| 1 | /*
|
|---|
| 2 | * Copyright (C) 2006 Jakub Jermar
|
|---|
| 3 | * All rights reserved.
|
|---|
| 4 | *
|
|---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
|---|
| 6 | * modification, are permitted provided that the following conditions
|
|---|
| 7 | * are met:
|
|---|
| 8 | *
|
|---|
| 9 | * - Redistributions of source code must retain the above copyright
|
|---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
|---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
|---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
|---|
| 13 | * documentation and/or other materials provided with the distribution.
|
|---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
|---|
| 15 | * derived from this software without specific prior written permission.
|
|---|
| 16 | *
|
|---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
|---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
|---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
|---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
|---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
|---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
|---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|---|
| 27 | */
|
|---|
| 28 |
|
|---|
| 29 | /**
|
|---|
| 30 | * @file btree.c
|
|---|
| 31 | * @brief B+tree implementation.
|
|---|
| 32 | *
|
|---|
| 33 | * This file implements B+tree type and operations.
|
|---|
| 34 | *
|
|---|
| 35 | * The B+tree has the following properties:
|
|---|
| 36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5)
|
|---|
| 37 | * @li values (i.e. pointers to values) are stored only in leaves
|
|---|
| 38 | * @li leaves are linked in a list
|
|---|
| 39 | *
|
|---|
| 40 | * Be carefull when using these trees. They need to allocate
|
|---|
| 41 | * and deallocate memory for their index nodes and as such
|
|---|
| 42 | * can sleep.
|
|---|
| 43 | */
|
|---|
| 44 |
|
|---|
| 45 | #include <adt/btree.h>
|
|---|
| 46 | #include <adt/list.h>
|
|---|
| 47 | #include <mm/slab.h>
|
|---|
| 48 | #include <debug.h>
|
|---|
| 49 | #include <panic.h>
|
|---|
| 50 | #include <typedefs.h>
|
|---|
| 51 | #include <print.h>
|
|---|
| 52 |
|
|---|
| 53 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
|---|
| 54 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node);
|
|---|
| 55 | static void node_initialize(btree_node_t *node);
|
|---|
| 56 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree);
|
|---|
| 57 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
|---|
| 58 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key);
|
|---|
| 59 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
|
|---|
| 60 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
|
|---|
| 61 | static btree_node_t *node_combine(btree_node_t *node);
|
|---|
| 62 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
|---|
| 63 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
|---|
| 64 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
|---|
| 65 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
|---|
| 66 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
|---|
| 67 | static bool try_rotation_from_left(btree_node_t *rnode);
|
|---|
| 68 | static bool try_rotation_from_right(btree_node_t *lnode);
|
|---|
| 69 |
|
|---|
| 70 | #define ROOT_NODE(n) (!(n)->parent)
|
|---|
| 71 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
|---|
| 72 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
|---|
| 73 |
|
|---|
| 74 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
|---|
| 75 |
|
|---|
| 76 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
|---|
| 77 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
|---|
| 78 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
|---|
| 79 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
|---|
| 80 |
|
|---|
| 81 | static slab_cache_t *btree_node_slab;
|
|---|
| 82 |
|
|---|
| 83 | /** Initialize B-trees. */
|
|---|
| 84 | void btree_init(void)
|
|---|
| 85 | {
|
|---|
| 86 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
|
|---|
| 87 | }
|
|---|
| 88 |
|
|---|
| 89 | /** Create empty B-tree.
|
|---|
| 90 | *
|
|---|
| 91 | * @param t B-tree.
|
|---|
| 92 | */
|
|---|
| 93 | void btree_create(btree_t *t)
|
|---|
| 94 | {
|
|---|
| 95 | list_initialize(&t->leaf_head);
|
|---|
| 96 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
|---|
| 97 | node_initialize(t->root);
|
|---|
| 98 | list_append(&t->root->leaf_link, &t->leaf_head);
|
|---|
| 99 | }
|
|---|
| 100 |
|
|---|
| 101 | /** Destroy empty B-tree. */
|
|---|
| 102 | void btree_destroy(btree_t *t)
|
|---|
| 103 | {
|
|---|
| 104 | ASSERT(!t->root->keys);
|
|---|
| 105 | slab_free(btree_node_slab, t->root);
|
|---|
| 106 | }
|
|---|
| 107 |
|
|---|
| 108 | /** Insert key-value pair into B-tree.
|
|---|
| 109 | *
|
|---|
| 110 | * @param t B-tree.
|
|---|
| 111 | * @param key Key to be inserted.
|
|---|
| 112 | * @param value Value to be inserted.
|
|---|
| 113 | * @param leaf_node Leaf node where the insertion should begin.
|
|---|
| 114 | */
|
|---|
| 115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node)
|
|---|
| 116 | {
|
|---|
| 117 | btree_node_t *lnode;
|
|---|
| 118 |
|
|---|
| 119 | ASSERT(value);
|
|---|
| 120 |
|
|---|
| 121 | lnode = leaf_node;
|
|---|
| 122 | if (!lnode) {
|
|---|
| 123 | if (btree_search(t, key, &lnode)) {
|
|---|
| 124 | panic("B-tree %p already contains key %d\n", t, key);
|
|---|
| 125 | }
|
|---|
| 126 | }
|
|---|
| 127 |
|
|---|
| 128 | _btree_insert(t, key, value, NULL, lnode);
|
|---|
| 129 | }
|
|---|
| 130 |
|
|---|
| 131 | /** Recursively insert into B-tree.
|
|---|
| 132 | *
|
|---|
| 133 | * @param t B-tree.
|
|---|
| 134 | * @param key Key to be inserted.
|
|---|
| 135 | * @param value Value to be inserted.
|
|---|
| 136 | * @param rsubtree Right subtree of the inserted key.
|
|---|
| 137 | * @param node Start inserting into this node.
