_pg = node->key[0];
1197 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1], right_cnt = (count_t) node->value[0];
1198
1199 /*
1200 * Examine the possibility that the interval fits
1201 * somewhere between the leftmost interval of
1202 * the right neigbour and the last interval of the leaf.
1203 */
1204
1205 if (page < left_pg) {
1206 /* Do nothing. */
1207 } else if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1208 /* The interval intersects with the left interval. */
1209 return 0;
1210 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1211 /* The interval intersects with the right interval. */
1212 return 0;
1213 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1214 /* The interval can be added by merging the two already present intervals. */
1215 leaf->value[leaf->keys - 1] += count + right_cnt;
1216 btree_remove(&a->used_space, right_pg, node);
1217 return 1;
1218 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1219 /* The interval can be added by simply growing the left interval. */
1220 leaf->value[leaf->keys - 1] += count;
1221 return 1;
1222 } else if (page + count*PAGE_SIZE == right_pg) {
1223 /*
1224 * The interval can be addded by simply moving base of the right
1225 * interval down and increasing its size accordingly.
1226 */
1227 node->value[0] += count;
1228 node->key[0] = page;
1229 return 1;
1230 } else {
1231 /*
1232 * The interval is between both neigbouring intervals,
1233 * but cannot be merged with any of them.
1234 */
1235 btree_insert(&a->used_space, page, (void *) count, leaf);
1236 return 1;
1237 }
1238 } else if (page >= leaf->key[leaf->keys - 1]) {
1239 __address left_pg = leaf->key[leaf->keys - 1];
1240 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1241
1242 /*
1243 * Investigate the border case in which the right neighbour does not
1244 * exist but the interval fits from the right.
1245 */
1246
1247 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1248 /* The interval intersects with the left interval. */
1249 return 0;
1250 } else if (left_pg + left_cnt*PAGE_SIZE == page) {
1251 /* The interval can be added by growing the left interval. */
1252 leaf->value[leaf->keys - 1] += count;
1253 return 1;
1254 } else {
1255 /*
1256 * The interval doesn't adjoin with the left interval.
1257 * It must be added individually.
1258 */
1259 btree_insert(&a->used_space, page, (void *) count, leaf);
1260 return 1;
1261 }
1262 }
1263
1264 /*
1265 * Note that if the algorithm made it thus far, the interval can fit only
1266 * between two other intervals of the leaf. The two border cases were already
1267 * resolved.
1268 */
1269 for (i = 1; i < leaf->keys; i++) {
1270 if (page < leaf->key[i]) {
1271 __address left_pg = leaf->key[i - 1], right_pg = leaf->key[i];
1272 count_t left_cnt = (count_t) leaf->value[i - 1], right_cnt = (count_t) leaf->value[i];
1273
1274 /*
1275 * The interval fits between left_pg and right_pg.
1276 */
1277
1278 if (overlaps(page, count*PAGE_SIZE, left_pg, left_cnt*PAGE_SIZE)) {
1279 /* The interval intersects with the left interval. */
1280 return 0;
1281 } else if (overlaps(page, count*PAGE_SIZE, right_pg, right_cnt*PAGE_SIZE)) {
1282 /* The interval intersects with the right interval. */
1283 return 0;
1284 } else if ((page == left_pg + left_cnt*PAGE_SIZE) && (page + count*PAGE_SIZE == right_pg)) {
1285 /* The interval can be added by merging the two already present intervals. */
1286 leaf->value[i - 1] += count + right_cnt;
1287 btree_remove(&a->used_space, right_pg, leaf);
1288 return 1;
1289 } else if (page == left_pg + left_cnt*PAGE_SIZE) {
1290 /* The interval can be added by simply growing the left interval. */
1291 leaf->value[i - 1] += count;
1292 return 1;
1293 } else if (page + count*PAGE_SIZE == right_pg) {
1294 /*
1295 * The interval can be addded by simply moving base of the right
1296 * interval down and increasing its size accordingly.
