1 | /*
|
---|
2 | * Copyright (C) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /*
|
---|
30 | * This B-tree has the following properties:
|
---|
31 | * - it is a ballanced 2-3-4-5 tree (i.e. BTREE_M = 5)
|
---|
32 | * - values (i.e. pointers to values) are stored only in leaves
|
---|
33 | * - leaves are linked in a list
|
---|
34 | * - technically, it is a B+-tree (because of the previous properties)
|
---|
35 | *
|
---|
36 | * Be carefull when using these trees. They need to allocate
|
---|
37 | * and deallocate memory for their index nodes and as such
|
---|
38 | * can sleep.
|
---|
39 | */
|
---|
40 |
|
---|
41 | #include <adt/btree.h>
|
---|
42 | #include <adt/list.h>
|
---|
43 | #include <mm/slab.h>
|
---|
44 | #include <debug.h>
|
---|
45 | #include <panic.h>
|
---|
46 | #include <typedefs.h>
|
---|
47 | #include <print.h>
|
---|
48 |
|
---|
49 | static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
|
---|
50 | static void _btree_remove(btree_t *t, __native key, btree_node_t *node);
|
---|
51 | static void node_initialize(btree_node_t *node);
|
---|
52 | static void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree);
|
---|
53 | static void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
54 | static void node_remove_key_and_lsubtree(btree_node_t *node, __native key);
|
---|
55 | static void node_remove_key_and_rsubtree(btree_node_t *node, __native key);
|
---|
56 | static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
|
---|
57 | static btree_node_t *node_combine(btree_node_t *node);
|
---|
58 | static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
|
---|
59 | static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
60 | static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
|
---|
61 | static bool try_insert_by_rotation_to_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
62 | static bool try_insert_by_rotation_to_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
|
---|
63 | static bool try_rotation_from_left(btree_node_t *rnode);
|
---|
64 | static bool try_rotation_from_right(btree_node_t *lnode);
|
---|
65 |
|
---|
66 | #define ROOT_NODE(n) (!(n)->parent)
|
---|
67 | #define INDEX_NODE(n) ((n)->subtree[0] != NULL)
|
---|
68 | #define LEAF_NODE(n) ((n)->subtree[0] == NULL)
|
---|
69 |
|
---|
70 | #define FILL_FACTOR ((BTREE_M-1)/2)
|
---|
71 |
|
---|
72 | #define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
|
---|
73 | #define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
|
---|
74 | #define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
|
---|
75 | #define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
|
---|
76 |
|
---|
77 | /** Create empty B-tree.
|
---|
78 | *
|
---|
79 | * @param t B-tree.
|
---|
80 | */
|
---|
81 | void btree_create(btree_t *t)
|
---|
82 | {
|
---|
83 | list_initialize(&t->leaf_head);
|
---|
84 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
85 | node_initialize(t->root);
|
---|
86 | list_append(&t->root->leaf_link, &t->leaf_head);
|
---|
87 | }
|
---|
88 |
|
---|
89 | /** Destroy empty B-tree. */
|
---|
90 | void btree_destroy(btree_t *t)
|
---|
91 | {
|
---|
92 | ASSERT(!t->root->keys);
|
---|
93 | free(t->root);
|
---|
94 | }
|
---|
95 |
|
---|
96 | /** Insert key-value pair into B-tree.
|
---|
97 | *
|
---|
98 | * @param t B-tree.
|
---|
99 | * @param key Key to be inserted.
|
---|
100 | * @param value Value to be inserted.
|
---|
101 | * @param leaf_node Leaf node where the insertion should begin.
|
---|
102 | */
|
---|
103 | void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
|
---|
104 | {
|
---|
105 | btree_node_t *lnode;
|
---|
106 |
|
---|
107 | ASSERT(value);
|
---|
108 |
|
---|
109 | lnode = leaf_node;
|
---|
110 | if (!lnode) {
|
---|
111 | if (btree_search(t, key, &lnode)) {
|
---|
112 | panic("B-tree %P already contains key %d\n", t, key);
|
---|
113 | }
|
---|
114 | }
|
---|
115 |
|
---|
116 | _btree_insert(t, key, value, NULL, lnode);
|
---|
117 | }
|
---|
118 |
|
---|
119 | /** Recursively insert into B-tree.
|
---|
120 | *
|
---|
121 | * @param t B-tree.
|
---|
122 | * @param key Key to be inserted.
|
---|
123 | * @param value Value to be inserted.
|
---|
124 | * @param rsubtree Right subtree of the inserted key.
|
---|
125 | * @param node Start inserting into this node.
|
---|
126 | */
|
---|
127 | void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
|
---|
128 | {
|
---|
129 | if (node->keys < BTREE_MAX_KEYS) {
|
---|
130 | /*
|
---|
131 | * Node conatins enough space, the key can be stored immediately.
|
---|
132 | */
|
---|
133 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
134 | } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
|
---|
135 | /*
|
---|
136 | * The key-value-rsubtree triplet has been inserted because
|
---|
137 | * some keys could have been moved to the left sibling.