|
|---|
| 138 | */
|
|---|
| 139 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
|---|
| 140 | {
|
|---|
| 141 | if (node->keys < BTREE_MAX_KEYS) {
|
|---|
| 142 | /*
|
|---|
| 143 | * Node conatins enough space, the key can be stored immediately.
|
|---|
| 144 | */
|
|---|
| 145 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
|---|
| 146 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
|
|---|
| 147 | /*
|
|---|
| 148 | * The key-value-rsubtree triplet has been inserted because
|
|---|
| 149 | * some keys could have been moved to the left sibling.
|
|---|
| 150 | */
|
|---|
| 151 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
|
|---|
| 152 | /*
|
|---|
| 153 | * The key-value-rsubtree triplet has been inserted because
|
|---|
| 154 | * some keys could have been moved to the right sibling.
|
|---|
| 155 | */
|
|---|
| 156 | } else {
|
|---|
| 157 | btree_node_t *rnode;
|
|---|
| 158 | btree_key_t median;
|
|---|
| 159 |
|
|---|
| 160 | /*
|
|---|
| 161 | * Node is full and both siblings (if both exist) are full too.
|
|---|
| 162 | * Split the node and insert the smallest key from the node containing
|
|---|
| 163 | * bigger keys (i.e. the new node) into its parent.
|
|---|
| 164 | */
|
|---|
| 165 |
|
|---|
| 166 | rnode = node_split(node, key, value, rsubtree, &median);
|
|---|
| 167 |
|
|---|
| 168 | if (LEAF_NODE(node)) {
|
|---|
| 169 | list_prepend(&rnode->leaf_link, &node->leaf_link);
|
|---|
| 170 | }
|
|---|
| 171 |
|
|---|
| 172 | if (ROOT_NODE(node)) {
|
|---|
| 173 | /*
|
|---|
| 174 | * We split the root node. Create new root.
|
|---|
| 175 | */
|
|---|
| 176 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
|---|
| 177 | node->parent = t->root;
|
|---|
| 178 | rnode->parent = t->root;
|
|---|
| 179 | node_initialize(t->root);
|
|---|
| 180 |
|
|---|
| 181 | /*
|
|---|
| 182 | * Left-hand side subtree will be the old root (i.e. node).
|
|---|
| 183 | * Right-hand side subtree will be rnode.
|
|---|
| 184 | */
|
|---|
| 185 | t->root->subtree[0] = node;
|
|---|
| 186 |
|
|---|
| 187 | t->root->depth = node->depth + 1;
|
|---|
| 188 | }
|
|---|
| 189 | _btree_insert(t, median, NULL, rnode, node->parent);
|
|---|
| 190 | }
|
|---|
| 191 |
|
|---|
| 192 | }
|
|---|
| 193 |
|
|---|
| 194 | /** Remove B-tree node.
|
|---|
| 195 | *
|
|---|
| 196 | * @param B-tree.
|
|---|
| 197 | * @param key Key to be removed from the B-tree along with its associated value.
|
|---|
| 198 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
|---|
| 199 | */
|
|---|
| 200 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
|
|---|
| 201 | {
|
|---|
| 202 | btree_node_t *lnode;
|
|---|
| 203 |
|
|---|
| 204 | lnode = leaf_node;
|
|---|
| 205 | if (!lnode) {
|
|---|
| 206 | if (!btree_search(t, key, &lnode)) {
|
|---|
| 207 | panic("B-tree %p does not contain key %d\n", t, key);
|
|---|
| 208 | }
|
|---|
| 209 | }
|
|---|
| 210 |
|
|---|
| 211 | _btree_remove(t, key, lnode);
|
|---|
| 212 | }
|
|---|
| 213 |
|
|---|
| 214 | /** Recursively remove B-tree node.
|
|---|
| 215 | *
|
|---|
| 216 | * @param B-tree.
|
|---|
| 217 | * @param key Key to be removed from the B-tree along with its associated value.
|
|---|
| 218 | * @param node Node where the key being removed resides.
|
|---|
| 219 | */
|
|---|
| 220 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node)
|
|---|
| 221 | {
|
|---|
| 222 | if (ROOT_NODE(node)) {
|
|---|
| 223 | if (node->keys == 1 && node->subtree[0]) {
|
|---|
| 224 | /*
|
|---|
| 225 | * Free the current root and set new root.
|
|---|
| 226 | */
|
|---|
| 227 | t->root = node->subtree[0];
|
|---|
| 228 | t->root->parent = NULL;
|
|---|
| 229 | slab_free(btree_node_slab, node);
|
|---|
| 230 | } else {
|
|---|
| 231 | /*
|
|---|
| 232 | * Remove the key from the root node.
|
|---|
| 233 | * Note that the right subtree is removed because when
|
|---|
| 234 | * combining two nodes, the left-side sibling is preserved
|
|---|
| 235 | * and the right-side sibling is freed.
|
|---|
| 236 | */
|
|---|
| 237 | node_remove_key_and_rsubtree(node, key);
|
|---|
| 238 | }
|
|---|
| 239 | return;
|
|---|
| 240 | }
|
|---|
| 241 |
|
|---|
| 242 | if (node->keys <= FILL_FACTOR) {
|
|---|
| 243 | /*
|
|---|
| 244 | * If the node is below the fill factor,
|
|---|
| 245 | * try to borrow keys from left or right sibling.
|
|---|
| 246 | */
|
|---|
| 247 | if (!try_rotation_from_left(node))
|
|---|
| 248 | try_rotation_from_right(node);
|
|---|
| 249 | }
|
|---|
| 250 |
|
|---|
| 251 | if (node->keys > FILL_FACTOR) {
|
|---|
| 252 | int i;
|
|---|
| 253 |
|
|---|
| 254 | /*
|
|---|
| 255 | * The key can be immediatelly removed.
|
|---|
| 256 | *
|
|---|
| 257 | * Note that the right subtree is removed because when
|
|---|
| 258 | * combining two nodes, the left-side sibling is preserved
|
|---|
| 259 | * and the right-side sibling is freed.
