source: mainline/generic/src/adt/btree.c@ 5b04fc7

lfn serial ticket/834-toolchain-update topic/msim-upgrade topic/simplify-dev-export
Last change on this file since 5b04fc7 was 5b04fc7, checked in by Jakub Jermar <jakub@…>, 19 years ago

Completed B+-tree support.
Enable btree_remove().
Reorder some static functions and group them together.
Fix order of nodes in the leaf_head list.

  • Property mode set to 100644
File size: 25.5 KB
Line 
1/*
2 * Copyright (C) 2006 Jakub Jermar
3 * All rights reserved.
4 *
5 * Redistribution and use in source and binary forms, with or without
6 * modification, are permitted provided that the following conditions
7 * are met:
8 *
9 * - Redistributions of source code must retain the above copyright
10 * notice, this list of conditions and the following disclaimer.
11 * - Redistributions in binary form must reproduce the above copyright
12 * notice, this list of conditions and the following disclaimer in the
13 * documentation and/or other materials provided with the distribution.
14 * - The name of the author may not be used to endorse or promote products
15 * derived from this software without specific prior written permission.
16 *
17 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
18 * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
19 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
20 * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
21 * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
22 * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
26 * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 */
28
29/*
30 * This B-tree has the following properties:
31 * - it is a ballanced 2-3-4-5 tree (i.e. BTREE_M = 5)
32 * - values (i.e. pointers to values) are stored only in leaves
33 * - leaves are linked in a list
34 * - technically, it is a B+-tree (because of the previous properties)
35 *
36 * Be carefull when using these trees. They need to allocate
37 * and deallocate memory for their index nodes and as such
38 * can sleep.
39 */
40
41#include <adt/btree.h>
42#include <adt/list.h>
43#include <mm/slab.h>
44#include <debug.h>
45#include <panic.h>
46#include <typedefs.h>
47#include <print.h>
48
49static void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node);
50static void _btree_remove(btree_t *t, __native key, btree_node_t *node);
51static void node_initialize(btree_node_t *node);
52static void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree);
53static void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
54static void node_remove_key_and_lsubtree(btree_node_t *node, __native key);
55static void node_remove_key_and_rsubtree(btree_node_t *node, __native key);
56static btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median);
57static btree_node_t *node_combine(btree_node_t *node);
58static index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right);
59static void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
60static void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx);
61static bool try_insert_by_rotation_to_left(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
62static bool try_insert_by_rotation_to_right(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree);
63static bool try_rotation_from_left(btree_node_t *rnode);
64static bool try_rotation_from_right(btree_node_t *lnode);
65
66#define ROOT_NODE(n) (!(n)->parent)
67#define INDEX_NODE(n) ((n)->subtree[0] != NULL)
68#define LEAF_NODE(n) ((n)->subtree[0] == NULL)
69
70#define FILL_FACTOR ((BTREE_M-1)/2)
71
72#define MEDIAN_LOW_INDEX(n) (((n)->keys-1)/2)
73#define MEDIAN_HIGH_INDEX(n) ((n)->keys/2)
74#define MEDIAN_LOW(n) ((n)->key[MEDIAN_LOW_INDEX((n))]);
75#define MEDIAN_HIGH(n) ((n)->key[MEDIAN_HIGH_INDEX((n))]);
76
77/** Create empty B-tree.
78 *
79 * @param t B-tree.
80 */
81void btree_create(btree_t *t)
82{
83 list_initialize(&t->leaf_head);
84 t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
85 node_initialize(t->root);
86 list_append(&t->root->leaf_link, &t->leaf_head);
87}
88
89/** Destroy empty B-tree. */
90void btree_destroy(btree_t *t)
91{
92 ASSERT(!t->root->keys);
93 free(t->root);
94}
95
96/** Insert key-value pair into B-tree.
97 *
98 * @param t B-tree.
99 * @param key Key to be inserted.
100 * @param value Value to be inserted.
101 * @param leaf_node Leaf node where the insertion should begin.
102 */
103void btree_insert(btree_t *t, __native key, void *value, btree_node_t *leaf_node)
104{
105 btree_node_t *lnode;
106
107 ASSERT(value);
108
109 lnode = leaf_node;
110 if (!lnode) {
111 if (btree_search(t, key, &lnode)) {
112 panic("B-tree %P already contains key %d\n", t, key);
113 }
114 }
115
116 _btree_insert(t, key, value, NULL, lnode);
117}
118
119/** Recursively insert into B-tree.
