1 | /*
|
---|
2 | * Copyright (C) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * @file btree.c
|
---|
31 | * @brief B+tree implementation.
|
---|
32 | *
|
---|
33 | * This file implements B+tree type and operations.
|
---|
34 | *
|
---|
35 | * The B+tree has the following properties:
|
---|
36 | * @li it is a ballanced 3-4-5 tree (i.e. BTREE_M = 5)
|
---|
37 | * @li values (i.e. pointers to values) are stored only in leaves
|
---|
38 | * @li leaves are linked in a list
|
---|
39 | *
|
---|
40 | * Be carefull when using these trees. They need to allocate
|
---|
41 | * and deallocate memory for their index nodes and as such
|
---|
42 | * can sleep.
|
---|
43 | */
|
---|
44 |
|
---|
45 | #include <adt/btree.h>
|
---|
46 | #include <adt/list.h>
|
---|
47 | #include <mm/slab.h>
|
---|
48 | #include <debug.h>
|
---|
49 | #include <panic.h>
|
---|
50 | #include <typedefs.h>
|
---|
51 | #include <print.h>
|
---|
52 |
|
---|
53 | static void btree_destroy_subtree(btree_node_t *root);
|
---|
54 | static void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
55 | static void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node);
|
---|
56 | static void node_initialize(btree_node_t *node);
|
---|
57 | static void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree);
|
---|
58 | static void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
59 | static void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key);
|
---|
60 | static void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key);
|
---|
61 | static btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median);
|
---|
62 | static btree_node_t *node_combine(btree_node_t *node);
|
---|
63 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
---|
64 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
65 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
66 | static bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
67 | static bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree);
|
---|
68 | static bool try_rotation_from_left(btree_node_t *rnode);
|
---|
69 | static bool try_rotation_from_right(btree_node_t *lnode);
|
---|
70 |
|
---|
71 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
72 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
73 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
74 |
|
---|
75 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
---|
76 |
|
---|
77 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
78 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
79 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
80 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
81 |
|
---|
82 | static slab_cache_t *btree_node_slab;
|
---|
83 |
|
---|
84 | /** Initialize B-trees. */
|
---|
85 | void btree_init(void)
|
---|
86 | {
|
---|
87 | btree_node_slab = slab_cache_create("btree_node_slab", sizeof(btree_node_t), 0, NULL, NULL, SLAB_CACHE_MAGDEFERRED);
|
---|
88 | }
|
---|
89 |
|
---|
90 | /** Create empty B-tree.
|
---|
91 | *
|
---|
92 | * @param t B-tree.
|
---|
93 | */
|
---|
94 | void btree_create(btree_t *t)
|
---|
95 | {
|
---|
96 | list_initialize(&t->leaf_head);
|
---|
97 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
98 | node_initialize(t->root);
|
---|
99 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
100 | }
|
---|
101 |
|
---|
102 | /** Destroy empty B-tree. */
|
---|
103 | void btree_destroy(btree_t *t)
|
---|
104 | {
|
---|
105 | btree_destroy_subtree(t->root);
|
---|
106 | }
|
---|
107 |
|
---|
108 | /** Insert key-value pair into B-tree.
|
---|
109 | *
|
---|
110 | * @param t B-tree.
|
---|
111 | * @param key Key to be inserted.
|
---|
112 | * @param value Value to be inserted.
|
---|
113 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
114 | */
|
---|
115 | void btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *leaf_node)
|
---|
116 | {
|
---|
117 | btree_node_t *lnode;
|
---|
118 |
|
---|
119 | ASSERT(value);
|
---|
120 |
|
---|
121 | lnode = leaf_node;
|
---|
122 | if (!lnode) {
|
---|
123 | if (btree_search(t, key, &lnode)) {
|
---|
124 | panic("B-tree %p already contains key %d\n", t, key);
|
---|
125 | }
|
---|
126 | }
|
---|
127 |
|
---|
128 | _btree_insert(t, key, value, NULL, lnode);
|
---|
129 | }
|
---|
130 |
|
---|
131 | /** Destroy subtree rooted in a node.
|
---|
132 | *
|
---|
133 | * @param root Root of the subtree.
|
---|
134 | */
|
---|
135 | void btree_destroy_subtree(btree_node_t *root)
|
---|
136 | {
|
---|
137 | int i;
|
---|
138 |
|
---|
139 | if (root->keys) {
|
---|
140 | for (i = 0; i < root->keys + 1; i++) {
|
---|
141 | if (root->subtree[i])
|
---|
142 | btree_destroy_subtree(root->subtree[i]);
|
---|
143 | }
|
---|
144 | }
|
---|
145 | slab_free(btree_node_slab, root);
|
---|
146 | }
|
---|
147 |
|
---|
148 | /** Recursively insert into B-tree.
|
---|
149 | *
|
---|
150 | * @param t B-tree.
|
---|
151 | * @param key Key to be inserted.
|
---|
152 | * @param value Value to be inserted.
|
---|
153 | * @param rsubtree Right subtree of the inserted key.