|
|---|
| 260 | */
|
|---|
| 261 | node_remove_key_and_rsubtree(node, key);
|
|---|
| 262 | for (i = 0; i < node->parent->keys; i++) {
|
|---|
| 263 | if (node->parent->key[i] == key)
|
|---|
| 264 | node->parent->key[i] = node->key[0];
|
|---|
| 265 | }
|
|---|
| 266 |
|
|---|
| 267 | } else {
|
|---|
| 268 | index_t idx;
|
|---|
| 269 | btree_node_t *rnode, *parent;
|
|---|
| 270 |
|
|---|
| 271 | /*
|
|---|
| 272 | * The node is below the fill factor as well as its left and right sibling.
|
|---|
| 273 | * Resort to combining the node with one of its siblings.
|
|---|
| 274 | * The node which is on the left is preserved and the node on the right is
|
|---|
| 275 | * freed.
|
|---|
| 276 | */
|
|---|
| 277 | parent = node->parent;
|
|---|
| 278 | node_remove_key_and_rsubtree(node, key);
|
|---|
| 279 | rnode = node_combine(node);
|
|---|
| 280 | if (LEAF_NODE(rnode))
|
|---|
| 281 | list_remove(&rnode->leaf_link);
|
|---|
| 282 | idx = find_key_by_subtree(parent, rnode, true);
|
|---|
| 283 | ASSERT((int) idx != -1);
|
|---|
| 284 | slab_free(btree_node_slab, rnode);
|
|---|
| 285 | _btree_remove(t, parent->key[idx], parent);
|
|---|
| 286 | }
|
|---|
| 287 | }
|
|---|
| 288 |
|
|---|
| 289 | /** Search key in a B-tree.
|
|---|
| 290 | *
|
|---|
| 291 | * @param t B-tree.
|
|---|
| 292 | * @param key Key to be searched.
|
|---|
| 293 | * @param leaf_node Address where to put pointer to visited leaf node.
|
|---|
| 294 | *
|
|---|
| 295 | * @return Pointer to value or NULL if there is no such key.
|
|---|
| 296 | */
|
|---|
| 297 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
|
|---|
| 298 | {
|
|---|
| 299 | btree_node_t *cur, *next;
|
|---|
| 300 |
|
|---|
| 301 | /*
|
|---|
| 302 | * Iteratively descend to the leaf that can contain the searched key.
|
|---|
| 303 | */
|
|---|
| 304 | for (cur = t->root; cur; cur = next) {
|
|---|
| 305 |
|
|---|
| 306 | /* Last iteration will set this with proper leaf node address. */
|
|---|
| 307 | *leaf_node = cur;
|
|---|
| 308 |
|
|---|
| 309 | /*
|
|---|
| 310 | * The key can be in the leftmost subtree.
|
|---|
| 311 | * Test it separately.
|
|---|
| 312 | */
|
|---|
| 313 | if (key < cur->key[0]) {
|
|---|
| 314 | next = cur->subtree[0];
|
|---|
| 315 | continue;
|
|---|
| 316 | } else {
|
|---|
| 317 | void *val;
|
|---|
| 318 | int i;
|
|---|
| 319 |
|
|---|
| 320 | /*
|
|---|
| 321 | * Now if the key is smaller than cur->key[i]
|
|---|
| 322 | * it can only mean that the value is in cur->subtree[i]
|
|---|
| 323 | * or it is not in the tree at all.
|
|---|
| 324 | */
|
|---|
| 325 | for (i = 1; i < cur->keys; i++) {
|
|---|
| 326 | if (key < cur->key[i]) {
|
|---|
| 327 | next = cur->subtree[i];
|
|---|
| 328 | val = cur->value[i - 1];
|
|---|
| 329 |
|
|---|
| 330 | if (LEAF_NODE(cur))
|
|---|
| 331 | return key == cur->key[i - 1] ? val : NULL;
|
|---|
| 332 |
|
|---|
| 333 | goto descend;
|
|---|
| 334 | }
|
|---|
| 335 | }
|
|---|
| 336 |
|
|---|
| 337 | /*
|
|---|
| 338 | * Last possibility is that the key is in the rightmost subtree.
|
|---|
| 339 | */
|
|---|
| 340 | next = cur->subtree[i];
|
|---|
| 341 | val = cur->value[i - 1];
|
|---|
| 342 | if (LEAF_NODE(cur))
|
|---|
| 343 | return key == cur->key[i - 1] ? val : NULL;
|
|---|
| 344 | }
|
|---|
| 345 | descend:
|
|---|
| 346 | ;
|
|---|
| 347 | }
|
|---|
| 348 |
|
|---|
| 349 | /*
|
|---|
| 350 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
|---|
| 351 | */
|
|---|
| 352 | return NULL;
|
|---|
| 353 | }
|
|---|
| 354 |
|
|---|
| 355 | /** Return pointer to B-tree leaf node's left neighbour.
|
|---|
| 356 | *
|
|---|
| 357 | * @param t B-tree.
|
|---|
| 358 | * @param node Node whose left neighbour will be returned.
|
|---|
| 359 | *
|
|---|
| 360 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour.
|
|---|
| 361 | */
|
|---|
| 362 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
|
|---|
| 363 | {
|
|---|
| 364 | ASSERT(LEAF_NODE(node));
|
|---|
| 365 | if (node->leaf_link.prev != &t->leaf_head)
|
|---|
| 366 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
|
|---|
| 367 | else
|
|---|
| 368 | return NULL;
|
|---|
| 369 | }
|
|---|
| 370 |
|
|---|
| 371 | /** Return pointer to B-tree leaf node's right neighbour.
|
|---|
| 372 | *
|
|---|
| 373 | * @param t B-tree.
|
|---|
| 374 | * @param node Node whose right neighbour will be returned.
|
|---|
| 375 | *
|
|---|
| 376 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour.
