1 | /*
|
---|
2 | * Copyright (C) 2001-2004 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include <putchar.h>
|
---|
30 | #include <print.h>
|
---|
31 | #include <synch/spinlock.h>
|
---|
32 | #include <arch/arg.h>
|
---|
33 | #include <arch/asm.h>
|
---|
34 | #include <arch/fmath.h>
|
---|
35 |
|
---|
36 | #include <arch.h>
|
---|
37 |
|
---|
38 | static char digits[] = "0123456789abcdef"; /**< Hexadecimal characters */
|
---|
39 | static spinlock_t printflock; /**< printf spinlock */
|
---|
40 |
|
---|
41 | #define DEFAULT_DOUBLE_PRECISION 16
|
---|
42 | #define DEFAULT_DOUBLE_BUFFER_SIZE 128
|
---|
43 |
|
---|
44 |
|
---|
45 | /** Print NULL terminated string
|
---|
46 | *
|
---|
47 | * Print characters from str using putchar() until
|
---|
48 | * \\0 character is reached.
|
---|
49 | *
|
---|
50 | * @param str Characters to print.
|
---|
51 | *
|
---|
52 | */
|
---|
53 | static void print_str(const char *str)
|
---|
54 | {
|
---|
55 | int i = 0;
|
---|
56 | char c;
|
---|
57 |
|
---|
58 | while (c = str[i++])
|
---|
59 | putchar(c);
|
---|
60 | }
|
---|
61 |
|
---|
62 |
|
---|
63 | /** Print hexadecimal digits
|
---|
64 | *
|
---|
65 | * Print fixed count of hexadecimal digits from
|
---|
66 | * the number num. The digits are printed in
|
---|
67 | * natural left-to-right order starting with
|
---|
68 | * the width-th digit.
|
---|
69 | *
|
---|
70 | * @param num Number containing digits.
|
---|
71 | * @param width Count of digits to print.
|
---|
72 | *
|
---|
73 | */
|
---|
74 | static void print_fixed_hex(const __u64 num, const int width)
|
---|
75 | {
|
---|
76 | int i;
|
---|
77 |
|
---|
78 | for (i = width*8 - 4; i >= 0; i -= 4)
|
---|
79 | putchar(digits[(num>>i) & 0xf]);
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | /** Print number in given base
|
---|
84 | *
|
---|
85 | * Print significant digits of a number in given
|
---|
86 | * base.
|
---|
87 | *
|
---|
88 | * @param num Number to print.
|
---|
89 | * @param base Base to print the number in (should
|
---|
90 | * be in range 2 .. 16).
|
---|
91 | *
|
---|
92 | */
|
---|
93 | static void print_number(const __native num, const unsigned int base)
|
---|
94 | {
|
---|
95 | int val = num;
|
---|
96 | char d[sizeof(__native)*8+1]; /* this is good enough even for base == 2 */
|
---|
97 | int i = sizeof(__native)*8-1;
|
---|
98 |
|
---|
99 | do {
|
---|
100 | d[i--] = digits[val % base];
|
---|
101 | } while (val /= base);
|
---|
102 |
|
---|
103 | d[sizeof(__native)*8] = 0;
|
---|
104 | print_str(&d[i + 1]);
|
---|
105 | }
|
---|
106 |
|
---|
107 |
|
---|
108 | static void print_double(double num, __u8 modifier, __u16 precision)
|
---|
109 | {
|
---|
110 | double intval,intval2;
|
---|
111 | int counter;
|
---|
112 | int exponent,exponenttmp;
|
---|
113 | unsigned char buf[DEFAULT_DOUBLE_BUFFER_SIZE];
|
---|
114 | unsigned long in1,in2;
|
---|
115 |
|
---|
116 |
|
---|
117 | if (fmath_is_nan(num)) {
|
---|
118 | print_str("NaN");
|
---|
119 | return;
|
---|
120 | }
|
---|
121 |
|
---|
122 | if (num<0.0) {
|
---|
123 | putchar('-');
|
---|
124 | num=num*-1.0;
|
---|
125 | }
|
---|
126 |
|
---|
127 |
|
---|
128 | if (fmath_is_infinity(num)) {