1297 */
1298 leaf->value[i] += count;
1299 leaf->key[i] = page;
1300 return 1;
1301 } else {
1302 /*
1303 * The interval is between both neigbouring intervals,
1304 * but cannot be merged with any of them.
1305 */
1306 btree_insert(&a->used_space, page, (void *) count, leaf);
1307 return 1;
1308 }
1309 }
1310 }
1311
1312 panic("Inconsistency detected while adding %d pages of used space at %p.\n", count, page);
1313}
1314
1315/** Mark portion of address space area as unused.
1316 *
1317 * The address space area must be already locked.
1318 *
1319 * @param a Address space area.
1320 * @param page First page to be marked.
1321 * @param count Number of page to be marked.
1322 *
1323 * @return 0 on failure and 1 on success.
1324 */
1325int used_space_remove(as_area_t *a, __address page, count_t count)
1326{
1327 btree_node_t *leaf, *node;
1328 count_t pages;
1329 int i;
1330
1331 ASSERT(page == ALIGN_DOWN(page, PAGE_SIZE));
1332 ASSERT(count);
1333
1334 pages = (count_t) btree_search(&a->used_space, page, &leaf);
1335 if (pages) {
1336 /*
1337 * We are lucky, page is the beginning of some interval.
1338 */
1339 if (count > pages) {
1340 return 0;
1341 } else if (count == pages) {
1342 btree_remove(&a->used_space, page, leaf);
1343 return 1;
1344 } else {
1345 /*
1346 * Find the respective interval.
1347 * Decrease its size and relocate its start address.
1348 */
1349 for (i = 0; i < leaf->keys; i++) {
1350 if (leaf->key[i] == page) {
1351 leaf->key[i] += count*PAGE_SIZE;
1352 leaf->value[i] -= count;
1353 return 1;
1354 }
1355 }
1356 goto error;
1357 }
1358 }
1359
1360 node = btree_leaf_node_left_neighbour(&a->used_space, leaf);
1361 if (node && page < leaf->key[0]) {
1362 __address left_pg = node->key[node->keys - 1];
1363 count_t left_cnt = (count_t) node->value[node->keys - 1];
1364
1365 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1366 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1367 /*
1368 * The interval is contained in the rightmost interval
1369 * of the left neighbour and can be removed by
1370 * updating the size of the bigger interval.
1371 */
1372 node->value[node->keys - 1] -= count;
1373 return 1;
1374 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1375 count_t new_cnt;
1376
1377 /*
1378 * The interval is contained in the rightmost interval
1379 * of the left neighbour but its removal requires
1380 * both updating the size of the original interval and
1381 * also inserting a new interval.
1382 */
1383 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1384 node->value[node->keys - 1] -= count + new_cnt;
1385 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1386 return 1;
1387 }
1388 }
1389 return 0;
1390 } else if (page < leaf->key[0]) {
1391 return 0;
1392 }
1393
1394 if (page > leaf->key[leaf->keys - 1]) {
1395 __address left_pg = leaf->key[leaf->keys - 1];
1396 count_t left_cnt = (count_t) leaf->value[leaf->keys - 1];
1397
1398 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1399 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1400 /*
1401 * The interval is contained in the rightmost interval
1402 * of the leaf and can be removed by updating the size
1403 * of the bigger interval.
1404 */
1405 leaf->value[leaf->keys - 1] -= count;
1406 return 1;
1407 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1408 count_t new_cnt;
1409
1410 /*
1411 * The interval is contained in the rightmost interval
1412 * of the leaf but its removal requires both updating
1413 * the size of the original interval and
1414 * also inserting a new interval.
1415 */
1416 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1417 leaf->value[leaf->keys - 1] -= count + new_cnt;
1418 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1419 return 1;
1420 }
1421 }
1422 return 0;
1423 }
1424
1425 /*
1426 * The border cases have been already resolved.
1427 * Now the interval can be only between intervals of the leaf.