|
|---|
| 377 | */
|
|---|
| 378 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
|
|---|
| 379 | {
|
|---|
| 380 | ASSERT(LEAF_NODE(node));
|
|---|
| 381 | if (node->leaf_link.next != &t->leaf_head)
|
|---|
| 382 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
|
|---|
| 383 | else
|
|---|
| 384 | return NULL;
|
|---|
| 385 | }
|
|---|
| 386 |
|
|---|
| 387 | /** Initialize B-tree node.
|
|---|
| 388 | *
|
|---|
| 389 | * @param node B-tree node.
|
|---|
| 390 | */
|
|---|
| 391 | void node_initialize(btree_node_t *node)
|
|---|
| 392 | {
|
|---|
| 393 | int i;
|
|---|
| 394 |
|
|---|
| 395 | node->keys = 0;
|
|---|
| 396 |
|
|---|
| 397 | /* Clean also space for the extra key. */
|
|---|
| 398 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
|---|
| 399 | node->key[i] = 0;
|
|---|
| 400 | node->value[i] = NULL;
|
|---|
| 401 | node->subtree[i] = NULL;
|
|---|
| 402 | }
|
|---|
| 403 | node->subtree[i] = NULL;
|
|---|
| 404 |
|
|---|
| 405 | node->parent = NULL;
|
|---|
| 406 |
|
|---|
| 407 | link_initialize(&node->leaf_link);
|
|---|
| 408 |
|
|---|
| 409 | link_initialize(&node->bfs_link);
|
|---|
| 410 | node->depth = 0;
|
|---|
| 411 | }
|
|---|
| 412 |
|
|---|
| 413 | /** Insert key-value-lsubtree triplet into B-tree node.
|
|---|
| 414 | *
|
|---|
| 415 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
|---|
| 416 | * This feature is used during insert by right rotation.
|
|---|
| 417 | *
|
|---|
| 418 | * @param node B-tree node into wich the new key is to be inserted.
|
|---|
| 419 | * @param key The key to be inserted.
|
|---|
| 420 | * @param value Pointer to value to be inserted.
|
|---|
| 421 | * @param lsubtree Pointer to the left subtree.
|
|---|
| 422 | */
|
|---|
| 423 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
|
|---|
| 424 | {
|
|---|
| 425 | int i;
|
|---|
| 426 |
|
|---|
| 427 | for (i = 0; i < node->keys; i++) {
|
|---|
| 428 | if (key < node->key[i]) {
|
|---|
| 429 | int j;
|
|---|
| 430 |
|
|---|
| 431 | for (j = node->keys; j > i; j--) {
|
|---|
| 432 | node->key[j] = node->key[j - 1];
|
|---|
| 433 | node->value[j] = node->value[j - 1];
|
|---|
| 434 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 435 | }
|
|---|
| 436 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 437 | break;
|
|---|
| 438 | }
|
|---|
| 439 | }
|
|---|
| 440 | node->key[i] = key;
|
|---|
| 441 | node->value[i] = value;
|
|---|
| 442 | node->subtree[i] = lsubtree;
|
|---|
| 443 |
|
|---|
| 444 | node->keys++;
|
|---|
| 445 | }
|
|---|
| 446 |
|
|---|
| 447 | /** Insert key-value-rsubtree triplet into B-tree node.
|
|---|
| 448 | *
|
|---|
| 449 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
|---|
| 450 | * This feature is used during splitting the node when the
|
|---|
| 451 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
|---|
| 452 | * also makes use of this feature.
|
|---|
| 453 | *
|
|---|
| 454 | * @param node B-tree node into wich the new key is to be inserted.
|
|---|
| 455 | * @param key The key to be inserted.
|
|---|
| 456 | * @param value Pointer to value to be inserted.
|
|---|
| 457 | * @param rsubtree Pointer to the right subtree.
|
|---|
| 458 | */
|
|---|
| 459 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
|
|---|
| 460 | {
|
|---|
| 461 | int i;
|
|---|
| 462 |
|
|---|
| 463 | for (i = 0; i < node->keys; i++) {
|
|---|
| 464 | if (key < node->key[i]) {
|
|---|
| 465 | int j;
|
|---|
| 466 |
|
|---|
| 467 | for (j = node->keys; j > i; j--) {
|
|---|
| 468 | node->key[j] = node->key[j - 1];
|
|---|
| 469 | node->value[j] = node->value[j - 1];
|
|---|
| 470 | node->subtree[j + 1] = node->subtree[j];
|
|---|
| 471 | }
|
|---|
| 472 | break;
|
|---|
| 473 | }
|
|---|
| 474 | }
|
|---|
| 475 | node->key[i] = key;
|
|---|
| 476 | node->value[i] = value;
|
|---|
| 477 | node->subtree[i + 1] = rsubtree;
|
|---|
| 478 |
|
|---|
| 479 | node->keys++;
|
|---|
| 480 | }
|
|---|
| 481 |
|
|---|
| 482 | /** Remove key and its left subtree pointer from B-tree node.
|
|---|
| 483 | *
|
|---|
| 484 | * Remove the key and eliminate gaps in node->key array.
|
|---|
| 485 | * Note that the value pointer and the left subtree pointer
|
|---|
| 486 | * is removed from the node as well.
|
|---|
| 487 | *
|
|---|
| 488 | * @param node B-tree node.
|
|---|
| 489 | * @param key Key to be removed.
|
|---|
| 490 | */
|
|---|
| 491 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
|
|---|
| 492 | {
|
|---|
| 493 | int i, j;
|
|---|
| 494 |
|
|---|
| 495 | for (i = 0; i < node->keys; i++) {
|
|---|
| 496 | if (key == node->key[i]) {
|
|---|
| 497 | for (j = i + 1; j < node->keys; j++) {
|
|---|
| 498 | node->key[j - 1] = node->key[j];
|
|---|
| 499 | node->value[j - 1] = node->value[j];
|
|---|
| 500 | node->subtree[j - 1] = node->subtree[j];
|
|---|
| 501 | }
|
|---|
| 502 | node->subtree[j - 1] = node->subtree[j];
|
|---|
| 503 | node->keys--;
|
|---|
| 504 | return;
|
|---|
| 505 | }
|
|---|
| 506 | }
|
|---|
| 507 | panic("node %p does not contain key %d\n", node, key);
|
|---|
| 508 | }
|
|---|
| 509 |
|
|---|
| 510 | /** Remove key and its right subtree pointer from B-tree node.