|
---|
154 | * @param node Start inserting into this node.
|
---|
155 | */
|
---|
156 | void _btree_insert(btree_t *t, btree_key_t key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
157 | {
|
---|
158 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
159 | /*
|
---|
160 | * Node conatins enough space, the key can be stored immediately.
|
---|
161 | */
|
---|
162 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
163 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
|
---|
164 | /*
|
---|
165 | * The key-value-rsubtree triplet has been inserted because
|
---|
166 | * some keys could have been moved to the left sibling.
|
---|
167 | */
|
---|
168 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
|
---|
169 | /*
|
---|
170 | * The key-value-rsubtree triplet has been inserted because
|
---|
171 | * some keys could have been moved to the right sibling.
|
---|
172 | */
|
---|
173 | } else {
|
---|
174 | btree_node_t *rnode;
|
---|
175 | btree_key_t median;
|
---|
176 |
|
---|
177 | /*
|
---|
178 | * Node is full and both siblings (if both exist) are full too.
|
---|
179 | * Split the node and insert the smallest key from the node containing
|
---|
180 | * bigger keys (i.e. the new node) into its parent.
|
---|
181 | */
|
---|
182 |
|
---|
183 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
184 |
|
---|
185 | if (LEAF_NODE(node)) {
|
---|
186 | list_prepend(&rnode->leaf_link, &node->leaf_link);
|
---|
187 | }
|
---|
188 |
|
---|
189 | if (ROOT_NODE(node)) {
|
---|
190 | /*
|
---|
191 | * We split the root node. Create new root.
|
---|
192 | */
|
---|
193 | t->root = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
194 | node->parent = t->root;
|
---|
195 | rnode->parent = t->root;
|
---|
196 | node_initialize(t->root);
|
---|
197 |
|
---|
198 | /*
|
---|
199 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
200 | * Right-hand side subtree will be rnode.
|
---|
201 | */
|
---|
202 | t->root->subtree[0] = node;
|
---|
203 |
|
---|
204 | t->root->depth = node->depth + 1;
|
---|
205 | }
|
---|
206 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
207 | }
|
---|
208 |
|
---|
209 | }
|
---|
210 |
|
---|
211 | /** Remove B-tree node.
|
---|
212 | *
|
---|
213 | * @param B-tree.
|
---|
214 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
215 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
---|
216 | */
|
---|
217 | void btree_remove(btree_t *t, btree_key_t key, btree_node_t *leaf_node)
|
---|
218 | {
|
---|
219 | btree_node_t *lnode;
|
---|
220 |
|
---|
221 | lnode = leaf_node;
|
---|
222 | if (!lnode) {
|
---|
223 | if (!btree_search(t, key, &lnode)) {
|
---|
224 | panic("B-tree %p does not contain key %d\n", t, key);
|
---|
225 | }
|
---|
226 | }
|
---|
227 |
|
---|
228 | _btree_remove(t, key, lnode);
|
---|
229 | }
|
---|
230 |
|
---|
231 | /** Recursively remove B-tree node.
|
---|
232 | *
|
---|
233 | * @param B-tree.
|
---|
234 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
235 | * @param node Node where the key being removed resides.
|
---|
236 | */
|
---|
237 | void _btree_remove(btree_t *t, btree_key_t key, btree_node_t *node)
|
---|
238 | {
|
---|
239 | if (ROOT_NODE(node)) {
|
---|
240 | if (node->keys == 1 && node->subtree[0]) {
|
---|
241 | /*
|
---|
242 | * Free the current root and set new root.
|
---|
243 | */
|
---|
244 | t->root = node->subtree[0];
|
---|
245 | t->root->parent = NULL;
|
---|
246 | slab_free(btree_node_slab, node);
|
---|
247 | } else {
|
---|
248 | /*
|
---|
249 | * Remove the key from the root node.
|
---|
250 | * Note that the right subtree is removed because when
|
---|
251 | * combining two nodes, the left-side sibling is preserved
|
---|
252 | * and the right-side sibling is freed.
|
---|
253 | */
|
---|
254 | node_remove_key_and_rsubtree(node, key);
|
---|
255 | }
|
---|
256 | return;
|
---|
257 | }
|
---|
258 |
|
---|
259 | if (node->keys <= FILL_FACTOR) {
|
---|
260 | /*
|
---|
261 | * If the node is below the fill factor,
|
---|
262 | * try to borrow keys from left or right sibling.
|
---|
263 | */
|
---|
264 | if (!try_rotation_from_left(node))
|
---|
265 | try_rotation_from_right(node);
|
---|
266 | }
|
---|
267 |
|
---|
268 | if (node->keys > FILL_FACTOR) {
|
---|
269 | int i;
|
---|
270 |
|
---|
271 | /*
|
---|
272 | * The key can be immediatelly removed.
|
---|
273 | *
|
---|
274 | * Note that the right subtree is removed because when
|
---|
275 | * combining two nodes, the left-side sibling is preserved
|
---|
276 | * and the right-side sibling is freed.