|
---|
138 | */
|
---|
139 | } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
|
---|
140 | /*
|
---|
141 | * The key-value-rsubtree triplet has been inserted because
|
---|
142 | * some keys could have been moved to the right sibling.
|
---|
143 | */
|
---|
144 | } else {
|
---|
145 | btree_node_t *rnode;
|
---|
146 | __native median;
|
---|
147 |
|
---|
148 | /*
|
---|
149 | * Node is full and both siblings (if both exist) are full too.
|
---|
150 | * Split the node and insert the smallest key from the node containing
|
---|
151 | * bigger keys (i.e. the new node) into its parent.
|
---|
152 | */
|
---|
153 |
|
---|
154 | rnode = node_split(node, key, value, rsubtree, &median);
|
---|
155 |
|
---|
156 | if (LEAF_NODE(node)) {
|
---|
157 | list_prepend(&rnode->leaf_link, &node->leaf_link);
|
---|
158 | }
|
---|
159 |
|
---|
160 | if (ROOT_NODE(node)) {
|
---|
161 | /*
|
---|
162 | * We split the root node. Create new root.
|
---|
163 | */
|
---|
164 | t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
165 | node->parent = t->root;
|
---|
166 | rnode->parent = t->root;
|
---|
167 | node_initialize(t->root);
|
---|
168 |
|
---|
169 | /*
|
---|
170 | * Left-hand side subtree will be the old root (i.e. node).
|
---|
171 | * Right-hand side subtree will be rnode.
|
---|
172 | */
|
---|
173 | t->root->subtree[0] = node;
|
---|
174 |
|
---|
175 | t->root->depth = node->depth + 1;
|
---|
176 | }
|
---|
177 | _btree_insert(t, median, NULL, rnode, node->parent);
|
---|
178 | }
|
---|
179 |
|
---|
180 | }
|
---|
181 |
|
---|
182 | /** Remove B-tree node.
|
---|
183 | *
|
---|
184 | * @param B-tree.
|
---|
185 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
186 | * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
|
---|
187 | */
|
---|
188 | void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node)
|
---|
189 | {
|
---|
190 | btree_node_t *lnode;
|
---|
191 |
|
---|
192 | lnode = leaf_node;
|
---|
193 | if (!lnode) {
|
---|
194 | if (!btree_search(t, key, &lnode)) {
|
---|
195 | panic("B-tree %P does not contain key %d\n", t, key);
|
---|
196 | }
|
---|
197 | }
|
---|
198 |
|
---|
199 | _btree_remove(t, key, lnode);
|
---|
200 | }
|
---|
201 |
|
---|
202 | /** Recursively remove B-tree node.
|
---|
203 | *
|
---|
204 | * @param B-tree.
|
---|
205 | * @param key Key to be removed from the B-tree along with its associated value.
|
---|
206 | * @param node Node where the key being removed resides.
|
---|
207 | */
|
---|
208 | void _btree_remove(btree_t *t, __native key, btree_node_t *node)
|
---|
209 | {
|
---|
210 | if (ROOT_NODE(node)) {
|
---|
211 | if (node->keys == 1 && node->subtree[0]) {
|
---|
212 | /*
|
---|
213 | * Free the current root and set new root.
|
---|
214 | */
|
---|
215 | t->root = node->subtree[0];
|
---|
216 | t->root->parent = NULL;
|
---|
217 | free(node);
|
---|
218 | } else {
|
---|
219 | /*
|
---|
220 | * Remove the key from the root node.
|
---|
221 | * Note that the right subtree is removed because when
|
---|
222 | * combining two nodes, the left-side sibling is preserved
|
---|
223 | * and the right-side sibling is freed.
|
---|
224 | */
|
---|
225 | node_remove_key_and_rsubtree(node, key);
|
---|
226 | }
|
---|
227 | return;
|
---|
228 | }
|
---|
229 |
|
---|
230 | if (node->keys <= FILL_FACTOR) {
|
---|
231 | /*
|
---|
232 | * If the node is below the fill factor,
|
---|
233 | * try to borrow keys from left or right sibling.
|
---|
234 | */
|
---|
235 | if (!try_rotation_from_left(node))
|
---|
236 | try_rotation_from_right(node);
|
---|
237 | }
|
---|
238 |
|
---|
239 | if (node->keys > FILL_FACTOR) {
|
---|
240 | int i;
|
---|
241 |
|
---|
242 | /*
|
---|
243 | * The key can be immediatelly removed.
|
---|
244 | *
|
---|
245 | * Note that the right subtree is removed because when
|
---|
246 | * combining two nodes, the left-side sibling is preserved
|
---|
247 | * and the right-side sibling is freed.