120 *
121 * @param t B-tree.
122 * @param key Key to be inserted.
123 * @param value Value to be inserted.
124 * @param rsubtree Right subtree of the inserted key.
125 * @param node Start inserting into this node.
126 */
127void _btree_insert(btree_t *t, __native key, void *value, btree_node_t *rsubtree, btree_node_t *node)
128{
129 if (node->keys < BTREE_MAX_KEYS) {
130 /*
131 * Node conatins enough space, the key can be stored immediately.
132 */
133 node_insert_key_and_rsubtree(node, key, value, rsubtree);
134 } else if (try_insert_by_rotation_to_left(node, key, value, rsubtree)) {
135 /*
136 * The key-value-rsubtree triplet has been inserted because
137 * some keys could have been moved to the left sibling.
138 */
139 } else if (try_insert_by_rotation_to_right(node, key, value, rsubtree)) {
140 /*
141 * The key-value-rsubtree triplet has been inserted because
142 * some keys could have been moved to the right sibling.
143 */
144 } else {
145 btree_node_t *rnode;
146 __native median;
147
148 /*
149 * Node is full and both siblings (if both exist) are full too.
150 * Split the node and insert the smallest key from the node containing
151 * bigger keys (i.e. the new node) into its parent.
152 */
153
154 rnode = node_split(node, key, value, rsubtree, &median);
155
156 if (LEAF_NODE(node)) {
157 list_prepend(&rnode->leaf_link, &node->leaf_link);
158 }
159
160 if (ROOT_NODE(node)) {
161 /*
162 * We split the root node. Create new root.
163 */
164 t->root = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
165 node->parent = t->root;
166 rnode->parent = t->root;
167 node_initialize(t->root);
168
169 /*
170 * Left-hand side subtree will be the old root (i.e. node).
171 * Right-hand side subtree will be rnode.
172 */
173 t->root->subtree[0] = node;
174
175 t->root->depth = node->depth + 1;
176 }
177 _btree_insert(t, median, NULL, rnode, node->parent);
178 }
179
180}
181
182/** Remove B-tree node.
183 *
184 * @param B-tree.
185 * @param key Key to be removed from the B-tree along with its associated value.
186 * @param leaf_node If not NULL, pointer to the leaf node where the key is found.
187 */
188void btree_remove(btree_t *t, __native key, btree_node_t *leaf_node)
189{
190 btree_node_t *lnode;
191
192 lnode = leaf_node;
193 if (!lnode) {
194 if (!btree_search(t, key, &lnode)) {
195 panic("B-tree %P does not contain key %d\n", t, key);
196 }
197 }
198
199 _btree_remove(t, key, lnode);
200}
201
202/** Recursively remove B-tree node.
203 *
204 * @param B-tree.
205 * @param key Key to be removed from the B-tree along with its associated value.
206 * @param node Node where the key being removed resides.
207 */
208void _btree_remove(btree_t *t, __native key, btree_node_t *node)
209{
210 if (ROOT_NODE(node)) {
211 if (node->keys == 1 && node->subtree[0]) {
212 /*
213 * Free the current root and set new root.
214 */
215 t->root = node->subtree[0];
216 t->root->parent = NULL;
217 free(node);
218 } else {
219 /*
220 * Remove the key from the root node.
221 * Note that the right subtree is removed because when
222 * combining two nodes, the left-side sibling is preserved
223 * and the right-side sibling is freed.
224 */
225 node_remove_key_and_rsubtree(node, key);
226 }
227 return;
228 }
229
230 if (node->keys <= FILL_FACTOR) {
231 /*
232 * If the node is below the fill factor,
233 * try to borrow keys from left or right sibling.
234 */
235 if (!try_rotation_from_left(node))
236 try_rotation_from_right(node);
237 }
238
239 if (node->keys > FILL_FACTOR) {
240 int i;
241
242 /*
243 * The key can be immediatelly removed.
244 *
245 * Note that the right subtree is removed because when
246 * combining two nodes, the left-side sibling is preserved
247 * and the right-side sibling is freed.