|
---|
129 | print_str("Inf");
|
---|
130 | return;
|
---|
131 | }
|
---|
132 |
|
---|
133 | if ((modifier=='E')||(modifier=='e')) {
|
---|
134 | intval2=fmath_fint(fmath_get_decimal_exponent(num),&intval);
|
---|
135 | exponent=intval;
|
---|
136 | if ((intval2<0.0)) exponent--;
|
---|
137 | num = num / ((fmath_dpow(10.0,exponent)));
|
---|
138 |
|
---|
139 | print_double(num,modifier+1,precision); /* modifier+1 = E => F or e => f */
|
---|
140 | putchar(modifier);
|
---|
141 | if (exponent<0) {
|
---|
142 | putchar('-');
|
---|
143 | exponent*=-1;
|
---|
144 | }
|
---|
145 | print_number(exponent,10);
|
---|
146 | return;
|
---|
147 | }
|
---|
148 |
|
---|
149 | /* TODO: rounding constant - when we got fraction >= 0.5, we must increment last printed number */
|
---|
150 |
|
---|
151 | /*
|
---|
152 | * Here is a problem with cumulative error while printing big double values -> we will divide
|
---|
153 | * the number with a power of 10, print new number with better method for small numbers and
|
---|
154 | * then print decimal point at correct position.
|
---|
155 | */
|
---|
156 |
|
---|
157 | fmath_fint(fmath_get_decimal_exponent(num),&intval);
|
---|
158 |
|
---|
159 | exponent=(intval>0.0?intval:0);
|
---|
160 |
|
---|
161 | precision+=exponent;
|
---|
162 |
|
---|
163 | if (exponent>0) num = num / ((fmath_dpow(10.0,exponent)));
|
---|
164 |
|
---|
165 | num=fmath_fint(num,&intval);
|
---|
166 |
|
---|
167 | if (precision>0) {
|
---|
168 | counter=precision-1;
|
---|
169 | if (exponent>0) counter++;
|
---|
170 |
|
---|
171 | if (counter>=DEFAULT_DOUBLE_BUFFER_SIZE) {
|
---|
172 | counter=DEFAULT_DOUBLE_BUFFER_SIZE;
|
---|
173 | }
|
---|
174 | exponenttmp=exponent;
|
---|
175 | while(counter>=0) {
|
---|
176 | num *= 10.0;
|
---|
177 | num = fmath_fint(num,&intval2);
|
---|
178 | buf[counter--]=((int)intval2)+'0';
|
---|
179 | exponenttmp--;
|
---|
180 | if ((exponenttmp==0)&&(counter>=0)) buf[counter--]='.';
|
---|
181 | }
|
---|
182 | counter=precision;
|
---|
183 | if ((exponent==0)&&(counter<DEFAULT_DOUBLE_BUFFER_SIZE)) buf[counter]='.';
|
---|
184 | counter++;
|
---|
185 | } else {
|
---|
186 | counter=0;
|
---|
187 | }
|
---|
188 |
|
---|
189 | in1=intval;
|
---|
190 | if (in1==0.0) {
|
---|
191 | if (counter<DEFAULT_DOUBLE_BUFFER_SIZE) buf[counter++]='0';
|
---|
192 | } else {
|
---|
193 | while(( in1>0 )&&(counter<DEFAULT_DOUBLE_BUFFER_SIZE)) {
|
---|
194 |
|
---|
195 | in2=in1;
|
---|
196 | in1/=10;
|
---|
197 | buf[counter]=in2-in1*10 + '0';
|
---|
198 | counter++;
|
---|
199 | }
|
---|
200 | }
|
---|
201 |
|
---|
202 | counter = (counter>=DEFAULT_DOUBLE_BUFFER_SIZE?DEFAULT_DOUBLE_BUFFER_SIZE:counter);
|
---|
203 | while (counter>0) {
|
---|
204 | putchar(buf[--counter]);
|
---|
205 | }
|
---|
206 | return;
|
---|
207 | }
|
---|
208 |
|
---|
209 |
|
---|
210 | /** General formatted text print
|
---|
211 | *
|
---|
212 | * Print text formatted according the fmt parameter
|
---|
213 | * and variant arguments. Each formatting directive
|
---|
214 | * begins with \% (percentage) character and one of the
|
---|
215 | * following character:
|
---|
216 | *
|
---|
217 | * \% Prints the percentage character.