|
---|
248 | */
|
---|
249 | node_remove_key_and_rsubtree(node, key);
|
---|
250 | for (i = 0; i < node->parent->keys; i++) {
|
---|
251 | if (node->parent->key[i] == key)
|
---|
252 | node->parent->key[i] = node->key[0];
|
---|
253 | }
|
---|
254 |
|
---|
255 | } else {
|
---|
256 | index_t idx;
|
---|
257 | btree_node_t *rnode, *parent;
|
---|
258 |
|
---|
259 | /*
|
---|
260 | * The node is below the fill factor as well as its left and right sibling.
|
---|
261 | * Resort to combining the node with one of its siblings.
|
---|
262 | * The node which is on the left is preserved and the node on the right is
|
---|
263 | * freed.
|
---|
264 | */
|
---|
265 | parent = node->parent;
|
---|
266 | node_remove_key_and_rsubtree(node, key);
|
---|
267 | rnode = node_combine(node);
|
---|
268 | if (LEAF_NODE(rnode))
|
---|
269 | list_remove(&rnode->leaf_link);
|
---|
270 | idx = find_key_by_subtree(parent, rnode, true);
|
---|
271 | ASSERT((int) idx != -1);
|
---|
272 | free(rnode);
|
---|
273 | _btree_remove(t, parent->key[idx], parent);
|
---|
274 | }
|
---|
275 | }
|
---|
276 |
|
---|
277 | /** Search key in a B-tree.
|
---|
278 | *
|
---|
279 | * @param t B-tree.
|
---|
280 | * @param key Key to be searched.
|
---|
281 | * @param leaf_node Address where to put pointer to visited leaf node.
|
---|
282 | *
|
---|
283 | * @return Pointer to value or NULL if there is no such key.
|
---|
284 | */
|
---|
285 | void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
|
---|
286 | {
|
---|
287 | btree_node_t *cur, *next;
|
---|
288 |
|
---|
289 | /*
|
---|
290 | * Iteratively descend to the leaf that can contain the searched key.
|
---|
291 | */
|
---|
292 | for (cur = t->root; cur; cur = next) {
|
---|
293 |
|
---|
294 | /* Last iteration will set this with proper leaf node address. */
|
---|
295 | *leaf_node = cur;
|
---|
296 |
|
---|
297 | /*
|
---|
298 | * The key can be in the leftmost subtree.
|
---|
299 | * Test it separately.
|
---|
300 | */
|
---|
301 | if (key < cur->key[0]) {
|
---|
302 | next = cur->subtree[0];
|
---|
303 | continue;
|
---|
304 | } else {
|
---|
305 | void *val;
|
---|
306 | int i;
|
---|
307 |
|
---|
308 | /*
|
---|
309 | * Now if the key is smaller than cur->key[i]
|
---|
310 | * it can only mean that the value is in cur->subtree[i]
|
---|
311 | * or it is not in the tree at all.
|
---|
312 | */
|
---|
313 | for (i = 1; i < cur->keys; i++) {
|
---|
314 | if (key < cur->key[i]) {
|
---|
315 | next = cur->subtree[i];
|
---|
316 | val = cur->value[i - 1];
|
---|
317 |
|
---|
318 | if (LEAF_NODE(cur))
|
---|
319 | return key == cur->key[i - 1] ? val : NULL;
|
---|
320 |
|
---|
321 | goto descend;
|
---|
322 | }
|
---|
323 | }
|
---|
324 |
|
---|
325 | /*
|
---|
326 | * Last possibility is that the key is in the rightmost subtree.
|
---|
327 | */
|
---|
328 | next = cur->subtree[i];
|
---|
329 | val = cur->value[i - 1];
|
---|
330 | if (LEAF_NODE(cur))
|
---|
331 | return key == cur->key[i - 1] ? val : NULL;
|
---|
332 | }
|
---|
333 | descend:
|
---|
334 | ;
|
---|
335 | }
|
---|
336 |
|
---|
337 | /*
|
---|
338 | * The key was not found in the *leaf_node and is smaller than any of its keys.
|
---|
339 | */
|
---|
340 | return NULL;
|
---|
341 | }
|
---|
342 |
|
---|
343 | /** Initialize B-tree node.
|
---|
344 | *
|
---|
345 | * @param node B-tree node.
|
---|
346 | */
|
---|
347 | void node_initialize(btree_node_t *node)
|
---|
348 | {
|
---|
349 | int i;
|
---|
350 |
|
---|
351 | node->keys = 0;
|
---|
352 |
|
---|
353 | /* Clean also space for the extra key. */
|
---|
354 | for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
|
---|
355 | node->key[i] = 0;
|
---|
356 | node->value[i] = NULL;
|
---|
357 | node->subtree[i] = NULL;
|
---|
358 | }
|
---|
359 | node->subtree[i] = NULL;
|
---|
360 |
|
---|
361 | node->parent = NULL;
|
---|
362 |
|
---|
363 | link_initialize(&node->leaf_link);
|
---|
364 |
|
---|
365 | link_initialize(&node->bfs_link);
|
---|
366 | node->depth = 0;
|
---|
367 | }
|
---|
368 |
|
---|
369 | /** Insert key-value-lsubtree triplet into B-tree node.