248 */
249 node_remove_key_and_rsubtree(node, key);
250 for (i = 0; i < node->parent->keys; i++) {
251 if (node->parent->key[i] == key)
252 node->parent->key[i] = node->key[0];
253 }
254
255 } else {
256 index_t idx;
257 btree_node_t *rnode, *parent;
258
259 /*
260 * The node is below the fill factor as well as its left and right sibling.
261 * Resort to combining the node with one of its siblings.
262 * The node which is on the left is preserved and the node on the right is
263 * freed.
264 */
265 parent = node->parent;
266 node_remove_key_and_rsubtree(node, key);
267 rnode = node_combine(node);
268 if (LEAF_NODE(rnode))
269 list_remove(&rnode->leaf_link);
270 idx = find_key_by_subtree(parent, rnode, true);
271 ASSERT((int) idx != -1);
272 free(rnode);
273 _btree_remove(t, parent->key[idx], parent);
274 }
275}
276
277/** Search key in a B-tree.
278 *
279 * @param t B-tree.
280 * @param key Key to be searched.
281 * @param leaf_node Address where to put pointer to visited leaf node.
282 *
283 * @return Pointer to value or NULL if there is no such key.
284 */
285void *btree_search(btree_t *t, __native key, btree_node_t **leaf_node)
286{
287 btree_node_t *cur, *next;
288
289 /*
290 * Iteratively descend to the leaf that can contain the searched key.
291 */
292 for (cur = t->root; cur; cur = next) {
293
294 /* Last iteration will set this with proper leaf node address. */
295 *leaf_node = cur;
296
297 /*
298 * The key can be in the leftmost subtree.
299 * Test it separately.
300 */
301 if (key < cur->key[0]) {
302 next = cur->subtree[0];
303 continue;
304 } else {
305 void *val;
306 int i;
307
308 /*
309 * Now if the key is smaller than cur->key[i]
310 * it can only mean that the value is in cur->subtree[i]
311 * or it is not in the tree at all.
312 */
313 for (i = 1; i < cur->keys; i++) {
314 if (key < cur->key[i]) {
315 next = cur->subtree[i];
316 val = cur->value[i - 1];
317
318 if (LEAF_NODE(cur))
319 return key == cur->key[i - 1] ? val : NULL;
320
321 goto descend;
322 }
323 }
324
325 /*
326 * Last possibility is that the key is in the rightmost subtree.
327 */
328 next = cur->subtree[i];
329 val = cur->value[i - 1];
330 if (LEAF_NODE(cur))
331 return key == cur->key[i - 1] ? val : NULL;
332 }
333 descend:
334 ;
335 }
336
337 /*
338 * The key was not found in the *leaf_node and is smaller than any of its keys.
339 */
340 return NULL;
341}
342
343/** Initialize B-tree node.
344 *
345 * @param node B-tree node.
346 */
347void node_initialize(btree_node_t *node)
348{
349 int i;
350
351 node->keys = 0;
352
353 /* Clean also space for the extra key. */
354 for (i = 0; i < BTREE_MAX_KEYS + 1; i++) {
355 node->key[i] = 0;
356 node->value[i] = NULL;
357 node->subtree[i] = NULL;
358 }
359 node->subtree[i] = NULL;
360
361 node->parent = NULL;
362
363 link_initialize(&node->leaf_link);
364
365 link_initialize(&node->bfs_link);
366 node->depth = 0;
367}
368
369/** Insert key-value-lsubtree triplet into B-tree node.
370 *
371 * It is actually possible to have more keys than BTREE_MAX_KEYS.
372 * This feature is used during insert by right rotation.
373 *
374 * @param node B-tree node into wich the new key is to be inserted.
375 * @param key The key to be inserted.
376 * @param value Pointer to value to be inserted.
377 * @param lsubtree Pointer to the left subtree.
378 */
379void node_insert_key_and_lsubtree(btree_node_t *node, __native key, void *value, btree_node_t *lsubtree)
380{
381 int i;
382
383 for (i = 0; i < node->keys; i++) {
384 if (key < node->key[i]) {
385 int j;
386
387 for (j = node->keys; j > i; j--) {
388 node->key[j] = node->key[j - 1];
389 node->value[j] = node->value[j - 1];
390 node->subtree[j + 1] = node->subtree[j];
391 }
392 node->subtree[j + 1] = node->subtree[j];
393 break;
394 }
395 }
396 node->key[i] = key;
397 node->value[i] = value;
398 node->subtree[i] = lsubtree;
399
400 node->keys++;
401}
402
403/** Insert key-value-rsubtree triplet into B-tree node.
