/* * Copyright (C) 2001-2006 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ /** * @file as.c * @brief Address space related functions. * * This file contains address space manipulation functions. * Roughly speaking, this is a higher-level client of * Virtual Address Translation (VAT) subsystem. * * Functionality provided by this file allows one to * create address space and create, resize and share * address space areas. * * @see page.c * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include as_operations_t *as_operations = NULL; /** Address space lock. It protects inactive_as_with_asid_head. */ SPINLOCK_INITIALIZE(as_lock); /** * This list contains address spaces that are not active on any * processor and that have valid ASID. */ LIST_INITIALIZE(inactive_as_with_asid_head); /** Kernel address space. */ as_t *AS_KERNEL = NULL; static int area_flags_to_page_flags(int aflags); static int get_area_flags(as_area_t *a); static as_area_t *find_area_and_lock(as_t *as, __address va); static bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area); /** Initialize address space subsystem. */ void as_init(void) { as_arch_init(); AS_KERNEL = as_create(FLAG_AS_KERNEL); if (!AS_KERNEL) panic("can't create kernel address space\n"); } /** Create address space. * * @param flags Flags that influence way in wich the address space is created. */ as_t *as_create(int flags) { as_t *as; as = (as_t *) malloc(sizeof(as_t), 0); link_initialize(&as->inactive_as_with_asid_link); spinlock_initialize(&as->lock, "as_lock"); btree_create(&as->as_area_btree); if (flags & FLAG_AS_KERNEL) as->asid = ASID_KERNEL; else as->asid = ASID_INVALID; as->refcount = 0; as->page_table = page_table_create(flags); return as; } /** Free Adress space */ void as_free(as_t *as) { ASSERT(as->refcount == 0); /* TODO: free as_areas and other resources held by as */ /* TODO: free page table */ free(as); } /** Create address space area of common attributes. * * The created address space area is added to the target address space. * * @param as Target address space. * @param flags Flags of the area memory. * @param size Size of area. * @param base Base address of area. * @param attrs Attributes of the area. * * @return Address space area on success or NULL on failure. */ as_area_t *as_area_create(as_t *as, int flags, size_t size, __address base, int attrs) { ipl_t ipl; as_area_t *a; if (base % PAGE_SIZE) return NULL; if (!size) return NULL; /* Writeable executable areas are not supported. */ if ((flags & AS_AREA_EXEC) && (flags & AS_AREA_WRITE)) return NULL; ipl = interrupts_disable(); spinlock_lock(&as->lock); if (!check_area_conflicts(as, base, size, NULL)) { spinlock_unlock(&as->lock); interrupts_restore(ipl); return NULL; } a = (as_area_t *) malloc(sizeof(as_area_t), 0); spinlock_initialize(&a->lock, "as_area_lock"); a->flags = flags; a->attributes = attrs; a->pages = SIZE2FRAMES(size); a->base = base; btree_insert(&as->as_area_btree, base, (void *) a, NULL); spinlock_unlock(&as->lock); interrupts_restore(ipl); return a; } /** Find address space area and change it. * * @param as Address space. * @param address Virtual address belonging to the area to be changed. Must be page-aligned. * @param size New size of the virtual memory block starting at address. * @param flags Flags influencing the remap operation. Currently unused. * * @return Zero on success or a value from @ref errno.h otherwise. */ int as_area_resize(as_t *as, __address address, size_t size, int flags) { as_area_t *area; ipl_t ipl; size_t pages; ipl = interrupts_disable(); spinlock_lock(&as->lock); /* * Locate the area. */ area = find_area_and_lock(as, address); if (!area) { spinlock_unlock(&as->lock); interrupts_restore(ipl); return