|
---|
277 | */
|
---|
278 | node_remove_key_and_rsubtree(node, key);
|
---|
279 | for (i = 0; i < node->parent->keys; i++) {
|
---|
280 | if (node->parent->key[i] == key)
|
---|
281 | node->parent->key[i] = node->key[0];
|
---|
282 | }
|
---|
283 |
|
---|
284 | } else {
|
---|
285 | index_t idx;
|
---|
286 | btree_node_t *rnode, *parent;
|
---|
287 |
|
---|
288 | /*
|
---|
289 | * The node is below the fill factor as well as its left and right sibling.
|
---|
290 | * Resort to combining the node with one of its siblings.
|
---|
291 | * The node which is on the left is preserved and the node on the right is
|
---|
292 | * freed.
|
---|
293 | */
|
---|
294 | parent = node->parent;
|
---|
295 | node_remove_key_and_rsubtree(node, key);
|
---|
296 | rnode = node_combine(node);
|
---|
297 | if (LEAF_NODE(rnode))
|
---|
298 | list_remove(&rnode->leaf_link);
|
---|
299 | idx = find_key_by_subtree(parent, rnode, true);
|
---|
300 | ASSERT((int) idx != -1);
|
---|
301 | slab_free(btree_node_slab, rnode);
|
---|
302 | _btree_remove(t, parent->key[idx], parent);
|
---|
303 | }
|
---|
304 | }
|
---|
305 |
|
---|
306 | /** Search key in a B-tree.
|
---|
307 | *
|
---|
308 | * @param t B-tree.
|
---|
309 | * @param key Key to be searched.
|
---|
310 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
311 | *
|
---|
312 | * @return Pointer to value or NULL if there is no such key.
|
---|
313 | */
|
---|
314 | void *btree_search(btree_t *t, btree_key_t key, btree_node_t **leaf_node)
|
---|
315 | {
|
---|
316 | btree_node_t *cur, *next;
|
---|
317 |
|
---|
318 | /*
|
---|
319 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
320 | */
|
---|
321 | for (cur = t->root; cur; cur = next) {
|
---|
322 |
|
---|
323 | /* Last iteration will set this with proper leaf node address. */
|
---|
324 | *leaf_node = cur;
|
---|
325 |
|
---|
326 | /*
|
---|
327 | * The key can be in the leftmost subtree.
|
---|
328 | * Test it separately.
|
---|
329 | */
|
---|
330 | if (key < cur->key[0]) {
|
---|
331 | next = cur->subtree[0];
|
---|
332 | continue;
|
---|
333 | } else {
|
---|
334 | void *val;
|
---|
335 | int i;
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * Now if the key is smaller than cur->key[i]
|
---|
339 | * it can only mean that the value is in cur->subtree[i]
|
---|
340 | * or it is not in the tree at all.
|
---|
341 | */
|
---|
342 | for (i = 1; i < cur->keys; i++) {
|
---|
343 | if (key < cur->key[i]) {
|
---|
344 | next = cur->subtree[i];
|
---|
345 | val = cur->value[i - 1];
|
---|
346 |
|
---|
347 | if (LEAF_NODE(cur))
|
---|
348 | return key == cur->key[i - 1] ? val : NULL;
|
---|
349 |
|
---|
350 | goto descend;
|
---|
351 | }
|
---|
352 | }
|
---|
353 |
|
---|
354 | /*
|
---|
355 | * Last possibility is that the key is in the rightmost subtree.
|
---|
356 | */
|
---|
357 | next = cur->subtree[i];
|
---|
358 | val = cur->value[i - 1];
|
---|
359 | if (LEAF_NODE(cur))
|
---|
360 | return key == cur->key[i - 1] ? val : NULL;
|
---|
361 | }
|
---|
362 | descend:
|
---|
363 | ;
|
---|
364 | }
|
---|
365 |
|
---|
366 | /*
|
---|
367 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
---|
368 | */
|
---|
369 | return NULL;
|
---|
370 | }
|
---|
371 |
|
---|
372 | /** Return pointer to B-tree leaf node's left neighbour.
|
---|
373 | *
|
---|
374 | * @param t B-tree.
|
---|
375 | * @param node Node whose left neighbour will be returned.
|
---|
376 | *
|
---|
377 | * @return Left neighbour of the node or NULL if the node does not have the left neighbour.
|
---|
378 | */
|
---|
379 | btree_node_t *btree_leaf_node_left_neighbour(btree_t *t, btree_node_t *node)
|
---|
380 | {
|
---|
381 | ASSERT(LEAF_NODE(node));
|
---|
382 | if (node->leaf_link.prev != &t->leaf_head)
|
---|
383 | return list_get_instance(node->leaf_link.prev, btree_node_t, leaf_link);
|
---|
384 | else
|
---|
385 | return NULL;
|
---|
386 | }
|
---|
387 |
|
---|
388 | /** Return pointer to B-tree leaf node's right neighbour.
|
---|
389 | *
|
---|
390 | * @param t B-tree.