|
|---|
| 511 | *
|
|---|
| 512 | * Remove the key and eliminate gaps in node->key array.
|
|---|
| 513 | * Note that the value pointer and the right subtree pointer
|
|---|
| 514 | * is removed from the node as well.
|
|---|
| 515 | *
|
|---|
| 516 | * @param node B-tree node.
|
|---|
| 517 | * @param key Key to be removed.
|
|---|
| 518 | */
|
|---|
| 519 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
|
|---|
| 520 | {
|
|---|
| 521 | int i, j;
|
|---|
| 522 |
|
|---|
| 523 | for (i = 0; i < node->keys; i++) {
|
|---|
| 524 | if (key == node->key[i]) {
|
|---|
| 525 | for (j = i + 1; j < node->keys; j++) {
|
|---|
| 526 | node->key[j - 1] = node->key[j];
|
|---|
| 527 | node->value[j - 1] = node->value[j];
|
|---|
| 528 | node->subtree[j] = node->subtree[j + 1];
|
|---|
| 529 | }
|
|---|
| 530 | node->keys--;
|
|---|
| 531 | return;
|
|---|
| 532 | }
|
|---|
| 533 | }
|
|---|
| 534 | panic("node %p does not contain key %d\n", node, key);
|
|---|
| 535 | }
|
|---|
| 536 |
|
|---|
| 537 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
|---|
| 538 | *
|
|---|
| 539 | * This function will split a node and return pointer to a newly created
|
|---|
| 540 | * node containing keys greater than or equal to the greater of medians
|
|---|
| 541 | * (or median) of the old keys and the newly added key. It will also write
|
|---|
| 542 | * the median key to a memory address supplied by the caller.
|
|---|
| 543 | *
|
|---|
| 544 | * If the node being split is an index node, the median will not be
|
|---|
| 545 | * included in the new node. If the node is a leaf node,
|
|---|
| 546 | * the median will be copied there.
|
|---|
| 547 | *
|
|---|
| 548 | * @param node B-tree node wich is going to be split.
|
|---|
| 549 | * @param key The key to be inserted.
|
|---|
| 550 | * @param value Pointer to the value to be inserted.
|
|---|
| 551 | * @param rsubtree Pointer to the right subtree of the key being added.
|
|---|
| 552 | * @param median Address in memory, where the median key will be stored.
|
|---|
| 553 | *
|
|---|
| 554 | * @return Newly created right sibling of node.
|
|---|
| 555 | */
|
|---|
| 556 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
|
|---|
| 557 | {
|
|---|
| 558 | btree_node_t *rnode;
|
|---|
| 559 | int i, j;
|
|---|
| 560 |
|
|---|
| 561 | ASSERT(median);
|
|---|
| 562 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
|---|
| 563 |
|
|---|
| 564 | /*
|
|---|
| 565 | * Use the extra space to store the extra node.
|
|---|
| 566 | */
|
|---|
| 567 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
|---|
| 568 |
|
|---|
| 569 | /*
|
|---|
| 570 | * Compute median of keys.
|
|---|
| 571 | */
|
|---|
| 572 | *median = MEDIAN_HIGH(node);
|
|---|
| 573 |
|
|---|
| 574 | /*
|
|---|
| 575 | * Allocate and initialize new right sibling.
|
|---|
| 576 | */
|
|---|
| 577 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
|---|
| 578 | node_initialize(rnode);
|
|---|
| 579 | rnode->parent = node->parent;
|
|---|
| 580 | rnode->depth = node->depth;
|
|---|
| 581 |
|
|---|
| 582 | /*
|
|---|
| 583 | * Copy big keys, values and subtree pointers to the new right sibling.
|
|---|
| 584 | * If this is an index node, do not copy the median.
|
|---|
| 585 | */
|
|---|
| 586 | i = (int) INDEX_NODE(node);
|
|---|
| 587 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
|---|
| 588 | rnode->key[j] = node->key[i];
|
|---|
| 589 | rnode->value[j] = node->value[i];
|
|---|
| 590 | rnode->subtree[j] = node->subtree[i];
|
|---|
| 591 |
|
|---|
| 592 | /*
|
|---|
| 593 | * Fix parent links in subtrees.
|
|---|
| 594 | */
|
|---|
| 595 | if (rnode->subtree[j])
|
|---|
| 596 | rnode->subtree[j]->parent = rnode;
|
|---|
| 597 |
|
|---|
| 598 | }
|
|---|
| 599 | rnode->subtree[j] = node->subtree[i];
|
|---|
| 600 | if (rnode->subtree[j])
|
|---|
| 601 | rnode->subtree[j]->parent = rnode;
|
|---|
| 602 |
|
|---|
| 603 | rnode->keys = j; /* Set number of keys of the new node. */
|
|---|
| 604 | node->keys /= 2; /* Shrink the old node. */
|
|---|
| 605 |
|
|---|
| 606 | return rnode;
|
|---|
| 607 | }
|
|---|
| 608 |
|
|---|
| 609 | /** Combine node with any of its siblings.
|
|---|
| 610 | *
|
|---|
| 611 | * The siblings are required to be below the fill factor.
|
|---|
| 612 | *
|
|---|
| 613 | * @param node Node to combine with one of its siblings.
|
|---|
| 614 | *
|
|---|
| 615 | * @return Pointer to the rightmost of the two nodes.