|
---|
218 | *
|
---|
219 | * s The next variant argument is treated as char*
|
---|
220 | * and printed as a NULL terminated string.
|
---|
221 | *
|
---|
222 | * c The next variant argument is treated as a single char.
|
---|
223 | *
|
---|
224 | * p The next variant argument is treated as a maximum
|
---|
225 | * bit-width integer with respect to architecture
|
---|
226 | * and printed in full hexadecimal width.
|
---|
227 | *
|
---|
228 | * P As with 'p', but '0x' is prefixed.
|
---|
229 | *
|
---|
230 | * q The next variant argument is treated as a 64b integer
|
---|
231 | * and printed in full hexadecimal width.
|
---|
232 | *
|
---|
233 | * Q As with 'q', but '0x' is prefixed.
|
---|
234 | *
|
---|
235 | * l The next variant argument is treated as a 32b integer
|
---|
236 | * and printed in full hexadecimal width.
|
---|
237 | *
|
---|
238 | * L As with 'l', but '0x' is prefixed.
|
---|
239 | *
|
---|
240 | * w The next variant argument is treated as a 16b integer
|
---|
241 | * and printed in full hexadecimal width.
|
---|
242 | *
|
---|
243 | * W As with 'w', but '0x' is prefixed.
|
---|
244 | *
|
---|
245 | * b The next variant argument is treated as a 8b integer
|
---|
246 | * and printed in full hexadecimal width.
|
---|
247 | *
|
---|
248 | * B As with 'b', but '0x' is prefixed.
|
---|
249 | *
|
---|
250 | * d The next variant argument is treated as integer
|
---|
251 | * and printed in standard decimal format (only significant
|
---|
252 | * digits).
|
---|
253 | *
|
---|
254 | * x The next variant argument is treated as integer
|
---|
255 | * and printed in standard hexadecimal format (only significant
|
---|
256 | * digits).
|
---|
257 | *
|
---|
258 | * X As with 'x', but '0x' is prefixed.
|
---|
259 | *
|
---|
260 | * . The decimal number following period will be treated as precision
|
---|
261 | * for printing floating point numbers. One of 'e', 'E', 'f' or 'F'
|
---|
262 | * must follow.
|
---|
263 | *
|
---|
264 | * e The next variant argument is treated as double precision float
|
---|
265 | * and printed in exponent notation with only one digit before decimal point
|
---|
266 | * in specified precision. The exponent sign is printed as 'e'.
|
---|
267 | *
|
---|
268 | * E As with 'e', but the exponent sign is printed as 'E'.
|
---|
269 | *
|
---|
270 | * f The next variant argument is treated as double precision float
|
---|
271 | * and printed in decimal notation in specified precision.
|
---|
272 | *
|
---|
273 | * F As with 'f'.
|
---|
274 | *
|
---|
275 | * All other characters from fmt except the formatting directives
|
---|
276 | * are printed in verbatim.
|
---|
277 | *
|
---|
278 | * @param fmt Formatting NULL terminated string.
|
---|
279 | */
|
---|
280 | void printf(const char *fmt, ...)
|
---|
281 | {
|
---|
282 | int irqpri, i = 0;
|
---|
283 | va_list ap;
|
---|
284 | char c;
|
---|
285 |
|
---|
286 | __u16 precision;
|
---|
287 |
|
---|
288 | va_start(ap, fmt);
|
---|
289 |
|
---|
290 | irqpri = interrupts_disable();
|
---|
291 | spinlock_lock(&printflock);
|
---|
292 |
|
---|
293 | while (c = fmt[i++]) {
|
---|
294 | switch (c) {
|
---|
295 |
|
---|
296 | /* control character */
|
---|
297 | case '%':
|
---|
298 | precision = DEFAULT_DOUBLE_PRECISION;
|
---|
299 | if (fmt[i]=='.') {
|
---|
300 | precision=0;
|
---|
301 | c=fmt[++i];
|
---|
302 | while((c>='0')&&(c<='9')) {
|
---|
303 | precision = precision*10 + c - '0';
|
---|
304 | c=fmt[++i];
|
---|
305 | }
|
---|
306 | }
|
---|
307 |
|
---|
308 | switch (c = fmt[i++]) {
|
---|
309 |
|
---|
310 | /* percentile itself */
|
---|
311 | case '%':
|
---|
312 | break;
|
---|
313 |
|
---|
314 | /*
|
---|
315 | * String and character conversions.