|
---|
391 | * @param node Node whose right neighbour will be returned.
|
---|
392 | *
|
---|
393 | * @return Right neighbour of the node or NULL if the node does not have the right neighbour.
|
---|
394 | */
|
---|
395 | btree_node_t *btree_leaf_node_right_neighbour(btree_t *t, btree_node_t *node)
|
---|
396 | {
|
---|
397 | ASSERT(LEAF_NODE(node));
|
---|
398 | if (node->leaf_link.next != &t->leaf_head)
|
---|
399 | return list_get_instance(node->leaf_link.next, btree_node_t, leaf_link);
|
---|
400 | else
|
---|
401 | return NULL;
|
---|
402 | }
|
---|
403 |
|
---|
404 | /** Initialize B-tree node.
|
---|
405 | *
|
---|
406 | * @param node B-tree node.
|
---|
407 | */
|
---|
408 | void node_initialize(btree_node_t *node)
|
---|
409 | {
|
---|
410 | int i;
|
---|
411 |
|
---|
412 | node->keys = 0;
|
---|
413 |
|
---|
414 | /* Clean also space for the extra key. */
|
---|
415 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
416 | node->key[i] = 0;
|
---|
417 | node->value[i] = NULL;
|
---|
418 | node->subtree[i] = NULL;
|
---|
419 | }
|
---|
420 | node->subtree[i] = NULL;
|
---|
421 |
|
---|
422 | node->parent = NULL;
|
---|
423 |
|
---|
424 | link_initialize(&node->leaf_link);
|
---|
425 |
|
---|
426 | link_initialize(&node->bfs_link);
|
---|
427 | node->depth = 0;
|
---|
428 | }
|
---|
429 |
|
---|
430 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
431 | *
|
---|
432 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
433 | * This feature is used during insert by right rotation.
|
---|
434 | *
|
---|
435 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
436 | * @param key The key to be inserted.
|
---|
437 | * @param value Pointer to value to be inserted.
|
---|
438 | * @param lsubtree Pointer to the left subtree.
|
---|
439 | */
|
---|
440 | void node_insert_key_and_lsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *lsubtree)
|
---|
441 | {
|
---|
442 | int i;
|
---|
443 |
|
---|
444 | for (i = 0; i < node->keys; i++) {
|
---|
445 | if (key < node->key[i]) {
|
---|
446 | int j;
|
---|
447 |
|
---|
448 | for (j = node->keys; j > i; j--) {
|
---|
449 | node->key[j] = node->key[j - 1];
|
---|
450 | node->value[j] = node->value[j - 1];
|
---|
451 | node->subtree[j + 1] = node->subtree[j];
|
---|
452 | }
|
---|
453 | node->subtree[j + 1] = node->subtree[j];
|
---|
454 | break;
|
---|
455 | }
|
---|
456 | }
|
---|
457 | node->key[i] = key;
|
---|
458 | node->value[i] = value;
|
---|
459 | node->subtree[i] = lsubtree;
|
---|
460 |
|
---|
461 | node->keys++;
|
---|
462 | }
|
---|
463 |
|
---|
464 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
465 | *
|
---|
466 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
467 | * This feature is used during splitting the node when the
|
---|
468 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
469 | * also makes use of this feature.
|
---|
470 | *
|
---|
471 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
472 | * @param key The key to be inserted.
|
---|
473 | * @param value Pointer to value to be inserted.
|
---|
474 | * @param rsubtree Pointer to the right subtree.
|
---|
475 | */
|
---|
476 | void node_insert_key_and_rsubtree(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree)
|
---|
477 | {
|
---|
478 | int i;
|
---|
479 |
|
---|
480 | for (i = 0; i < node->keys; i++) {
|
---|
481 | if (key < node->key[i]) {
|
---|
482 | int j;
|
---|
483 |
|
---|
484 | for (j = node->keys; j > i; j--) {
|
---|
485 | node->key[j] = node->key[j - 1];
|
---|
486 | node->value[j] = node->value[j - 1];
|
---|
487 | node->subtree[j + 1] = node->subtree[j];
|
---|
488 | }
|
---|
489 | break;
|
---|
490 | }
|
---|
491 | }
|
---|
492 | node->key[i] = key;
|
---|
493 | node->value[i] = value;
|
---|
494 | node->subtree[i + 1] = rsubtree;
|
---|
495 |
|
---|
496 | node->keys++;
|
---|
497 | }
|
---|
498 |
|
---|
499 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
500 | *
|
---|
501 | * Remove the key and eliminate gaps in node->key array.
|
---|
502 | * Note that the value pointer and the left subtree pointer
|
---|
503 | * is removed from the node as well.
|
---|
504 | *
|
---|
505 | * @param node B-tree node.
|
---|
506 | * @param key Key to be removed.