ENOENT; } if (area->flags & AS_AREA_DEVICE) { /* * Remapping of address space areas associated * with memory mapped devices is not supported. */ spinlock_unlock(&area->lock); spinlock_unlock(&as->lock); interrupts_restore(ipl); return ENOTSUP; } pages = SIZE2FRAMES((address - area->base) + size); if (!pages) { /* * Zero size address space areas are not allowed. */ spinlock_unlock(&area->lock); spinlock_unlock(&as->lock); interrupts_restore(ipl); return EPERM; } if (pages < area->pages) { int i; /* * Shrinking the area. * No need to check for overlaps. */ for (i = pages; i < area->pages; i++) { pte_t *pte; /* * Releasing physical memory. * This depends on the fact that the memory was allocated using frame_alloc(). */ page_table_lock(as, false); pte = page_mapping_find(as, area->base + i*PAGE_SIZE); if (pte && PTE_VALID(pte)) { __address frame; ASSERT(PTE_PRESENT(pte)); frame = PTE_GET_FRAME(pte); page_mapping_remove(as, area->base + i*PAGE_SIZE); page_table_unlock(as, false); frame_free(ADDR2PFN(frame)); } else { page_table_unlock(as, false); } } /* * Invalidate TLB's. */ tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages); tlb_invalidate_pages(AS->asid, area->base + pages*PAGE_SIZE, area->pages - pages); tlb_shootdown_finalize(); } else { /* * Growing the area. * Check for overlaps with other address space areas. */ if (!check_area_conflicts(as, address, pages * PAGE_SIZE, area)) { spinlock_unlock(&area->lock); spinlock_unlock(&as->lock); interrupts_restore(ipl); return EADDRNOTAVAIL; } } area->pages = pages; spinlock_unlock(&area->lock); spinlock_unlock(&as->lock); interrupts_restore(ipl); return 0; } /** Destroy address space area. * * @param as Address space. * @param address Address withing the area to be deleted. * * @return Zero on success or a value from @ref errno.h on failure. */ int as_area_destroy(as_t *as, __address address) { as_area_t *area; __address base; ipl_t ipl; int i; ipl = interrupts_disable(); spinlock_lock(&as->lock); area = find_area_and_lock(as, address); if (!area) { spinlock_unlock(&as->lock); interrupts_restore(ipl); return ENOENT; } base = area->base; for (i = 0; i < area->pages; i++) { pte_t *pte; /* * Releasing physical memory. * Areas mapping memory-mapped devices are treated differently than * areas backing frame_alloc()'ed memory. */ page_table_lock(as, false); pte = page_mapping_find(as, area->base + i*PAGE_SIZE); if (pte && PTE_VALID(pte)) { ASSERT(PTE_PRESENT(pte)); page_mapping_remove(as, area->base + i*PAGE_SIZE); if (area->flags & AS_AREA_DEVICE) { __address frame; frame = PTE_GET_FRAME(pte); frame_free(ADDR2PFN(frame)); } page_table_unlock(as, false); } else { page_table_unlock(as, false); } } /* * Invalidate TLB's. */ tlb_shootdown_start(TLB_INVL_PAGES, AS->asid, area->base, area->pages); tlb_invalidate_pages(AS->asid, area->base, area->pages); tlb_shootdown_finalize(); area->attributes |= AS_AREA_ATTR_PARTIAL; spinlock_unlock(&area->lock); /* * Remove the empty area from address space. */ btree_remove(&AS->as_area_btree, base, NULL); free(area); spinlock_unlock(&AS->lock); interrupts_restore(ipl); return 0; } /** Send address space area to another task. * * Address space area is sent to the specified task. * If the destination task is willing to accept the * area, a new area is created according to the * source area. Moreover, any existing mapping * is copied as well, providing thus a mechanism * for sharing group of pages. The source address * space area and any associated mapping is preserved. * * @param dst_id Task ID of the accepting task. * @param src_base Base address of the source address space area. * * @return Zero on success or ENOENT if there is no such task or * if there is no