|
|---|
| 616 | */
|
|---|
| 617 | btree_node_t *node_combine(btree_node_t *node)
|
|---|
| 618 | {
|
|---|
| 619 | index_t idx;
|
|---|
| 620 | btree_node_t *rnode;
|
|---|
| 621 | int i;
|
|---|
| 622 |
|
|---|
| 623 | ASSERT(!ROOT_NODE(node));
|
|---|
| 624 |
|
|---|
| 625 | idx = find_key_by_subtree(node->parent, node, false);
|
|---|
| 626 | if (idx == node->parent->keys) {
|
|---|
| 627 | /*
|
|---|
| 628 | * Rightmost subtree of its parent, combine with the left sibling.
|
|---|
| 629 | */
|
|---|
| 630 | idx--;
|
|---|
| 631 | rnode = node;
|
|---|
| 632 | node = node->parent->subtree[idx];
|
|---|
| 633 | } else {
|
|---|
| 634 | rnode = node->parent->subtree[idx + 1];
|
|---|
| 635 | }
|
|---|
| 636 |
|
|---|
| 637 | /* Index nodes need to insert parent node key in between left and right node. */
|
|---|
| 638 | if (INDEX_NODE(node))
|
|---|
| 639 | node->key[node->keys++] = node->parent->key[idx];
|
|---|
| 640 |
|
|---|
| 641 | /* Copy the key-value-subtree triplets from the right node. */
|
|---|
| 642 | for (i = 0; i < rnode->keys; i++) {
|
|---|
| 643 | node->key[node->keys + i] = rnode->key[i];
|
|---|
| 644 | node->value[node->keys + i] = rnode->value[i];
|
|---|
| 645 | if (INDEX_NODE(node)) {
|
|---|
| 646 | node->subtree[node->keys + i] = rnode->subtree[i];
|
|---|
| 647 | rnode->subtree[i]->parent = node;
|
|---|
| 648 | }
|
|---|
| 649 | }
|
|---|
| 650 | if (INDEX_NODE(node)) {
|
|---|
| 651 | node->subtree[node->keys + i] = rnode->subtree[i];
|
|---|
| 652 | rnode->subtree[i]->parent = node;
|
|---|
| 653 | }
|
|---|
| 654 |
|
|---|
| 655 | node->keys += rnode->keys;
|
|---|
| 656 |
|
|---|
| 657 | return rnode;
|
|---|
| 658 | }
|
|---|
| 659 |
|
|---|
| 660 | /** Find key by its left or right subtree.
|
|---|
| 661 | *
|
|---|
| 662 | * @param node B-tree node.
|
|---|
| 663 | * @param subtree Left or right subtree of a key found in node.
|
|---|
| 664 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
|---|
| 665 | *
|
|---|
| 666 | * @return Index of the key associated with the subtree.
|
|---|
| 667 | */
|
|---|
| 668 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
|---|
| 669 | {
|
|---|
| 670 | int i;
|
|---|
| 671 |
|
|---|
| 672 | for (i = 0; i < node->keys + 1; i++) {
|
|---|
| 673 | if (subtree == node->subtree[i])
|
|---|
| 674 | return i - (int) (right != false);
|
|---|
| 675 | }
|
|---|
| 676 | panic("node %p does not contain subtree %p\n", node, subtree);
|
|---|
| 677 | }
|
|---|
| 678 |
|
|---|
| 679 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
|
|---|
| 680 | *
|
|---|
| 681 | * The biggest key and its value and right subtree is rotated from the left node
|
|---|
| 682 | * to the right. If the node is an index node, than the parent node key belonging to
|
|---|
| 683 | * the left node takes part in the rotation.
|
|---|
| 684 | *
|
|---|
| 685 | * @param lnode Left sibling.
|
|---|
| 686 | * @param rnode Right sibling.
|
|---|
| 687 | * @param idx Index of the parent node key that is taking part in the rotation.
|
|---|
| 688 | */
|
|---|
| 689 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
|---|
| 690 | {
|
|---|
| 691 | btree_key_t key;
|
|---|
| 692 |
|
|---|
| 693 | key = lnode->key[lnode->keys - 1];
|
|---|
| 694 |
|
|---|
| 695 | if (LEAF_NODE(lnode)) {
|
|---|
| 696 | void *value;
|
|---|
| 697 |
|
|---|
| 698 | value = lnode->value[lnode->keys - 1];
|
|---|
| 699 | node_remove_key_and_rsubtree(lnode, key);
|
|---|
| 700 | node_insert_key_and_lsubtree(rnode, key, value, NULL);
|
|---|
| 701 | lnode->parent->key[idx] = key;
|
|---|
| 702 | } else {
|
|---|
| 703 | btree_node_t *rsubtree;
|
|---|
| 704 |
|
|---|
| 705 | rsubtree = lnode->subtree[lnode->keys];
|
|---|
| 706 | node_remove_key_and_rsubtree(lnode, key);
|
|---|
| 707 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
|
|---|
| 708 | lnode->parent->key[idx] = key;
|
|---|
| 709 |
|
|---|
| 710 | /* Fix parent link of the reconnected right subtree. */
|
|---|
| 711 | rsubtree->parent = rnode;
|
|---|
| 712 | }
|
|---|
| 713 |
|
|---|
| 714 | }
|
|---|
| 715 |
|
|---|
| 716 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
|
|---|
| 717 | *
|
|---|
| 718 | * The smallest key and its value and left subtree is rotated from the right node
|
|---|
| 719 | * to the left. If the node is an index node, than the parent node key belonging to
|
|---|
| 720 | * the right node takes part in the rotation.
|
|---|
| 721 | *
|
|---|
| 722 | * @param lnode Left sibling.
|
|---|
| 723 | * @param rnode Right sibling.
|
|---|
| 724 | * @param idx Index of the parent node key that is taking part in the rotation.