404 *
405 * It is actually possible to have more keys than BTREE_MAX_KEYS.
406 * This feature is used during splitting the node when the
407 * number of keys is BTREE_MAX_KEYS + 1. Insert by left rotation
408 * also makes use of this feature.
409 *
410 * @param node B-tree node into wich the new key is to be inserted.
411 * @param key The key to be inserted.
412 * @param value Pointer to value to be inserted.
413 * @param rsubtree Pointer to the right subtree.
414 */
415void node_insert_key_and_rsubtree(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree)
416{
417 int i;
418
419 for (i = 0; i < node->keys; i++) {
420 if (key < node->key[i]) {
421 int j;
422
423 for (j = node->keys; j > i; j--) {
424 node->key[j] = node->key[j - 1];
425 node->value[j] = node->value[j - 1];
426 node->subtree[j + 1] = node->subtree[j];
427 }
428 break;
429 }
430 }
431 node->key[i] = key;
432 node->value[i] = value;
433 node->subtree[i + 1] = rsubtree;
434
435 node->keys++;
436}
437
438/** Remove key and its left subtree pointer from B-tree node.
439 *
440 * Remove the key and eliminate gaps in node->key array.
441 * Note that the value pointer and the left subtree pointer
442 * is removed from the node as well.
443 *
444 * @param node B-tree node.
445 * @param key Key to be removed.
446 */
447void node_remove_key_and_lsubtree(btree_node_t *node, __native key)
448{
449 int i, j;
450
451 for (i = 0; i < node->keys; i++) {
452 if (key == node->key[i]) {
453 for (j = i + 1; j < node->keys; j++) {
454 node->key[j - 1] = node->key[j];
455 node->value[j - 1] = node->value[j];
456 node->subtree[j - 1] = node->subtree[j];
457 }
458 node->subtree[j - 1] = node->subtree[j];
459 node->keys--;
460 return;
461 }
462 }
463 panic("node %P does not contain key %d\n", node, key);
464}
465
466/** Remove key and its right subtree pointer from B-tree node.
467 *
468 * Remove the key and eliminate gaps in node->key array.
469 * Note that the value pointer and the right subtree pointer
470 * is removed from the node as well.
471 *
472 * @param node B-tree node.
473 * @param key Key to be removed.
474 */
475void node_remove_key_and_rsubtree(btree_node_t *node, __native key)
476{
477 int i, j;
478
479 for (i = 0; i < node->keys; i++) {
480 if (key == node->key[i]) {
481 for (j = i + 1; j < node->keys; j++) {
482 node->key[j - 1] = node->key[j];
483 node->value[j - 1] = node->value[j];
484 node->subtree[j] = node->subtree[j + 1];
485 }
486 node->keys--;
487 return;
488 }
489 }
490 panic("node %P does not contain key %d\n", node, key);
491}
492
493/** Split full B-tree node and insert new key-value-right-subtree triplet.
494 *
495 * This function will split a node and return pointer to a newly created
496 * node containing keys greater than or equal to the greater of medians
497 * (or median) of the old keys and the newly added key. It will also write
498 * the median key to a memory address supplied by the caller.
499 *
500 * If the node being split is an index node, the median will not be
501 * included in the new node. If the node is a leaf node,
502 * the median will be copied there.
503 *
504 * @param node B-tree node wich is going to be split.
505 * @param key The key to be inserted.
506 * @param value Pointer to the value to be inserted.
507 * @param rsubtree Pointer to the right subtree of the key being added.
508 * @param median Address in memory, where the median key will be stored.
509 *
510 * @return Newly created right sibling of node.
511 */
512btree_node_t *node_split(btree_node_t *node, __native key, void *value, btree_node_t *rsubtree, __native *median)
513{
514 btree_node_t *rnode;
515 int i, j;
516
517 ASSERT(median);
518 ASSERT(node->keys == BTREE_MAX_KEYS);
519
520 /*
521 * Use the extra space to store the extra node.
522 */
523 node_insert_key_and_rsubtree(node, key, value, rsubtree);
524
525 /*
526 * Compute median of keys.