|
---|
507 | */
|
---|
508 | void node_remove_key_and_lsubtree(btree_node_t *node, btree_key_t key)
|
---|
509 | {
|
---|
510 | int i, j;
|
---|
511 |
|
---|
512 | for (i = 0; i < node->keys; i++) {
|
---|
513 | if (key == node->key[i]) {
|
---|
514 | for (j = i + 1; j < node->keys; j++) {
|
---|
515 | node->key[j - 1] = node->key[j];
|
---|
516 | node->value[j - 1] = node->value[j];
|
---|
517 | node->subtree[j - 1] = node->subtree[j];
|
---|
518 | }
|
---|
519 | node->subtree[j - 1] = node->subtree[j];
|
---|
520 | node->keys--;
|
---|
521 | return;
|
---|
522 | }
|
---|
523 | }
|
---|
524 | panic("node %p does not contain key %d\n", node, key);
|
---|
525 | }
|
---|
526 |
|
---|
527 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
528 | *
|
---|
529 | * Remove the key and eliminate gaps in node->key array.
|
---|
530 | * Note that the value pointer and the right subtree pointer
|
---|
531 | * is removed from the node as well.
|
---|
532 | *
|
---|
533 | * @param node B-tree node.
|
---|
534 | * @param key Key to be removed.
|
---|
535 | */
|
---|
536 | void node_remove_key_and_rsubtree(btree_node_t *node, btree_key_t key)
|
---|
537 | {
|
---|
538 | int i, j;
|
---|
539 |
|
---|
540 | for (i = 0; i < node->keys; i++) {
|
---|
541 | if (key == node->key[i]) {
|
---|
542 | for (j = i + 1; j < node->keys; j++) {
|
---|
543 | node->key[j - 1] = node->key[j];
|
---|
544 | node->value[j - 1] = node->value[j];
|
---|
545 | node->subtree[j] = node->subtree[j + 1];
|
---|
546 | }
|
---|
547 | node->keys--;
|
---|
548 | return;
|
---|
549 | }
|
---|
550 | }
|
---|
551 | panic("node %p does not contain key %d\n", node, key);
|
---|
552 | }
|
---|
553 |
|
---|
554 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
555 | *
|
---|
556 | * This function will split a node and return pointer to a newly created
|
---|
557 | * node containing keys greater than or equal to the greater of medians
|
---|
558 | * (or median) of the old keys and the newly added key. It will also write
|
---|
559 | * the median key to a memory address supplied by the caller.
|
---|
560 | *
|
---|
561 | * If the node being split is an index node, the median will not be
|
---|
562 | * included in the new node. If the node is a leaf node,
|
---|
563 | * the median will be copied there.
|
---|
564 | *
|
---|
565 | * @param node B-tree node wich is going to be split.
|
---|
566 | * @param key The key to be inserted.
|
---|
567 | * @param value Pointer to the value to be inserted.
|
---|
568 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
569 | * @param median Address in memory, where the median key will be stored.
|
---|
570 | *
|
---|
571 | * @return Newly created right sibling of node.
|
---|
572 | */
|
---|
573 | btree_node_t *node_split(btree_node_t *node, btree_key_t key, void *value, btree_node_t *rsubtree, btree_key_t *median)
|
---|
574 | {
|
---|
575 | btree_node_t *rnode;
|
---|
576 | int i, j;
|
---|
577 |
|
---|
578 | ASSERT(median);
|
---|
579 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
580 |
|
---|
581 | /*
|
---|
582 | * Use the extra space to store the extra node.
|
---|
583 | */
|
---|
584 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
585 |
|
---|
586 | /*
|
---|
587 | * Compute median of keys.
|
---|
588 | */
|
---|
589 | *median = MEDIAN_HIGH(node);
|
---|
590 |
|
---|
591 | /*
|
---|
592 | * Allocate and initialize new right sibling.
|
---|
593 | */
|
---|
594 | rnode = (btree_node_t *) slab_alloc(btree_node_slab, 0);
|
---|
595 | node_initialize(rnode);
|
---|
596 | rnode->parent = node->parent;
|
---|
597 | rnode->depth = node->depth;
|
---|
598 |
|
---|
599 | /*
|
---|
600 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
601 | * If this is an index node, do not copy the median.
|
---|
602 | */
|
---|
603 | i = (int) INDEX_NODE(node);
|
---|
604 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
605 | rnode->key[j] = node->key[i];
|
---|
606 | rnode->value[j] = node->value[i];
|
---|
607 | rnode->subtree[j] = node->subtree[i];
|
---|
608 |
|
---|
609 | /*
|
---|
610 | * Fix parent links in subtrees.
|
---|
611 | */
|
---|
612 | if (rnode->subtree[j])
|
---|
613 | rnode->subtree[j]->parent = rnode;
|
---|
614 |
|
---|
615 | }
|
---|
616 | rnode->subtree[j] = node->subtree[i];
|
---|
617 | if (rnode->subtree[j])
|
---|
618 | rnode->subtree[j]->parent = rnode;
|
---|
619 |
|
---|
620 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
621 | node->keys /= 2; /* Shrink the old node. */
|
---|
622 |
|
---|
623 | return rnode;
|
---|
624 | }
|
---|
625 |
|
---|
626 | /** Combine node with any of its siblings.