such address space area, * EPERM if there was a problem in accepting the area or * ENOMEM if there was a problem in allocating destination * address space area. */ int as_area_send(task_id_t dst_id, __address src_base) { ipl_t ipl; task_t *t; count_t i; as_t *dst_as; __address dst_base; int src_flags; size_t src_size; as_area_t *src_area, *dst_area; ipl = interrupts_disable(); spinlock_lock(&tasks_lock); t = task_find_by_id(dst_id); if (!NULL) { spinlock_unlock(&tasks_lock); interrupts_restore(ipl); return ENOENT; } spinlock_lock(&t->lock); spinlock_unlock(&tasks_lock); dst_as = t->as; dst_base = (__address) t->accept_arg.base; if (dst_as == AS) { /* * The two tasks share the entire address space. * Return error since there is no point in continuing. */ spinlock_unlock(&t->lock); interrupts_restore(ipl); return EPERM; } spinlock_lock(&AS->lock); src_area = find_area_and_lock(AS, src_base); if (!src_area) { /* * Could not find the source address space area. */ spinlock_unlock(&t->lock); spinlock_unlock(&AS->lock); interrupts_restore(ipl); return ENOENT; } src_size = src_area->pages * PAGE_SIZE; src_flags = src_area->flags; spinlock_unlock(&src_area->lock); spinlock_unlock(&AS->lock); if ((t->accept_arg.task_id != TASK->taskid) || (t->accept_arg.size != src_size) || (t->accept_arg.flags != src_flags)) { /* * Discrepancy in either task ID, size or flags. */ spinlock_unlock(&t->lock); interrupts_restore(ipl); return EPERM; } /* * Create copy of the source address space area. * The destination area is created with AS_AREA_ATTR_PARTIAL * attribute set which prevents race condition with * preliminary as_page_fault() calls. */ dst_area = as_area_create(dst_as, src_flags, src_size, dst_base, AS_AREA_ATTR_PARTIAL); if (!dst_area) { /* * Destination address space area could not be created. */ spinlock_unlock(&t->lock); interrupts_restore(ipl); return ENOMEM; } memsetb((__address) &t->accept_arg, sizeof(as_area_acptsnd_arg_t), 0); spinlock_unlock(&t->lock); /* * Avoid deadlock by first locking the address space with lower address. */ if (dst_as < AS) { spinlock_lock(&dst_as->lock); spinlock_lock(&AS->lock); } else { spinlock_lock(&AS->lock); spinlock_lock(&dst_as->lock); } for (i = 0; i < SIZE2FRAMES(src_size); i++) { pte_t *pte; __address frame; page_table_lock(AS, false); pte = page_mapping_find(AS, src_base + i*PAGE_SIZE); if (pte && PTE_VALID(pte)) { ASSERT(PTE_PRESENT(pte)); frame = PTE_GET_FRAME(pte); if (!(src_flags & AS_AREA_DEVICE)) frame_reference_add(ADDR2PFN(frame)); page_table_unlock(AS, false); } else { page_table_unlock(AS, false); continue; } page_table_lock(dst_as, false); page_mapping_insert(dst_as, dst_base + i*PAGE_SIZE, frame, area_flags_to_page_flags(src_flags)); page_table_unlock(dst_as, false); } /* * Now the destination address space area has been * fully initialized. Clear the AS_AREA_ATTR_PARTIAL * attribute. */ spinlock_lock(&dst_area->lock); dst_area->attributes &= ~AS_AREA_ATTR_PARTIAL; spinlock_unlock(&dst_area->lock); spinlock_unlock(&AS->lock); spinlock_unlock(&dst_as->lock); interrupts_restore(ipl); return 0; } /** Initialize mapping for one page of address space. * * This functions maps 'page' to 'frame' according * to attributes of the address space area to * wich 'page' belongs. * * @param as Target address space. * @param page Virtual page within the area. * @param frame Physical frame to which page will be mapped. */ void as_set_mapping(as_t *as, __address page, __address frame) { as_area_t *area; ipl_t ipl; ipl = interrupts_disable(); page_table_lock(as, true); area = find_area_and_lock(as, page); if (!area) { panic("page not part of any as_area\n"); } page_mapping_insert(as, page, frame, get_area_flags(area)); spinlock_unlock(&area->lock); page_table_unlock(as, true); interrupts_restore(ipl); } /** Handle