|
|---|
| 725 | */
|
|---|
| 726 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
|---|
| 727 | {
|
|---|
| 728 | btree_key_t key;
|
|---|
| 729 |
|
|---|
| 730 | key = rnode->key[0];
|
|---|
| 731 |
|
|---|
| 732 | if (LEAF_NODE(rnode)) {
|
|---|
| 733 | void *value;
|
|---|
| 734 |
|
|---|
| 735 | value = rnode->value[0];
|
|---|
| 736 | node_remove_key_and_lsubtree(rnode, key);
|
|---|
| 737 | node_insert_key_and_rsubtree(lnode, key, value, NULL);
|
|---|
| 738 | rnode->parent->key[idx] = rnode->key[0];
|
|---|
| 739 | } else {
|
|---|
| 740 | btree_node_t *lsubtree;
|
|---|
| 741 |
|
|---|
| 742 | lsubtree = rnode->subtree[0];
|
|---|
| 743 | node_remove_key_and_lsubtree(rnode, key);
|
|---|
| 744 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
|
|---|
| 745 | rnode->parent->key[idx] = key;
|
|---|
| 746 |
|
|---|
| 747 | /* Fix parent link of the reconnected left subtree. */
|
|---|
| 748 | lsubtree->parent = lnode;
|
|---|
| 749 | }
|
|---|
| 750 |
|
|---|
| 751 | }
|
|---|
| 752 |
|
|---|
| 753 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
|---|
| 754 | *
|
|---|
| 755 | * Left sibling of the node (if it exists) is checked for free space.
|
|---|
| 756 | * If there is free space, the key is inserted and the smallest key of
|
|---|
| 757 | * the node is moved there. The index node which is the parent of both
|
|---|
| 758 | * nodes is fixed.
|
|---|
| 759 | *
|
|---|
| 760 | * @param node B-tree node.
|
|---|
| 761 | * @param inskey Key to be inserted.
|
|---|
| 762 | * @param insvalue Value to be inserted.
|
|---|
| 763 | * @param rsubtree Right subtree of inskey.
|
|---|
| 764 | *
|
|---|
| 765 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 766 | */
|
|---|
| 767 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
|---|
| 768 | {
|
|---|
| 769 | index_t idx;
|
|---|
| 770 | btree_node_t *lnode;
|
|---|
| 771 |
|
|---|
| 772 | /*
|
|---|
| 773 | * If this is root node, the rotation can not be done.
|
|---|
| 774 | */
|
|---|
| 775 | if (ROOT_NODE(node))
|
|---|
| 776 | return false;
|
|---|
| 777 |
|
|---|
| 778 | idx = find_key_by_subtree(node->parent, node, true);
|
|---|
| 779 | if ((int) idx == -1) {
|
|---|
| 780 | /*
|
|---|
| 781 | * If this node is the leftmost subtree of its parent,
|
|---|
| 782 | * the rotation can not be done.
|
|---|
| 783 | */
|
|---|
| 784 | return false;
|
|---|
| 785 | }
|
|---|
| 786 |
|
|---|
| 787 | lnode = node->parent->subtree[idx];
|
|---|
| 788 | if (lnode->keys < BTREE_MAX_KEYS) {
|
|---|
| 789 | /*
|
|---|
| 790 | * The rotaion can be done. The left sibling has free space.
|
|---|
| 791 | */
|
|---|
| 792 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
|---|
| 793 | rotate_from_right(lnode, node, idx);
|
|---|
| 794 | return true;
|
|---|
| 795 | }
|
|---|
| 796 |
|
|---|
| 797 | return false;
|
|---|
| 798 | }
|
|---|
| 799 |
|
|---|
| 800 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
|---|
| 801 | *
|
|---|
| 802 | * Right sibling of the node (if it exists) is checked for free space.
|
|---|
| 803 | * If there is free space, the key is inserted and the biggest key of
|
|---|
| 804 | * the node is moved there. The index node which is the parent of both
|
|---|
| 805 | * nodes is fixed.
|
|---|
| 806 | *
|
|---|
| 807 | * @param node B-tree node.
|
|---|
| 808 | * @param inskey Key to be inserted.
|
|---|
| 809 | * @param insvalue Value to be inserted.
|
|---|
| 810 | * @param rsubtree Right subtree of inskey.
|
|---|
| 811 | *
|
|---|
| 812 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 813 | */
|
|---|
| 814 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
|---|
| 815 | {
|
|---|
| 816 | index_t idx;
|
|---|
| 817 | btree_node_t *rnode;
|
|---|
| 818 |
|
|---|
| 819 | /*
|
|---|
| 820 | * If this is root node, the rotation can not be done.
|
|---|
| 821 | */
|
|---|
| 822 | if (ROOT_NODE(node))
|
|---|
| 823 | return false;
|
|---|
| 824 |
|
|---|
| 825 | idx = find_key_by_subtree(node->parent, node, false);
|
|---|
| 826 | if (idx == node->parent->keys) {
|
|---|
| 827 | /*
|
|---|
| 828 | * If this node is the rightmost subtree of its parent,
|
|---|
| 829 | * the rotation can not be done.
|
|---|
| 830 | */
|
|---|
| 831 | return false;
|
|---|
| 832 | }
|
|---|
| 833 |
|
|---|
| 834 | rnode = node->parent->subtree[idx + 1];
|
|---|
| 835 | if (rnode->keys < BTREE_MAX_KEYS) {
|
|---|
| 836 | /*
|
|---|
| 837 | * The rotaion can be done. The right sibling has free space.
|
|---|
| 838 | */
|
|---|
| 839 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
|---|
| 840 | rotate_from_left(node, rnode, idx);
|
|---|
| 841 | return true;
|
|---|
| 842 | }
|
|---|
| 843 |
|
|---|
| 844 | return false;
|
|---|
| 845 | }
|
|---|
| 846 |
|
|---|
| 847 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
|
|---|
| 848 | *
|
|---|
| 849 | * @param rnode Node into which to add key from its left sibling or from the index node.
|
|---|
| 850 | *
|
|---|
| 851 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 852 | */
|
|---|
| 853 | bool try_rotation_from_left(btree_node_t *rnode)
|
|---|
| 854 | {
|
|---|
| 855 | index_t idx;
|
|---|
| 856 | btree_node_t *lnode;
|
|---|
| 857 |
|
|---|
| 858 | /*
|
|---|
| 859 | * If this is root node, the rotation can not be done.