|
---|
370 | *
|
---|
371 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
372 | * This feature is used during insert by right rotation.
|
---|
373 | *
|
---|
374 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
375 | * @param key The key to be inserted.
|
---|
376 | * @param value Pointer to value to be inserted.
|
---|
377 | * @param lsubtree Pointer to the left subtree.
|
---|
378 | */
|
---|
379 | void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
|
---|
380 | {
|
---|
381 | int i;
|
---|
382 |
|
---|
383 | for (i = 0; i < node->keys; i++) {
|
---|
384 | if (key < node->key[i]) {
|
---|
385 | int j;
|
---|
386 |
|
---|
387 | for (j = node->keys; j > i; j--) {
|
---|
388 | node->key[j] = node->key[j - 1];
|
---|
389 | node->value[j] = node->value[j - 1];
|
---|
390 | node->subtree[j + 1] = node->subtree[j];
|
---|
391 | }
|
---|
392 | node->subtree[j + 1] = node->subtree[j];
|
---|
393 | break;
|
---|
394 | }
|
---|
395 | }
|
---|
396 | node->key[i] = key;
|
---|
397 | node->value[i] = value;
|
---|
398 | node->subtree[i] = lsubtree;
|
---|
399 |
|
---|
400 | node->keys++;
|
---|
401 | }
|
---|
402 |
|
---|
403 | /** Insert key-value-rsubtree triplet into B-tree node.
|
---|
404 | *
|
---|
405 | * It is actually possible to have more keys than BTREE_MAX_KEYS.
|
---|
406 | * This feature is used during splitting the node when the
|
---|
407 | * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
|
---|
408 | * also makes use of this feature.
|
---|
409 | *
|
---|
410 | * @param node B-tree node into wich the new key is to be inserted.
|
---|
411 | * @param key The key to be inserted.
|
---|
412 | * @param value Pointer to value to be inserted.
|
---|
413 | * @param rsubtree Pointer to the right subtree.
|
---|
414 | */
|
---|
415 | void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
|
---|
416 | {
|
---|
417 | int i;
|
---|
418 |
|
---|
419 | for (i = 0; i < node->keys; i++) {
|
---|
420 | if (key < node->key[i]) {
|
---|
421 | int j;
|
---|
422 |
|
---|
423 | for (j = node->keys; j > i; j--) {
|
---|
424 | node->key[j] = node->key[j - 1];
|
---|
425 | node->value[j] = node->value[j - 1];
|
---|
426 | node->subtree[j + 1] = node->subtree[j];
|
---|
427 | }
|
---|
428 | break;
|
---|
429 | }
|
---|
430 | }
|
---|
431 | node->key[i] = key;
|
---|
432 | node->value[i] = value;
|
---|
433 | node->subtree[i + 1] = rsubtree;
|
---|
434 |
|
---|
435 | node->keys++;
|
---|
436 | }
|
---|
437 |
|
---|
438 | /** Remove key and its left subtree pointer from B-tree node.
|
---|
439 | *
|
---|
440 | * Remove the key and eliminate gaps in node->key array.
|
---|
441 | * Note that the value pointer and the left subtree pointer
|
---|
442 | * is removed from the node as well.
|
---|
443 | *
|
---|
444 | * @param node B-tree node.
|
---|
445 | * @param key Key to be removed.
|
---|
446 | */
|
---|
447 | void node_remove_key_and_lsubtree(btree_node_t *node, __native key)
|
---|
448 | {
|
---|
449 | int i, j;
|
---|
450 |
|
---|
451 | for (i = 0; i < node->keys; i++) {
|
---|
452 | if (key == node->key[i]) {
|
---|
453 | for (j = i + 1; j < node->keys; j++) {
|
---|
454 | node->key[j - 1] = node->key[j];
|
---|
455 | node->value[j - 1] = node->value[j];
|
---|
456 | node->subtree[j - 1] = node->subtree[j];
|
---|
457 | }
|
---|
458 | node->subtree[j - 1] = node->subtree[j];
|
---|
459 | node->keys--;
|
---|
460 | return;
|
---|
461 | }
|
---|
462 | }
|
---|
463 | panic("node %P does not contain key %d\n", node, key);
|
---|
464 | }
|
---|
465 |
|
---|
466 | /** Remove key and its right subtree pointer from B-tree node.
|
---|
467 | *
|
---|
468 | * Remove the key and eliminate gaps in node->key array.
|
---|
469 | * Note that the value pointer and the right subtree pointer
|
---|
470 | * is removed from the node as well.
|
---|
471 | *
|
---|
472 | * @param node B-tree node.
|
---|
473 | * @param key Key to be removed.