|
---|
627 | *
|
---|
628 | * The siblings are required to be below the fill factor.
|
---|
629 | *
|
---|
630 | * @param node Node to combine with one of its siblings.
|
---|
631 | *
|
---|
632 | * @return Pointer to the rightmost of the two nodes.
|
---|
633 | */
|
---|
634 | btree_node_t *node_combine(btree_node_t *node)
|
---|
635 | {
|
---|
636 | index_t idx;
|
---|
637 | btree_node_t *rnode;
|
---|
638 | int i;
|
---|
639 |
|
---|
640 | ASSERT(!ROOT_NODE(node));
|
---|
641 |
|
---|
642 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
643 | if (idx == node->parent->keys) {
|
---|
644 | /*
|
---|
645 | * Rightmost subtree of its parent, combine with the left sibling.
|
---|
646 | */
|
---|
647 | idx--;
|
---|
648 | rnode = node;
|
---|
649 | node = node->parent->subtree[idx];
|
---|
650 | } else {
|
---|
651 | rnode = node->parent->subtree[idx + 1];
|
---|
652 | }
|
---|
653 |
|
---|
654 | /* Index nodes need to insert parent node key in between left and right node. */
|
---|
655 | if (INDEX_NODE(node))
|
---|
656 | node->key[node->keys++] = node->parent->key[idx];
|
---|
657 |
|
---|
658 | /* Copy the key-value-subtree triplets from the right node. */
|
---|
659 | for (i = 0; i < rnode->keys; i++) {
|
---|
660 | node->key[node->keys + i] = rnode->key[i];
|
---|
661 | node->value[node->keys + i] = rnode->value[i];
|
---|
662 | if (INDEX_NODE(node)) {
|
---|
663 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
664 | rnode->subtree[i]->parent = node;
|
---|
665 | }
|
---|
666 | }
|
---|
667 | if (INDEX_NODE(node)) {
|
---|
668 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
669 | rnode->subtree[i]->parent = node;
|
---|
670 | }
|
---|
671 |
|
---|
672 | node->keys += rnode->keys;
|
---|
673 |
|
---|
674 | return rnode;
|
---|
675 | }
|
---|
676 |
|
---|
677 | /** Find key by its left or right subtree.
|
---|
678 | *
|
---|
679 | * @param node B-tree node.
|
---|
680 | * @param subtree Left or right subtree of a key found in node.
|
---|
681 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
---|
682 | *
|
---|
683 | * @return Index of the key associated with the subtree.
|
---|
684 | */
|
---|
685 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
---|
686 | {
|
---|
687 | int i;
|
---|
688 |
|
---|
689 | for (i = 0; i < node->keys + 1; i++) {
|
---|
690 | if (subtree == node->subtree[i])
|
---|
691 | return i - (int) (right != false);
|
---|
692 | }
|
---|
693 | panic("node %p does not contain subtree %p\n", node, subtree);
|
---|
694 | }
|
---|
695 |
|
---|
696 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
|
---|
697 | *
|
---|
698 | * The biggest key and its value and right subtree is rotated from the left node
|
---|
699 | * to the right. If the node is an index node, than the parent node key belonging to
|
---|
700 | * the left node takes part in the rotation.
|
---|
701 | *
|
---|
702 | * @param lnode Left sibling.
|
---|
703 | * @param rnode Right sibling.
|
---|
704 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
705 | */
|
---|
706 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
707 | {
|
---|
708 | btree_key_t key;
|
---|
709 |
|
---|
710 | key = lnode->key[lnode->keys - 1];
|
---|
711 |
|
---|
712 | if (LEAF_NODE(lnode)) {
|
---|
713 | void *value;
|
---|
714 |
|
---|
715 | value = lnode->value[lnode->keys - 1];
|
---|
716 | node_remove_key_and_rsubtree(lnode, key);
|
---|
717 | node_insert_key_and_lsubtree(rnode, key, value, NULL);
|
---|
718 | lnode->parent->key[idx] = key;
|
---|
719 | } else {
|
---|
720 | btree_node_t *rsubtree;
|
---|
721 |
|
---|
722 | rsubtree = lnode->subtree[lnode->keys];
|
---|
723 | node_remove_key_and_rsubtree(lnode, key);
|
---|
724 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
|
---|
725 | lnode->parent->key[idx] = key;
|
---|
726 |
|
---|
727 | /* Fix parent link of the reconnected right subtree. */
|
---|
728 | rsubtree->parent = rnode;
|
---|
729 | }
|
---|
730 |
|
---|
731 | }
|
---|
732 |
|
---|
733 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
|
---|
734 | *
|
---|
735 | * The smallest key and its value and left subtree is rotated from the right node
|
---|
736 | * to the left. If the node is an index node, than the parent node key belonging to
|
---|
737 | * the right node takes part in the rotation.
|
---|
738 | *
|
---|
739 | * @param lnode Left sibling.
|
---|
740 | * @param rnode Right sibling.