527 */
528 *median = MEDIAN_HIGH(node);
529
530 /*
531 * Allocate and initialize new right sibling.
532 */
533 rnode = (btree_node_t *) malloc(sizeof(btree_node_t), 0);
534 node_initialize(rnode);
535 rnode->parent = node->parent;
536 rnode->depth = node->depth;
537
538 /*
539 * Copy big keys, values and subtree pointers to the new right sibling.
540 * If this is an index node, do not copy the median.
541 */
542 i = (int) INDEX_NODE(node);
543 for (i += MEDIAN_HIGH_INDEX(node), j = 0; i < node->keys; i++, j++) {
544 rnode->key[j] = node->key[i];
545 rnode->value[j] = node->value[i];
546 rnode->subtree[j] = node->subtree[i];
547
548 /*
549 * Fix parent links in subtrees.
550 */
551 if (rnode->subtree[j])
552 rnode->subtree[j]->parent = rnode;
553
554 }
555 rnode->subtree[j] = node->subtree[i];
556 if (rnode->subtree[j])
557 rnode->subtree[j]->parent = rnode;
558
559 rnode->keys = j; /* Set number of keys of the new node. */
560 node->keys /= 2; /* Shrink the old node. */
561
562 return rnode;
563}
564
565/** Combine node with any of its siblings.
566 *
567 * The siblings are required to be below the fill factor.
568 *
569 * @param node Node to combine with one of its siblings.
570 *
571 * @return Pointer to the rightmost of the two nodes.
572 */
573btree_node_t *node_combine(btree_node_t *node)
574{
575 index_t idx;
576 btree_node_t *rnode;
577 int i;
578
579 ASSERT(!ROOT_NODE(node));
580
581 idx = find_key_by_subtree(node->parent, node, false);
582 if (idx == node->parent->keys) {
583 /*
584 * Rightmost subtree of its parent, combine with the left sibling.
585 */
586 idx--;
587 rnode = node;
588 node = node->parent->subtree[idx];
589 } else {
590 rnode = node->parent->subtree[idx + 1];
591 }
592
593 /* Index nodes need to insert parent node key in between left and right node. */
594 if (INDEX_NODE(node))
595 node->key[node->keys++] = node->parent->key[idx];
596
597 /* Copy the key-value-subtree triplets from the right node. */
598 for (i = 0; i < rnode->keys; i++) {
599 node->key[node->keys + i] = rnode->key[i];
600 node->value[node->keys + i] = rnode->value[i];
601 if (INDEX_NODE(node)) {
602 node->subtree[node->keys + i] = rnode->subtree[i];
603 rnode->subtree[i]->parent = node;
604 }
605 }
606 if (INDEX_NODE(node)) {
607 node->subtree[node->keys + i] = rnode->subtree[i];
608 rnode->subtree[i]->parent = node;
609 }
610
611 node->keys += rnode->keys;
612
613 return rnode;
614}
615
616/** Find key by its left or right subtree.
617 *
618 * @param node B-tree node.
619 * @param subtree Left or right subtree of a key found in node.
620 * @param right If true, subtree is a right subtree. If false, subtree is a left subtree.
621 *
622 * @return Index of the key associated with the subtree.
623 */
624index_t find_key_by_subtree(btree_node_t *node, btree_node_t *subtree, bool right)
625{
626 int i;
627
628 for (i = 0; i < node->keys + 1; i++) {
629 if (subtree == node->subtree[i])
630 return i - (int) (right != false);
631 }
632 panic("node %P does not contain subtree %P\n", node, subtree);
633}
634
635/** Rotate one key-value-rsubtree triplet from the left sibling to the right sibling.
636 *
637 * The biggest key and its value and right subtree is rotated from the left node
638 * to the right. If the node is an index node, than the parent node key belonging to
639 * the left node takes part in the rotation.
640 *
641 * @param lnode Left sibling.
642 * @param rnode Right sibling.
643 * @param idx Index of the parent node key that is taking part in the rotation.