|
---|
474 | */
|
---|
475 | void node_remove_key_and_rsubtree(btree_node_t *node, __native key)
|
---|
476 | {
|
---|
477 | int i, j;
|
---|
478 |
|
---|
479 | for (i = 0; i < node->keys; i++) {
|
---|
480 | if (key == node->key[i]) {
|
---|
481 | for (j = i + 1; j < node->keys; j++) {
|
---|
482 | node->key[j - 1] = node->key[j];
|
---|
483 | node->value[j - 1] = node->value[j];
|
---|
484 | node->subtree[j] = node->subtree[j + 1];
|
---|
485 | }
|
---|
486 | node->keys--;
|
---|
487 | return;
|
---|
488 | }
|
---|
489 | }
|
---|
490 | panic("node %P does not contain key %d\n", node, key);
|
---|
491 | }
|
---|
492 |
|
---|
493 | /** Split full B-tree node and insert new key-value-right-subtree triplet.
|
---|
494 | *
|
---|
495 | * This function will split a node and return pointer to a newly created
|
---|
496 | * node containing keys greater than or equal to the greater of medians
|
---|
497 | * (or median) of the old keys and the newly added key. It will also write
|
---|
498 | * the median key to a memory address supplied by the caller.
|
---|
499 | *
|
---|
500 | * If the node being split is an index node, the median will not be
|
---|
501 | * included in the new node. If the node is a leaf node,
|
---|
502 | * the median will be copied there.
|
---|
503 | *
|
---|
504 | * @param node B-tree node wich is going to be split.
|
---|
505 | * @param key The key to be inserted.
|
---|
506 | * @param value Pointer to the value to be inserted.
|
---|
507 | * @param rsubtree Pointer to the right subtree of the key being added.
|
---|
508 | * @param median Address in memory, where the median key will be stored.
|
---|
509 | *
|
---|
510 | * @return Newly created right sibling of node.
|
---|
511 | */
|
---|
512 | btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
|
---|
513 | {
|
---|
514 | btree_node_t *rnode;
|
---|
515 | int i, j;
|
---|
516 |
|
---|
517 | ASSERT(median);
|
---|
518 | ASSERT(node->keys == BTREE_MAX_KEYS);
|
---|
519 |
|
---|
520 | /*
|
---|
521 | * Use the extra space to store the extra node.
|
---|
522 | */
|
---|
523 | node_insert_key_and_rsubtree(node, key, value, rsubtree);
|
---|
524 |
|
---|
525 | /*
|
---|
526 | * Compute median of keys.
|
---|
527 | */
|
---|
528 | *median = MEDIAN_HIGH(node);
|
---|
529 |
|
---|
530 | /*
|
---|
531 | * Allocate and initialize new right sibling.
|
---|
532 | */
|
---|
533 | rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
|
---|
534 | node_initialize(rnode);
|
---|
535 | rnode->parent = node->parent;
|
---|
536 | rnode->depth = node->depth;
|
---|
537 |
|
---|
538 | /*
|
---|
539 | * Copy big keys, values and subtree pointers to the new right sibling.
|
---|
540 | * If this is an index node, do not copy the median.
|
---|
541 | */
|
---|
542 | i = (int) INDEX_NODE(node);
|
---|
543 | for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
|
---|
544 | rnode->key[j] = node->key[i];
|
---|
545 | rnode->value[j] = node->value[i];
|
---|
546 | rnode->subtree[j] = node->subtree[i];
|
---|
547 |
|
---|
548 | /*
|
---|
549 | * Fix parent links in subtrees.
|
---|
550 | */
|
---|
551 | if (rnode->subtree[j])
|
---|
552 | rnode->subtree[j]->parent = rnode;
|
---|
553 |
|
---|
554 | }
|
---|
555 | rnode->subtree[j] = node->subtree[i];
|
---|
556 | if (rnode->subtree[j])
|
---|
557 | rnode->subtree[j]->parent = rnode;
|
---|
558 |
|
---|
559 | rnode->keys = j; /* Set number of keys of the new node. */
|
---|
560 | node->keys /= 2; /* Shrink the old node. */
|
---|
561 |
|
---|
562 | return rnode;
|
---|
563 | }
|
---|
564 |
|
---|
565 | /** Combine node with any of its siblings.
|
---|
566 | *
|
---|
567 | * The siblings are required to be below the fill factor.
|
---|
568 | *
|
---|
569 | * @param node Node to combine with one of its siblings.
|
---|
570 | *
|
---|
571 | * @return Pointer to the rightmost of the two nodes.
|
---|
572 | */
|
---|
573 | btree_node_t *node_combine(btree_node_t *node)
|
---|
574 | {
|
---|
575 | index_t idx;
|
---|
576 | btree_node_t *rnode;
|
---|
577 | int i;
|
---|
578 |
|
---|
579 | ASSERT(!ROOT_NODE(node));
|
---|
580 |
|
---|
581 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
582 | if (idx == node->parent->keys) {
|
---|
583 | /*
|
---|
584 | * Rightmost subtree of its parent, combine with the left sibling.