|
---|
741 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
742 | */
|
---|
743 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
744 | {
|
---|
745 | btree_key_t key;
|
---|
746 |
|
---|
747 | key = rnode->key[0];
|
---|
748 |
|
---|
749 | if (LEAF_NODE(rnode)) {
|
---|
750 | void *value;
|
---|
751 |
|
---|
752 | value = rnode->value[0];
|
---|
753 | node_remove_key_and_lsubtree(rnode, key);
|
---|
754 | node_insert_key_and_rsubtree(lnode, key, value, NULL);
|
---|
755 | rnode->parent->key[idx] = rnode->key[0];
|
---|
756 | } else {
|
---|
757 | btree_node_t *lsubtree;
|
---|
758 |
|
---|
759 | lsubtree = rnode->subtree[0];
|
---|
760 | node_remove_key_and_lsubtree(rnode, key);
|
---|
761 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
|
---|
762 | rnode->parent->key[idx] = key;
|
---|
763 |
|
---|
764 | /* Fix parent link of the reconnected left subtree. */
|
---|
765 | lsubtree->parent = lnode;
|
---|
766 | }
|
---|
767 |
|
---|
768 | }
|
---|
769 |
|
---|
770 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
771 | *
|
---|
772 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
773 | * If there is free space, the key is inserted and the smallest key of
|
---|
774 | * the node is moved there. The index node which is the parent of both
|
---|
775 | * nodes is fixed.
|
---|
776 | *
|
---|
777 | * @param node B-tree node.
|
---|
778 | * @param inskey Key to be inserted.
|
---|
779 | * @param insvalue Value to be inserted.
|
---|
780 | * @param rsubtree Right subtree of inskey.
|
---|
781 | *
|
---|
782 | * @return True if the rotation was performed, false otherwise.
|
---|
783 | */
|
---|
784 | bool try_insert_by_rotation_to_left(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
785 | {
|
---|
786 | index_t idx;
|
---|
787 | btree_node_t *lnode;
|
---|
788 |
|
---|
789 | /*
|
---|
790 | * If this is root node, the rotation can not be done.
|
---|
791 | */
|
---|
792 | if (ROOT_NODE(node))
|
---|
793 | return false;
|
---|
794 |
|
---|
795 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
796 | if ((int) idx == -1) {
|
---|
797 | /*
|
---|
798 | * If this node is the leftmost subtree of its parent,
|
---|
799 | * the rotation can not be done.
|
---|
800 | */
|
---|
801 | return false;
|
---|
802 | }
|
---|
803 |
|
---|
804 | lnode = node->parent->subtree[idx];
|
---|
805 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
806 | /*
|
---|
807 | * The rotaion can be done. The left sibling has free space.
|
---|
808 | */
|
---|
809 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
810 | rotate_from_right(lnode, node, idx);
|
---|
811 | return true;
|
---|
812 | }
|
---|
813 |
|
---|
814 | return false;
|
---|
815 | }
|
---|
816 |
|
---|
817 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
818 | *
|
---|
819 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
820 | * If there is free space, the key is inserted and the biggest key of
|
---|
821 | * the node is moved there. The index node which is the parent of both
|
---|
822 | * nodes is fixed.
|
---|
823 | *
|
---|
824 | * @param node B-tree node.
|
---|
825 | * @param inskey Key to be inserted.
|
---|
826 | * @param insvalue Value to be inserted.
|
---|
827 | * @param rsubtree Right subtree of inskey.
|
---|
828 | *
|
---|
829 | * @return True if the rotation was performed, false otherwise.
|
---|
830 | */
|
---|
831 | bool try_insert_by_rotation_to_right(btree_node_t *node, btree_key_t inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
832 | {
|
---|
833 | index_t idx;
|
---|
834 | btree_node_t *rnode;
|
---|
835 |
|
---|
836 | /*
|
---|
837 | * If this is root node, the rotation can not be done.
|
---|
838 | */
|
---|
839 | if (ROOT_NODE(node))
|
---|
840 | return false;
|
---|
841 |
|
---|
842 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
843 | if (idx == node->parent->keys) {
|
---|
844 | /*
|
---|
845 | * If this node is the rightmost subtree of its parent,
|
---|
846 | * the rotation can not be done.
|
---|
847 | */
|
---|
848 | return false;
|
---|
849 | }
|
---|
850 |
|
---|
851 | rnode = node->parent->subtree[idx + 1];
|
---|
852 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
853 | /*
|
---|
854 | * The rotaion can be done. The right sibling has free space.
|
---|
855 | */
|
---|
856 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
857 | rotate_from_left(node, rnode, idx);
|
---|
858 | return true;
|
---|
859 | }
|
---|
860 |
|
---|
861 | return false;
|
---|
862 | }
|
---|
863 |
|
---|
864 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
|
---|
865 | *
|
---|
866 | * @param rnode Node into which to add key from its left sibling or from the index node.
|
---|
867 | *
|
---|
868 | * @return True if the rotation was performed, false otherwise.