644 */
645void rotate_from_left(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
646{
647 __native key;
648
649 key = lnode->key[lnode->keys - 1];
650
651 if (LEAF_NODE(lnode)) {
652 void *value;
653
654 value = lnode->value[lnode->keys - 1];
655 node_remove_key_and_rsubtree(lnode, key);
656 node_insert_key_and_lsubtree(rnode, key, value, NULL);
657 lnode->parent->key[idx] = key;
658 } else {
659 btree_node_t *rsubtree;
660
661 rsubtree = lnode->subtree[lnode->keys];
662 node_remove_key_and_rsubtree(lnode, key);
663 node_insert_key_and_lsubtree(rnode, lnode->parent->key[idx], NULL, rsubtree);
664 lnode->parent->key[idx] = key;
665
666 /* Fix parent link of the reconnected right subtree. */
667 rsubtree->parent = rnode;
668 }
669
670}
671
672/** Rotate one key-value-lsubtree triplet from the right sibling to the left sibling.
673 *
674 * The smallest key and its value and left subtree is rotated from the right node
675 * to the left. If the node is an index node, than the parent node key belonging to
676 * the right node takes part in the rotation.
677 *
678 * @param lnode Left sibling.
679 * @param rnode Right sibling.
680 * @param idx Index of the parent node key that is taking part in the rotation.
681 */
682void rotate_from_right(btree_node_t *lnode, btree_node_t *rnode, index_t idx)
683{
684 __native key;
685
686 key = rnode->key[0];
687
688 if (LEAF_NODE(rnode)) {
689 void *value;
690
691 value = rnode->value[0];
692 node_remove_key_and_lsubtree(rnode, key);
693 node_insert_key_and_rsubtree(lnode, key, value, NULL);
694 rnode->parent->key[idx] = rnode->key[0];
695 } else {
696 btree_node_t *lsubtree;
697
698 lsubtree = rnode->subtree[0];
699 node_remove_key_and_lsubtree(rnode, key);
700 node_insert_key_and_rsubtree(lnode, rnode->parent->key[idx], NULL, lsubtree);
701 rnode->parent->key[idx] = key;
702
703 /* Fix parent link of the reconnected left subtree. */
704 lsubtree->parent = lnode;
705 }
706
707}
708
709/** Insert key-value-rsubtree triplet and rotate the node to the left, if this operation can be done.
710 *
711 * Left sibling of the node (if it exists) is checked for free space.
712 * If there is free space, the key is inserted and the smallest key of
713 * the node is moved there. The index node which is the parent of both
714 * nodes is fixed.
715 *
716 * @param node B-tree node.
717 * @param inskey Key to be inserted.
718 * @param insvalue Value to be inserted.
719 * @param rsubtree Right subtree of inskey.
720 *
721 * @return True if the rotation was performed, false otherwise.
722 */
723bool try_insert_by_rotation_to_left(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
724{
725 index_t idx;
726 btree_node_t *lnode;
727
728 /*
729 * If this is root node, the rotation can not be done.
730 */
731 if (ROOT_NODE(node))
732 return false;
733
734 idx = find_key_by_subtree(node->parent, node, true);
735 if ((int) idx == -1) {
736 /*
737 * If this node is the leftmost subtree of its parent,
738 * the rotation can not be done.
739 */
740 return false;
741 }
742
743 lnode = node->parent->subtree[idx];
744 if (lnode->keys < BTREE_MAX_KEYS) {
745 /*
746 * The rotaion can be done. The left sibling has free space.
747 */
748 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
749 rotate_from_right(lnode, node, idx);
750 return true;
751 }
752
753 return false;
754}
755
756/** Insert key-value-rsubtree triplet and rotate the node to the right, if this operation can be done.
757 *
758 * Right sibling of the node (if it exists) is checked for free space.
759 * If there is free space, the key is inserted and the biggest key of
760 * the node is moved there. The index node which is the parent of both
761 * nodes is fixed.
762 *
763 * @param node B-tree node.
764 * @param inskey Key to be inserted.
765 * @param insvalue Value to be inserted.
766 * @param rsubtree Right subtree of inskey.
767 *
768 * @return True if the rotation was performed, false otherwise.
769 */
770bool try_insert_by_rotation_to_right(btree_node_t *node, __native inskey, void *insvalue, btree_node_t *rsubtree)
771{
772 index_t idx;
773 btree_node_t *rnode;
774
775 /*
776 * If this is root node, the rotation can not be done.
777 */
778 if (ROOT_NODE(node))
779 return false;
780
781 idx = find_key_by_subtree(node->parent, node, false);
782 if (idx == node->parent->keys) {
783 /*
784 * If this node is the rightmost subtree of its parent,
785 * the rotation can not be done.