|
---|
585 | */
|
---|
586 | idx--;
|
---|
587 | rnode = node;
|
---|
588 | node = node->parent->subtree[idx];
|
---|
589 | } else {
|
---|
590 | rnode = node->parent->subtree[idx + 1];
|
---|
591 | }
|
---|
592 |
|
---|
593 | /* Index nodes need to insert parent node key in between left and right node. */
|
---|
594 | if (INDEX_NODE(node))
|
---|
595 | node->key[node->keys++] = node->parent->key[idx];
|
---|
596 |
|
---|
597 | /* Copy the key-value-subtree triplets from the right node. */
|
---|
598 | for (i = 0; i < rnode->keys; i++) {
|
---|
599 | node->key[node->keys + i] = rnode->key[i];
|
---|
600 | node->value[node->keys + i] = rnode->value[i];
|
---|
601 | if (INDEX_NODE(node)) {
|
---|
602 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
603 | rnode->subtree[i]->parent = node;
|
---|
604 | }
|
---|
605 | }
|
---|
606 | if (INDEX_NODE(node)) {
|
---|
607 | node->subtree[node->keys + i] = rnode->subtree[i];
|
---|
608 | rnode->subtree[i]->parent = node;
|
---|
609 | }
|
---|
610 |
|
---|
611 | node->keys += rnode->keys;
|
---|
612 |
|
---|
613 | return rnode;
|
---|
614 | }
|
---|
615 |
|
---|
616 | /** Find key by its left or right subtree.
|
---|
617 | *
|
---|
618 | * @param node B-tree node.
|
---|
619 | * @param subtree Left or right subtree of a key found in node.
|
---|
620 | * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
|
---|
621 | *
|
---|
622 | * @return Index of the key associated with the subtree.
|
---|
623 | */
|
---|
624 | index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
|
---|
625 | {
|
---|
626 | int i;
|
---|
627 |
|
---|
628 | for (i = 0; i < node->keys + 1; i++) {
|
---|
629 | if (subtree == node->subtree[i])
|
---|
630 | return i - (int) (right != false);
|
---|
631 | }
|
---|
632 | panic("node %P does not contain subtree %P\n", node, subtree);
|
---|
633 | }
|
---|
634 |
|
---|
635 | /** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
|
---|
636 | *
|
---|
637 | * The biggest key and its value and right subtree is rotated from the left node
|
---|
638 | * to the right. If the node is an index node, than the parent node key belonging to
|
---|
639 | * the left node takes part in the rotation.
|
---|
640 | *
|
---|
641 | * @param lnode Left sibling.
|
---|
642 | * @param rnode Right sibling.
|
---|
643 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
644 | */
|
---|
645 | void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
646 | {
|
---|
647 | __native key;
|
---|
648 |
|
---|
649 | key = lnode->key[lnode->keys - 1];
|
---|
650 |
|
---|
651 | if (LEAF_NODE(lnode)) {
|
---|
652 | void *value;
|
---|
653 |
|
---|
654 | value = lnode->value[lnode->keys - 1];
|
---|
655 | node_remove_key_and_rsubtree(lnode, key);
|
---|
656 | node_insert_key_and_lsubtree(rnode, key, value, NULL);
|
---|
657 | lnode->parent->key[idx] = key;
|
---|
658 | } else {
|
---|
659 | btree_node_t *rsubtree;
|
---|
660 |
|
---|
661 | rsubtree = lnode->subtree[lnode->keys];
|
---|
662 | node_remove_key_and_rsubtree(lnode, key);
|
---|
663 | node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
|
---|
664 | lnode->parent->key[idx] = key;
|
---|
665 |
|
---|
666 | /* Fix parent link of the reconnected right subtree. */
|
---|
667 | rsubtree->parent = rnode;
|
---|
668 | }
|
---|
669 |
|
---|
670 | }
|
---|
671 |
|
---|
672 | /** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
|
---|
673 | *
|
---|
674 | * The smallest key and its value and left subtree is rotated from the right node
|
---|
675 | * to the left. If the node is an index node, than the parent node key belonging to
|
---|
676 | * the right node takes part in the rotation.
|
---|
677 | *
|
---|
678 | * @param lnode Left sibling.
|
---|
679 | * @param rnode Right sibling.
|
---|
680 | * @param idx Index of the parent node key that is taking part in the rotation.
|
---|
681 | */
|
---|
682 | void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
|
---|
683 | {
|
---|
684 | __native key;
|
---|
685 |
|
---|
686 | key = rnode->key[0];
|
---|
687 |
|
---|
688 | if (LEAF_NODE(rnode)) {
|
---|
689 | void *value;
|
---|
690 |
|
---|
691 | value = rnode->value[0];
|
---|
692 | node_remove_key_and_lsubtree(rnode, key);
|
---|
693 | node_insert_key_and_rsubtree(lnode, key, value, NULL);
|
---|
694 | rnode->parent->key[idx] = rnode->key[0];
|
---|
695 | } else {
|
---|
696 | btree_node_t *lsubtree;
|
---|
697 |
|
---|
698 | lsubtree = rnode->subtree[0];
|
---|
699 | node_remove_key_and_lsubtree(rnode, key);
|
---|
700 | node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
|
---|
701 | rnode->parent->key[idx] = key;
|
---|
702 |
|
---|
703 | /* Fix parent link of the reconnected left subtree. */
|
---|
704 | lsubtree->parent = lnode;
|
---|
705 | }
|
---|
706 |
|
---|
707 | }
|
---|
708 |
|
---|
709 | /** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
|
---|
710 | *
|
---|
711 | * Left sibling of the node (if it exists) is checked for free space.