page fault within the current address space. * * This is the high-level page fault handler. * Interrupts are assumed disabled. * * @param page Faulting page. * @param istate Pointer to interrupted state. * * @return 0 on page fault, 1 on success or 2 if the fault was caused by copy_to_uspace() or copy_from_uspace(). */ int as_page_fault(__address page, istate_t *istate) { pte_t *pte; as_area_t *area; __address frame; ASSERT(AS); spinlock_lock(&AS->lock); area = find_area_and_lock(AS, page); if (!area) { /* * No area contained mapping for 'page'. * Signal page fault to low-level handler. */ spinlock_unlock(&AS->lock); goto page_fault; } if (area->attributes & AS_AREA_ATTR_PARTIAL) { /* * The address space area is not fully initialized. * Avoid possible race by returning error. */ spinlock_unlock(&area->lock); spinlock_unlock(&AS->lock); goto page_fault; } ASSERT(!(area->flags & AS_AREA_DEVICE)); page_table_lock(AS, false); /* * To avoid race condition between two page faults * on the same address, we need to make sure * the mapping has not been already inserted. */ if ((pte = page_mapping_find(AS, page))) { if (PTE_PRESENT(pte)) { page_table_unlock(AS, false); spinlock_unlock(&area->lock); spinlock_unlock(&AS->lock); return 1; } } /* * In general, there can be several reasons that * can have caused this fault. * * - non-existent mapping: the area is a scratch * area (e.g. stack) and so far has not been * allocated a frame for the faulting page * * - non-present mapping: another possibility, * currently not implemented, would be frame * reuse; when this becomes a possibility, * do not forget to distinguish between * the different causes */ frame = PFN2ADDR(frame_alloc(ONE_FRAME, 0)); memsetb(PA2KA(frame), FRAME_SIZE, 0); /* * Map 'page' to 'frame'. * Note that TLB shootdown is not attempted as only new information is being * inserted into page tables. */ page_mapping_insert(AS, page, frame, get_area_flags(area)); page_table_unlock(AS, false); spinlock_unlock(&area->lock); spinlock_unlock(&AS->lock); return AS_PF_OK; page_fault: if (!THREAD) return AS_PF_FAULT; if (THREAD->in_copy_from_uspace) { THREAD->in_copy_from_uspace = false; istate_set_retaddr(istate, (__address) &memcpy_from_uspace_failover_address); } else if (THREAD->in_copy_to_uspace) { THREAD->in_copy_to_uspace = false; istate_set_retaddr(istate, (__address) &memcpy_to_uspace_failover_address); } else { return AS_PF_FAULT; } return AS_PF_DEFER; } /** Switch address spaces. * * @param old Old address space or NULL. * @param new New address space. */ void as_switch(as_t *old, as_t *new) { ipl_t ipl; bool needs_asid = false; ipl = interrupts_disable(); spinlock_lock(&as_lock); /* * First, take care of the old address space. */ if (old) { spinlock_lock(&old->lock); ASSERT(old->refcount); if((--old->refcount == 0) && (old != AS_KERNEL)) { /* * The old address space is no longer active on * any processor. It can be appended to the * list of inactive address spaces with assigned * ASID. */ ASSERT(old->asid != ASID_INVALID); list_append(&old->inactive_as_with_asid_link, &inactive_as_with_asid_head); } spinlock_unlock(&old->lock); } /* * Second, prepare the new address space. */ spinlock_lock(&new->lock); if ((new->refcount++ == 0) && (new != AS_KERNEL)) { if (new->asid != ASID_INVALID) list_remove(&new->inactive_as_with_asid_link); else needs_asid = true; /* defer call to asid_get() until new->lock is released */ } SET_PTL0_ADDRESS(new->page_table); spinlock_unlock(&new->lock); if (needs_asid) { /* * Allocation of new ASID was deferred * until now in order to avoid deadlock. */ asid_t asid; asid = asid_get(); spinlock_lock(&new->lock); new->asid = asid; spinlock_unlock(&new->lock); } spinlock_unlock(&as_lock); interrupts_restore(ipl); /* * Perform architecture-specific steps. * (e.g. write ASID to hardware register etc.) */ as_install_arch(new); AS = new; } /** Convert address space area flags to page flags. * * @param aflags Flags of some address space area. * * @return Flags to be passed to page_mapping_insert(). */ int area_flags_to_page_flags(int aflags) { int flags; flags = PAGE_USER | PAGE_PRESENT; if (aflags & AS_AREA_READ) flags |= PAGE_READ; if (aflags & AS_AREA_WRITE) flags |= PAGE_WRITE; if (aflags & AS_AREA_EXEC) flags |= PAGE_EXEC; if (!(aflags & AS_AREA_DEVICE)) flags |= PAGE_CACHEABLE; return flags; } /** Compute flags for virtual address translation subsytem. * * The address space area must be locked. * Interrupts must be disabled. * * @param a Address space area. * * @return Flags to be used in page_mapping_insert(). */ int get_area_flags(as_area_t *a) { return area_flags_to_page_flags(a->flags); } /** Create page table. * * Depending on architecture, create either address space * private or global page table. * * @param flags Flags saying whether the page table is for kernel address space. * * @return First entry of the page table. */ pte_t *page_table_create(int flags) { ASSERT(as_operations); ASSERT(as_operations->page_table_create); return as_operations->page_table_create(flags); } /** Lock page table. * * This function should be called before any page_mapping_insert(), * page_mapping_remove() and page_mapping_find(). * * Locking order is such that address space areas must be locked * prior to this call. Address space can be locked prior to this * call in which case the lock argument is false. * * @param as Address space. * @param lock If false, do not attempt to lock as->lock. */ void page_table_lock(as_t *as, bool lock) { ASSERT(as_operations); ASSERT(as_operations->page_table_lock); as_operations->page_table_lock(as, lock); } /** Unlock page table. * * @param as Address space. * @param unlock If false, do not attempt to unlock as->lock. */ void page_table_unlock(as_t *as, bool unlock) { ASSERT(as_operations); ASSERT(as_operations->page_table_unlock); as_operations->page_table_unlock(as, unlock); } /** Find address space area and lock it. * * The address space must be locked and interrupts must be disabled. * * @param as Address space. * @param va Virtual address. * * @return Locked address space area containing va on success or NULL on failure. */ as_area_t *find_area_and_lock(as_t *as, __address va) { as_area_t *a; btree_node_t *leaf, *lnode; int i; a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf); if (a) { /* va is the base address of an address space area */ spinlock_lock(&a->lock); return a; } /* * Search the leaf node and the righmost record of its left neighbour * to find out whether this is a miss or va belongs to an address * space area found there. */ /* First, search the leaf node itself. */ for (i = 0; i < leaf->keys; i++) { a = (as_area_t *) leaf->value[i]; spinlock_lock(&a->lock); if ((a->base <= va) && (va < a->base + a->pages * PAGE_SIZE)) { return a; } spinlock_unlock(&a->lock); } /* * Second, locate the left neighbour and test its last record. * Because of its position in the B+tree, it must have base < va. */ if ((lnode = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) { a = (as_area_t *) lnode->value[lnode->keys - 1]; spinlock_lock(&a->lock); if (va < a->base + a->pages * PAGE_SIZE) { return a; } spinlock_unlock(&a->lock); } return NULL; } /** Check area conflicts with other areas. * * The address space must be locked and interrupts must be disabled. * * @param as Address space. * @param va Starting virtual