|
---|
869 | */
|
---|
870 | bool try_rotation_from_left(btree_node_t *rnode)
|
---|
871 | {
|
---|
872 | index_t idx;
|
---|
873 | btree_node_t *lnode;
|
---|
874 |
|
---|
875 | /*
|
---|
876 | * If this is root node, the rotation can not be done.
|
---|
877 | */
|
---|
878 | if (ROOT_NODE(rnode))
|
---|
879 | return false;
|
---|
880 |
|
---|
881 | idx = find_key_by_subtree(rnode->parent, rnode, true);
|
---|
882 | if ((int) idx == -1) {
|
---|
883 | /*
|
---|
884 | * If this node is the leftmost subtree of its parent,
|
---|
885 | * the rotation can not be done.
|
---|
886 | */
|
---|
887 | return false;
|
---|
888 | }
|
---|
889 |
|
---|
890 | lnode = rnode->parent->subtree[idx];
|
---|
891 | if (lnode->keys > FILL_FACTOR) {
|
---|
892 | rotate_from_left(lnode, rnode, idx);
|
---|
893 | return true;
|
---|
894 | }
|
---|
895 |
|
---|
896 | return false;
|
---|
897 | }
|
---|
898 |
|
---|
899 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
|
---|
900 | *
|
---|
901 | * @param rnode Node into which to add key from its right sibling or from the index node.
|
---|
902 | *
|
---|
903 | * @return True if the rotation was performed, false otherwise.
|
---|
904 | */
|
---|
905 | bool try_rotation_from_right(btree_node_t *lnode)
|
---|
906 | {
|
---|
907 | index_t idx;
|
---|
908 | btree_node_t *rnode;
|
---|
909 |
|
---|
910 | /*
|
---|
911 | * If this is root node, the rotation can not be done.
|
---|
912 | */
|
---|
913 | if (ROOT_NODE(lnode))
|
---|
914 | return false;
|
---|
915 |
|
---|
916 | idx = find_key_by_subtree(lnode->parent, lnode, false);
|
---|
917 | if (idx == lnode->parent->keys) {
|
---|
918 | /*
|
---|
919 | * If this node is the rightmost subtree of its parent,
|
---|
920 | * the rotation can not be done.
|
---|
921 | */
|
---|
922 | return false;
|
---|
923 | }
|
---|
924 |
|
---|
925 | rnode = lnode->parent->subtree[idx + 1];
|
---|
926 | if (rnode->keys > FILL_FACTOR) {
|
---|
927 | rotate_from_right(lnode, rnode, idx);
|
---|
928 | return true;
|
---|
929 | }
|
---|
930 |
|
---|
931 | return false;
|
---|
932 | }
|
---|
933 |
|
---|
934 | /** Print B-tree.
|
---|
935 | *
|
---|
936 | * @param t Print out B-tree.
|
---|
937 | */
|
---|
938 | void btree_print(btree_t *t)
|
---|
939 | {
|
---|
940 | int i, depth = t->root->depth;
|
---|
941 | link_t head, *cur;
|
---|
942 |
|
---|
943 | printf("Printing B-tree:\n");
|
---|
944 | list_initialize(&head);
|
---|
945 | list_append(&t->root->bfs_link, &head);
|
---|
946 |
|
---|
947 | /*
|
---|
948 | * Use BFS search to print out the tree.
|
---|
949 | * Levels are distinguished from one another by node->depth.
|
---|
950 | */
|
---|
951 | while (!list_empty(&head)) {
|
---|
952 | link_t *hlp;
|
---|
953 | btree_node_t *node;
|
---|
954 |
|
---|
955 | hlp = head.next;
|
---|
956 | ASSERT(hlp != &head);
|
---|
957 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
958 | list_remove(hlp);
|
---|
959 |
|
---|
960 | ASSERT(node);
|
---|
961 |
|
---|
962 | if (node->depth != depth) {
|
---|
963 | printf("\n");
|
---|
964 | depth = node->depth;
|
---|
965 | }
|
---|
966 |
|
---|
967 | printf("(");
|
---|
968 | for (i = 0; i < node->keys; i++) {
|
---|
969 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
970 | if (node->depth && node->subtree[i]) {
|
---|
971 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
972 | }
|
---|
973 | }
|
---|
974 | if (node->depth && node->subtree[i]) {
|
---|
975 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
976 | }
|
---|
977 | printf(")");
|
---|
978 | }
|
---|
979 | printf("\n");
|
---|
980 |
|
---|
981 | printf("Printing list of leaves:\n");
|
---|
982 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
|
---|
983 | btree_node_t *node;
|
---|
984 |
|
---|
985 | node = list_get_instance(cur, btree_node_t, leaf_link);
|
---|
986 |
|
---|
987 | ASSERT(node);
|
---|
988 |
|
---|
989 | printf("(");
|
---|
990 | for (i = 0; i < node->keys; i++)
|
---|
991 | printf("%lld%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
992 | printf(")");
|
---|
993 | }
|
---|
994 | printf("\n");
|
---|
995 | }
|
---|