|
---|
712 | * If there is free space, the key is inserted and the smallest key of
|
---|
713 | * the node is moved there. The index node which is the parent of both
|
---|
714 | * nodes is fixed.
|
---|
715 | *
|
---|
716 | * @param node B-tree node.
|
---|
717 | * @param inskey Key to be inserted.
|
---|
718 | * @param insvalue Value to be inserted.
|
---|
719 | * @param rsubtree Right subtree of inskey.
|
---|
720 | *
|
---|
721 | * @return True if the rotation was performed, false otherwise.
|
---|
722 | */
|
---|
723 | bool try_insert_by_rotation_to_left(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
724 | {
|
---|
725 | index_t idx;
|
---|
726 | btree_node_t *lnode;
|
---|
727 |
|
---|
728 | /*
|
---|
729 | * If this is root node, the rotation can not be done.
|
---|
730 | */
|
---|
731 | if (ROOT_NODE(node))
|
---|
732 | return false;
|
---|
733 |
|
---|
734 | idx = find_key_by_subtree(node->parent, node, true);
|
---|
735 | if ((int) idx == -1) {
|
---|
736 | /*
|
---|
737 | * If this node is the leftmost subtree of its parent,
|
---|
738 | * the rotation can not be done.
|
---|
739 | */
|
---|
740 | return false;
|
---|
741 | }
|
---|
742 |
|
---|
743 | lnode = node->parent->subtree[idx];
|
---|
744 | if (lnode->keys < BTREE_MAX_KEYS) {
|
---|
745 | /*
|
---|
746 | * The rotaion can be done. The left sibling has free space.
|
---|
747 | */
|
---|
748 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
749 | rotate_from_right(lnode, node, idx);
|
---|
750 | return true;
|
---|
751 | }
|
---|
752 |
|
---|
753 | return false;
|
---|
754 | }
|
---|
755 |
|
---|
756 | /** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
|
---|
757 | *
|
---|
758 | * Right sibling of the node (if it exists) is checked for free space.
|
---|
759 | * If there is free space, the key is inserted and the biggest key of
|
---|
760 | * the node is moved there. The index node which is the parent of both
|
---|
761 | * nodes is fixed.
|
---|
762 | *
|
---|
763 | * @param node B-tree node.
|
---|
764 | * @param inskey Key to be inserted.
|
---|
765 | * @param insvalue Value to be inserted.
|
---|
766 | * @param rsubtree Right subtree of inskey.
|
---|
767 | *
|
---|
768 | * @return True if the rotation was performed, false otherwise.
|
---|
769 | */
|
---|
770 | bool try_insert_by_rotation_to_right(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
|
---|
771 | {
|
---|
772 | index_t idx;
|
---|
773 | btree_node_t *rnode;
|
---|
774 |
|
---|
775 | /*
|
---|
776 | * If this is root node, the rotation can not be done.
|
---|
777 | */
|
---|
778 | if (ROOT_NODE(node))
|
---|
779 | return false;
|
---|
780 |
|
---|
781 | idx = find_key_by_subtree(node->parent, node, false);
|
---|
782 | if (idx == node->parent->keys) {
|
---|
783 | /*
|
---|
784 | * If this node is the rightmost subtree of its parent,
|
---|
785 | * the rotation can not be done.
|
---|
786 | */
|
---|
787 | return false;
|
---|
788 | }
|
---|
789 |
|
---|
790 | rnode = node->parent->subtree[idx + 1];
|
---|
791 | if (rnode->keys < BTREE_MAX_KEYS) {
|
---|
792 | /*
|
---|
793 | * The rotaion can be done. The right sibling has free space.
|
---|
794 | */
|
---|
795 | node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
|
---|
796 | rotate_from_left(node, rnode, idx);
|
---|
797 | return true;
|
---|
798 | }
|
---|
799 |
|
---|
800 | return false;
|
---|
801 | }
|
---|
802 |
|
---|
803 | /** Rotate in a key from the left sibling or from the index node, if this operation can be done.
|
---|
804 | *
|
---|
805 | * @param rnode Node into which to add key from its left sibling or from the index node.
|
---|
806 | *
|
---|
807 | * @return True if the rotation was performed, false otherwise.
|
---|
808 | */
|
---|
809 | bool try_rotation_from_left(btree_node_t *rnode)
|
---|
810 | {
|
---|
811 | index_t idx;
|
---|
812 | btree_node_t *lnode;
|
---|
813 |
|
---|
814 | /*
|
---|
815 | * If this is root node, the rotation can not be done.