786 */
787 return false;
788 }
789
790 rnode = node->parent->subtree[idx + 1];
791 if (rnode->keys < BTREE_MAX_KEYS) {
792 /*
793 * The rotaion can be done. The right sibling has free space.
794 */
795 node_insert_key_and_rsubtree(node, inskey, insvalue, rsubtree);
796 rotate_from_left(node, rnode, idx);
797 return true;
798 }
799
800 return false;
801}
802
803/** Rotate in a key from the left sibling or from the index node, if this operation can be done.
804 *
805 * @param rnode Node into which to add key from its left sibling or from the index node.
806 *
807 * @return True if the rotation was performed, false otherwise.
808 */
809bool try_rotation_from_left(btree_node_t *rnode)
810{
811 index_t idx;
812 btree_node_t *lnode;
813
814 /*
815 * If this is root node, the rotation can not be done.
816 */
817 if (ROOT_NODE(rnode))
818 return false;
819
820 idx = find_key_by_subtree(rnode->parent, rnode, true);
821 if ((int) idx == -1) {
822 /*
823 * If this node is the leftmost subtree of its parent,
824 * the rotation can not be done.
825 */
826 return false;
827 }
828
829 lnode = rnode->parent->subtree[idx];
830 if (lnode->keys > FILL_FACTOR) {
831 rotate_from_left(lnode, rnode, idx);
832 return true;
833 }
834
835 return false;
836}
837
838/** Rotate in a key from the right sibling or from the index node, if this operation can be done.
839 *
840 * @param rnode Node into which to add key from its right sibling or from the index node.
841 *
842 * @return True if the rotation was performed, false otherwise.
843 */
844bool try_rotation_from_right(btree_node_t *lnode)
845{
846 index_t idx;
847 btree_node_t *rnode;
848
849 /*
850 * If this is root node, the rotation can not be done.
851 */
852 if (ROOT_NODE(lnode))
853 return false;
854
855 idx = find_key_by_subtree(lnode->parent, lnode, false);
856 if (idx == lnode->parent->keys) {
857 /*
858 * If this node is the rightmost subtree of its parent,
859 * the rotation can not be done.
860 */
861 return false;
862 }
863
864 rnode = lnode->parent->subtree[idx + 1];
865 if (rnode->keys > FILL_FACTOR) {
866 rotate_from_right(lnode, rnode, idx);
867 return true;
868 }
869
870 return false;
871}
872
873/** Print B-tree.
874 *
875 * @param t Print out B-tree.
876 */
877void btree_print(btree_t *t)
878{
879 int i, depth = t->root->depth;
880 link_t head, *cur;
881
882 printf("Printing B-tree:\n");
883 list_initialize(&head);
884 list_append(&t->root->bfs_link, &head);
885
886 /*
887 * Use BFS search to print out the tree.
888 * Levels are distinguished from one another by node->depth.
889 */
890 while (!list_empty(&head)) {
891 link_t *hlp;
892 btree_node_t *node;
893
894 hlp = head.next;
895 ASSERT(hlp != &head);
896 node = list_get_instance(hlp, btree_node_t, bfs_link);
897 list_remove(hlp);
898
899 ASSERT(node);
900
901 if (node->depth != depth) {
902 printf("\n");
903 depth = node->depth;
904 }
905
906 printf("(");
907 for (i = 0; i < node->keys; i++) {
908 printf("%d%s", node->key[i], i < node->keys - 1 ? "," : "");
909 if (node->depth && node->subtree[i]) {
910 list_append(&node->subtree[i]->bfs_link, &head);
911 }
912 }
913 if (node->depth && node->subtree[i]) {
914 list_append(&node->subtree[i]->bfs_link, &head);
915 }
916 printf(")");
917 }
918 printf("\n");
919
920 printf("Printing list of leaves:\n");
921 for (cur = t->leaf_head.next; cur != &t->leaf_head; cur = cur->next) {
922 btree_node_t *node;
923
924 node = list_get_instance(cur, btree_node_t, leaf_link);
925
926 ASSERT(node);
927
928 printf("(");
929 for (i = 0; i < node->keys; i++)
930 printf("%d%s", node->key[i], i < node->keys - 1 ? "," : "");
931 printf(")");
932 }
933 printf("\n");
934}
Note: See TracBrowser for help on using the repository browser.