address of the area being tested. * @param size Size of the area being tested. * @param avoid_area Do not touch this area. * * @return True if there is no conflict, false otherwise. */ bool check_area_conflicts(as_t *as, __address va, size_t size, as_area_t *avoid_area) { as_area_t *a; btree_node_t *leaf, *node; int i; /* * We don't want any area to have conflicts with NULL page. */ if (overlaps(va, size, NULL, PAGE_SIZE)) return false; /* * The leaf node is found in O(log n), where n is proportional to * the number of address space areas belonging to as. * The check for conflicts is then attempted on the rightmost * record in the left neighbour, the leftmost record in the right * neighbour and all records in the leaf node itself. */ if ((a = (as_area_t *) btree_search(&as->as_area_btree, va, &leaf))) { if (a != avoid_area) return false; } /* First, check the two border cases. */ if ((node = btree_leaf_node_left_neighbour(&as->as_area_btree, leaf))) { a = (as_area_t *) node->value[node->keys - 1]; spinlock_lock(&a->lock); if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) { spinlock_unlock(&a->lock); return false; } spinlock_unlock(&a->lock); } if ((node = btree_leaf_node_right_neighbour(&as->as_area_btree, leaf))) { a = (as_area_t *) node->value[0]; spinlock_lock(&a->lock); if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) { spinlock_unlock(&a->lock); return false; } spinlock_unlock(&a->lock); } /* Second, check the leaf node. */ for (i = 0; i < leaf->keys; i++) { a = (as_area_t *) leaf->value[i]; if (a == avoid_area) continue; spinlock_lock(&a->lock); if (overlaps(va, size, a->base, a->pages * PAGE_SIZE)) { spinlock_unlock(&a->lock); return false; } spinlock_unlock(&a->lock); } /* * So far, the area does not conflict with other areas. * Check if it doesn't conflict with kernel address space. */ if (!KERNEL_ADDRESS_SPACE_SHADOWED) { return !overlaps(va, size, KERNEL_ADDRESS_SPACE_START, KERNEL_ADDRESS_SPACE_END-KERNEL_ADDRESS_SPACE_START); } return true; } /* * Address space related syscalls. */ /** Wrapper for as_area_create(). */ __native sys_as_area_create(__address address, size_t size, int flags) { if (as_area_create(AS, flags, size, address, AS_AREA_ATTR_NONE)) return (__native) address; else return (__native) -1; } /** Wrapper for as_area_resize. */ __native sys_as_area_resize(__address address, size_t size, int flags) { return (__native) as_area_resize(AS, address, size, 0); } /** Wrapper for as_area_destroy. */ __native sys_as_area_destroy(__address address) { return (__native) as_area_destroy(AS, address); } /** Prepare task for accepting address space area from another task. * * @param uspace_accept_arg Accept structure passed from userspace. * * @return EPERM if the task ID encapsulated in @uspace_accept_arg references * TASK. Otherwise zero is returned. */ __native sys_as_area_accept(as_area_acptsnd_arg_t *uspace_accept_arg) { as_area_acptsnd_arg_t arg; int rc; rc = copy_from_uspace(&arg, uspace_accept_arg, sizeof(as_area_acptsnd_arg_t)); if (rc != 0) return rc; if (!arg.size) return (__native) EPERM; if (arg.task_id == TASK->taskid) { /* * Accepting from itself is not allowed. */ return (__native) EPERM; } memcpy(&TASK->accept_arg, &arg, sizeof(as_area_acptsnd_arg_t)); return 0; } /** Wrapper for as_area_send. */ __native sys_as_area_send(as_area_acptsnd_arg_t *uspace_send_arg) { as_area_acptsnd_arg_t arg; int rc; rc = copy_from_uspace(&arg, uspace_send_arg, sizeof(as_area_acptsnd_arg_t)); if (rc != 0) return rc; if (!arg.size) return (__native) EPERM; if (arg.task_id == TASK->taskid) { /* * Sending to itself is not allowed. */ return (__native) EPERM; } return (__native) as_area_send(arg.task_id, (__address) arg.base); }