|
---|
816 | */
|
---|
817 | if (ROOT_NODE(rnode))
|
---|
818 | return false;
|
---|
819 |
|
---|
820 | idx = find_key_by_subtree(rnode->parent, rnode, true);
|
---|
821 | if ((int) idx == -1) {
|
---|
822 | /*
|
---|
823 | * If this node is the leftmost subtree of its parent,
|
---|
824 | * the rotation can not be done.
|
---|
825 | */
|
---|
826 | return false;
|
---|
827 | }
|
---|
828 |
|
---|
829 | lnode = rnode->parent->subtree[idx];
|
---|
830 | if (lnode->keys > FILL_FACTOR) {
|
---|
831 | rotate_from_left(lnode, rnode, idx);
|
---|
832 | return true;
|
---|
833 | }
|
---|
834 |
|
---|
835 | return false;
|
---|
836 | }
|
---|
837 |
|
---|
838 | /** Rotate in a key from the right sibling or from the index node, if this operation can be done.
|
---|
839 | *
|
---|
840 | * @param rnode Node into which to add key from its right sibling or from the index node.
|
---|
841 | *
|
---|
842 | * @return True if the rotation was performed, false otherwise.
|
---|
843 | */
|
---|
844 | bool try_rotation_from_right(btree_node_t *lnode)
|
---|
845 | {
|
---|
846 | index_t idx;
|
---|
847 | btree_node_t *rnode;
|
---|
848 |
|
---|
849 | /*
|
---|
850 | * If this is root node, the rotation can not be done.
|
---|
851 | */
|
---|
852 | if (ROOT_NODE(lnode))
|
---|
853 | return false;
|
---|
854 |
|
---|
855 | idx = find_key_by_subtree(lnode->parent, lnode, false);
|
---|
856 | if (idx == lnode->parent->keys) {
|
---|
857 | /*
|
---|
858 | * If this node is the rightmost subtree of its parent,
|
---|
859 | * the rotation can not be done.
|
---|
860 | */
|
---|
861 | return false;
|
---|
862 | }
|
---|
863 |
|
---|
864 | rnode = lnode->parent->subtree[idx + 1];
|
---|
865 | if (rnode->keys > FILL_FACTOR) {
|
---|
866 | rotate_from_right(lnode, rnode, idx);
|
---|
867 | return true;
|
---|
868 | }
|
---|
869 |
|
---|
870 | return false;
|
---|
871 | }
|
---|
872 |
|
---|
873 | /** Print B-tree.
|
---|
874 | *
|
---|
875 | * @param t Print out B-tree.
|
---|
876 | */
|
---|
877 | void btree_print(btree_t *t)
|
---|
878 | {
|
---|
879 | int i, depth = t->root->depth;
|
---|
880 | link_t head, *cur;
|
---|
881 |
|
---|
882 | printf("Printing B-tree:\n");
|
---|
883 | list_initialize(&head);
|
---|
884 | list_append(&t->root->bfs_link, &head);
|
---|
885 |
|
---|
886 | /*
|
---|
887 | * Use BFS search to print out the tree.
|
---|
888 | * Levels are distinguished from one another by node->depth.
|
---|
889 | */
|
---|
890 | while (!list_empty(&head)) {
|
---|
891 | link_t *hlp;
|
---|
892 | btree_node_t *node;
|
---|
893 |
|
---|
894 | hlp = head.next;
|
---|
895 | ASSERT(hlp != &head);
|
---|
896 | node = list_get_instance(hlp, btree_node_t, bfs_link);
|
---|
897 | list_remove(hlp);
|
---|
898 |
|
---|
899 | ASSERT(node);
|
---|
900 |
|
---|
901 | if (node->depth != depth) {
|
---|
902 | printf("\n");
|
---|
903 | depth = node->depth;
|
---|
904 | }
|
---|
905 |
|
---|
906 | printf("(");
|
---|
907 | for (i = 0; i < node->keys; i++) {
|
---|
908 | printf("%d%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
909 | if (node->depth && node->subtree[i]) {
|
---|
910 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
911 | }
|
---|
912 | }
|
---|
913 | if (node->depth && node->subtree[i]) {
|
---|
914 | list_append(&node->subtree[i]->bfs_link, &head);
|
---|
915 | }
|
---|
916 | printf(")");
|
---|
917 | }
|
---|
918 | printf("\n");
|
---|
919 |
|
---|
920 | printf("Printing list of leaves:\n");
|
---|
921 | for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
|
---|
922 | btree_node_t *node;
|
---|
923 |
|
---|
924 | node = list_get_instance(cur, btree_node_t, leaf_link);
|
---|
925 |
|
---|
926 | ASSERT(node);
|
---|
927 |
|
---|
928 | printf("(");
|
---|
929 | for (i = 0; i < node->keys; i++)
|
---|
930 | printf("%d%s", node->key[i], i < node->keys - 1 ? "," : "");
|
---|
931 | printf(")");
|
---|
932 | }
|
---|
933 | printf("\n");
|
---|
934 | }
|
---|