1428 */
1429 for (i = 1; i < leaf->keys - 1; i++) {
1430 if (page < leaf->key[i]) {
1431 __address left_pg = leaf->key[i - 1];
1432 count_t left_cnt = (count_t) leaf->value[i - 1];
1433
1434 /*
1435 * Now the interval is between intervals corresponding to (i - 1) and i.
1436 */
1437 if (overlaps(left_pg, left_cnt*PAGE_SIZE, page, count*PAGE_SIZE)) {
1438 if (page + count*PAGE_SIZE == left_pg + left_cnt*PAGE_SIZE) {
1439 /*
1440 * The interval is contained in the interval (i - 1)
1441 * of the leaf and can be removed by updating the size
1442 * of the bigger interval.
1443 */
1444 leaf->value[i - 1] -= count;
1445 return 1;
1446 } else if (page + count*PAGE_SIZE < left_pg + left_cnt*PAGE_SIZE) {
1447 count_t new_cnt;
1448
1449 /*
1450 * The interval is contained in the interval (i - 1)
1451 * of the leaf but its removal requires both updating
1452 * the size of the original interval and
1453 * also inserting a new interval.
1454 */
1455 new_cnt = ((left_pg + left_cnt*PAGE_SIZE) - (page + count*PAGE_SIZE)) >> PAGE_WIDTH;
1456 leaf->value[i - 1] -= count + new_cnt;
1457 btree_insert(&a->used_space, page + count*PAGE_SIZE, (void *) new_cnt, leaf);
1458 return 1;
1459 }
1460 }
1461 return 0;
1462 }
1463 }
1464
1465error:
1466 panic("Inconsistency detected while removing %d pages of used space from %p.\n", count, page);
1467}
1468
1469/** Remove reference to address space area share info.
1470 *
1471 * If the reference count drops to 0, the sh_info is deallocated.
1472 *
1473 * @param sh_info Pointer to address space area share info.
1474 */
1475void sh_info_remove_reference(share_info_t *sh_info)
1476{
1477 bool dealloc = false;
1478
1479 mutex_lock(&sh_info->lock);
1480 ASSERT(sh_info->refcount);
1481 if (--sh_info->refcount == 0) {
1482 dealloc = true;
1483 link_t *cur;
1484
1485 /*
1486 * Now walk carefully the pagemap B+tree and free/remove
1487 * reference from all frames found there.
1488 */
1489 for (cur = sh_info->pagemap.leaf_head.next; cur != &sh_info->pagemap.leaf_head; cur = cur->next) {
1490 btree_node_t *node;
1491 int i;
1492
1493 node = list_get_instance(cur, btree_node_t, leaf_link);
1494 for (i = 0; i < node->keys; i++)
1495 frame_free(ADDR2PFN((__address) node->value[i]));
1496 }
1497
1498 }
1499 mutex_unlock(&sh_info->lock);
1500
1501 if (dealloc) {
1502 btree_destroy(&sh_info->pagemap);
1503 free(sh_info);
1504 }
1505}
1506
1507/*
1508 * Address space related syscalls.
1509 */
1510
1511/** Wrapper for as_area_create(). */
1512__native sys_as_area_create(__address address, size_t size, int flags)
1513{
1514 if (as_area_create(AS, flags | AS_AREA_CACHEABLE, size, address, AS_AREA_ATTR_NONE, &anon_backend, NULL))
1515 return (__native) address;
1516 else
1517 return (__native) -1;
1518}
1519
1520/** Wrapper for as_area_resize. */
1521__native sys_as_area_resize(__address address, size_t size, int flags)
1522{
1523 return (__native) as_area_resize(AS, address, size, 0);
1524}
1525
1526/** Wrapper for as_area_destroy. */
1527__native sys_as_area_destroy(__address address)
1528{
1529 return (__native) as_area_destroy(AS, address);
1530}
1531
1532 /** @}
1533 */
1534
Note: See TracBrowser for help on using the repository browser.