|
|---|
| 860 | */
|
|---|
| 861 | if (ROOT_NODE(rnode))
|
|---|
| 862 | return false;
|
|---|
| 863 |
|
|---|
| 864 | idx = find_key_by_subtree(rnode->parent, rnode, true);
|
|---|
| 865 | if ((int) idx == -1) {
|
|---|
| 866 | /*
|
|---|
| 867 | * If this node is the leftmost subtree of its parent,
|
|---|
| 868 | * the rotation can not be done.
|
|---|
| 869 | */
|
|---|
| 870 | return false;
|
|---|
| 871 | }
|
|---|
| 872 |
|
|---|
| 873 | lnode = rnode->parent->subtree[idx];
|
|---|
| 874 | if (lnode->keys > FILL_FACTOR) {
|
|---|
| 875 | rotate_from_left(lnode, rnode, idx);
|
|---|
| 876 | return true;
|
|---|
| 877 | }
|
|---|
| 878 |
|
|---|
| 879 | return false;
|
|---|
| 880 | }
|
|---|
| 881 |
|
|---|
| 882 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
|
|---|
| 883 | *
|
|---|
| 884 | * @param rnode Node into which to add key from its right sibling or from the index node.
|
|---|
| 885 | *
|
|---|
| 886 | * @return True if the rotation was performed, false otherwise.
|
|---|
| 887 | */
|
|---|
| 888 | bool try_rotation_from_right(btree_node_t *lnode)
|
|---|
| 889 | {
|
|---|
| 890 | index_t idx;
|
|---|
| 891 | btree_node_t *rnode;
|
|---|
| 892 |
|
|---|
| 893 | /*
|
|---|
| 894 | * If this is root node, the rotation can not be done.
|
|---|
| 895 | */
|
|---|
| 896 | if (ROOT_NODE(lnode))
|
|---|
| 897 | return false;
|
|---|
| 898 |
|
|---|
| 899 | idx = find_key_by_subtree(lnode->parent, lnode, false);
|
|---|
| 900 | if (idx == lnode->parent->keys) {
|
|---|
| 901 | /*
|
|---|
| 902 | * If this node is the rightmost subtree of its parent,
|
|---|
| 903 | * the rotation can not be done.
|
|---|
| 904 | */
|
|---|
| 905 | return false;
|
|---|
| 906 | }
|
|---|
| 907 |
|
|---|
| 908 | rnode = lnode->parent->subtree[idx + 1];
|
|---|
| 909 | if (rnode->keys > FILL_FACTOR) {
|
|---|
| 910 | rotate_from_right(lnode, rnode, idx);
|
|---|
| 911 | return true;
|
|---|
| 912 | }
|
|---|
| 913 |
|
|---|
| 914 | return false;
|
|---|
| 915 | }
|
|---|
| 916 |
|
|---|
| 917 | /** Print B-tree.
|
|---|
| 918 | *
|
|---|
| 919 | * @param t Print out B-tree.
|
|---|
| 920 | */
|
|---|
| 921 | void btree_print(btree_t *t)
|
|---|
| 922 | {
|
|---|
| 923 | int i, depth = t->root->depth;
|
|---|
| 924 | link_t head, *cur;
|
|---|
| 925 |
|
|---|
| 926 | printf("Printing B-tree:\n");
|
|---|
| 927 | list_initialize(&head);
|
|---|
| 928 | list_append(&t->root->bfs_link, &head);
|
|---|
| 929 |
|
|---|
| 930 | /*
|
|---|
| 931 | * Use BFS search to print out the tree.
|
|---|
| 932 | * Levels are distinguished from one another by node->depth.
|
|---|
| 933 | */
|
|---|
| 934 | while (!list_empty(&head)) {
|
|---|
| 935 | link_t *hlp;
|
|---|
| 936 | btree_node_t *node;
|
|---|
| 937 |
|
|---|
| 938 | hlp = head.next;
|
|---|
| 939 | ASSERT(hlp != &head);
|
|---|
| 940 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
|---|
| 941 | list_remove(hlp);
|
|---|
| 942 |
|
|---|
| 943 | ASSERT(node);
|
|---|
| 944 |
|
|---|
| 945 | if (node->depth != depth) {
|
|---|
| 946 | printf("\n");
|
|---|
| 947 | depth = node->depth;
|
|---|
| 948 | }
|
|---|
| 949 |
|
|---|
| 950 | printf("(");
|
|---|
| 951 | for (i = 0; i < node->keys; i++) {
|
|---|
| 952 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
|---|
| 953 | if (node->depth && node->subtree[i]) {
|
|---|
| 954 | list_append(&node->subtree[i]->bfs_link, &head);
|
|---|
| 955 | }
|
|---|
| 956 | }
|
|---|
| 957 | if (node->depth && node->subtree[i]) {
|
|---|
| 958 | list_append(&node->subtree[i]->bfs_link, &head);
|
|---|
| 959 | }
|
|---|
| 960 | printf(")");
|
|---|
| 961 | }
|
|---|
| 962 | printf("\n");
|
|---|
| 963 |
|
|---|
| 964 | printf("Printing list of leaves:\n");
|
|---|
| 965 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
|
|---|
| 966 | btree_node_t *node;
|
|---|
| 967 |
|
|---|
| 968 | node = list_get_instance(cur, btree_node_t, leaf_link);
|
|---|
| 969 |
|
|---|
| 970 | ASSERT(node);
|
|---|
| 971 |
|
|---|
| 972 | printf("(");
|
|---|
| 973 | for (i = 0; i < node->keys; i++)
|
|---|
| 974 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
|---|
| 975 | printf(")");
|
|---|
| 976 | }
|
|---|
| 977 | printf("\n");
|
|---|
| 978 | }
|
|---|