|
---|
316 | */
|
---|
317 | case 's':
|
---|
318 | print_str(va_arg(ap, char_ptr));
|
---|
319 | goto loop;
|
---|
320 |
|
---|
321 | case 'c':
|
---|
322 | c = (char) va_arg(ap, int);
|
---|
323 | break;
|
---|
324 |
|
---|
325 | /*
|
---|
326 | * Hexadecimal conversions with fixed width.
|
---|
327 | */
|
---|
328 | case 'P':
|
---|
329 | print_str("0x");
|
---|
330 | case 'p':
|
---|
331 | print_fixed_hex(va_arg(ap, __native), sizeof(__native));
|
---|
332 | goto loop;
|
---|
333 |
|
---|
334 | case 'Q':
|
---|
335 | print_str("0x");
|
---|
336 | case 'q':
|
---|
337 | print_fixed_hex(va_arg(ap, __u64), INT64);
|
---|
338 | goto loop;
|
---|
339 |
|
---|
340 | case 'L':
|
---|
341 | print_str("0x");
|
---|
342 | case 'l':
|
---|
343 | print_fixed_hex(va_arg(ap, __native), INT32);
|
---|
344 | goto loop;
|
---|
345 |
|
---|
346 | case 'W':
|
---|
347 | print_str("0x");
|
---|
348 | case 'w':
|
---|
349 | print_fixed_hex(va_arg(ap, __native), INT16);
|
---|
350 | goto loop;
|
---|
351 |
|
---|
352 | case 'B':
|
---|
353 | print_str("0x");
|
---|
354 | case 'b':
|
---|
355 | print_fixed_hex(va_arg(ap, __native), INT8);
|
---|
356 | goto loop;
|
---|
357 |
|
---|
358 | /*
|
---|
359 | * Floating point conversions.
|
---|
360 | */
|
---|
361 | case 'F':
|
---|
362 | print_double(va_arg(ap, double),'F',precision);
|
---|
363 | goto loop;
|
---|
364 |
|
---|
365 | case 'f':
|
---|
366 | print_double(va_arg(ap, double),'f',precision);
|
---|
367 | goto loop;
|
---|
368 |
|
---|
369 | case 'E':
|
---|
370 | print_double(va_arg(ap, double),'E',precision);
|
---|
371 | goto loop;
|
---|
372 | case 'e':
|
---|
373 | print_double(va_arg(ap, double),'e',precision);
|
---|
374 | goto loop;
|
---|
375 |
|
---|
376 | /*
|
---|
377 | * Decimal and hexadecimal conversions.
|
---|
378 | */
|
---|
379 | case 'd':
|
---|
380 | print_number(va_arg(ap, __native), 10);
|
---|
381 | goto loop;
|
---|
382 |
|
---|
383 | case 'X':
|
---|
384 | print_str("0x");
|
---|
385 | case 'x':
|
---|
386 | print_number(va_arg(ap, __native), 16);
|
---|
387 | goto loop;
|
---|
388 |
|
---|
389 | /*
|
---|
390 | * Bad formatting.
|
---|
391 | */
|
---|
392 | default:
|
---|
393 | goto out;
|
---|
394 | }
|
---|
395 |
|
---|
396 | default: putchar(c);
|
---|
397 | }
|
---|
398 |
|
---|
399 | loop:
|
---|
400 | ;
|
---|
401 | }
|
---|
402 |
|
---|
403 | out:
|
---|
404 | spinlock_unlock(&printflock);
|
---|
405 | interrupts_restore(irqpri);
|
---|
406 |
|
---|
407 | va_end(ap);
|
---|
408 | }
|
---|