1 | /*
|
---|
2 | * Copyright (C) 2006 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /**
|
---|
30 | * @file page_pt.c
|
---|
31 | * @brief Virtual Address Translation for hierarchical 4-level page tables.
|
---|
32 | */
|
---|
33 |
|
---|
34 | #include <genarch/mm/page_pt.h>
|
---|
35 | #include <mm/page.h>
|
---|
36 | #include <mm/frame.h>
|
---|
37 | #include <mm/as.h>
|
---|
38 | #include <arch/mm/page.h>
|
---|
39 | #include <arch/mm/as.h>
|
---|
40 | #include <arch/types.h>
|
---|
41 | #include <typedefs.h>
|
---|
42 | #include <arch/asm.h>
|
---|
43 | #include <memstr.h>
|
---|
44 |
|
---|
45 | static void pt_mapping_insert(as_t *as, __address page, __address frame, int flags);
|
---|
46 | static void pt_mapping_remove(as_t *as, __address page);
|
---|
47 | static pte_t *pt_mapping_find(as_t *as, __address page);
|
---|
48 |
|
---|
49 | page_mapping_operations_t pt_mapping_operations = {
|
---|
50 | .mapping_insert = pt_mapping_insert,
|
---|
51 | .mapping_remove = pt_mapping_remove,
|
---|
52 | .mapping_find = pt_mapping_find
|
---|
53 | };
|
---|
54 |
|
---|
55 | /** Map page to frame using hierarchical page tables.
|
---|
56 | *
|
---|
57 | * Map virtual address page to physical address frame
|
---|
58 | * using flags.
|
---|
59 | *
|
---|
60 | * The page table must be locked and interrupts must be disabled.
|
---|
61 | *
|
---|
62 | * @param as Address space to wich page belongs.
|
---|
63 | * @param page Virtual address of the page to be mapped.
|
---|
64 | * @param frame Physical address of memory frame to which the mapping is done.
|
---|
65 | * @param flags Flags to be used for mapping.
|
---|
66 | */
|
---|
67 | void pt_mapping_insert(as_t *as, __address page, __address frame, int flags)
|
---|
68 | {
|
---|
69 | pte_t *ptl0, *ptl1, *ptl2, *ptl3;
|
---|
70 | __address newpt;
|
---|
71 |
|
---|
72 | ptl0 = (pte_t *) PA2KA((__address) as->page_table);
|
---|
73 |
|
---|
74 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
75 | newpt = PA2KA(PFN2ADDR(frame_alloc(ONE_FRAME, FRAME_KA)));
|
---|
76 | memsetb(newpt, PAGE_SIZE, 0);
|
---|
77 | SET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page), KA2PA(newpt));
|
---|
78 | SET_PTL1_FLAGS(ptl0, PTL0_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
|
---|
79 | }
|
---|
80 |
|
---|
81 | ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
82 |
|
---|
83 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
84 | newpt = PA2KA(PFN2ADDR(frame_alloc(ONE_FRAME, FRAME_KA)));
|
---|
85 | memsetb(newpt, PAGE_SIZE, 0);
|
---|
86 | SET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page), KA2PA(newpt));
|
---|
87 | SET_PTL2_FLAGS(ptl1, PTL1_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
|
---|
88 | }
|
---|
89 |
|
---|
90 | ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
91 |
|
---|
92 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT) {
|
---|
93 | newpt = PA2KA(PFN2ADDR(frame_alloc(ONE_FRAME, FRAME_KA)));
|
---|
94 | memsetb(newpt, PAGE_SIZE, 0);
|
---|
95 | SET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page), KA2PA(newpt));
|
---|
96 | SET_PTL3_FLAGS(ptl2, PTL2_INDEX(page), PAGE_PRESENT | PAGE_USER | PAGE_EXEC | PAGE_CACHEABLE | PAGE_WRITE);
|
---|
97 | }
|
---|
98 |
|
---|
99 | ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
100 |
|
---|
101 | SET_FRAME_ADDRESS(ptl3, PTL3_INDEX(page), frame);
|
---|
102 | SET_FRAME_FLAGS(ptl3, PTL3_INDEX(page), flags);
|
---|
103 | }
|
---|
104 |
|
---|
105 | /** Remove mapping of page from hierarchical page tables.
|
---|
106 | *
|
---|
107 | * Remove any mapping of page within address space as.
|
---|
108 | * TLB shootdown should follow in order to make effects of
|
---|
109 | * this call visible.
|
---|
110 | *
|
---|
111 | * Empty page tables except PTL0 are freed.
|
---|
112 | *
|
---|
113 | * The page table must be locked and interrupts must be disabled.
|
---|
114 | *
|
---|
115 | * @param as Address space to wich page belongs.
|
---|
116 | * @param page Virtual address of the page to be demapped.
|
---|
117 | */
|
---|
118 | void pt_mapping_remove(as_t *as, __address page)
|
---|
119 | {
|
---|
120 | pte_t *ptl0, *ptl1, *ptl2, *ptl3;
|
---|
121 | bool empty = true;
|
---|
122 | int i;
|
---|
123 |
|
---|
124 | /*
|
---|
125 | * First, remove the mapping, if it exists.
|
---|
126 | */
|
---|
127 |
|
---|
128 | ptl0 = (pte_t *) PA2KA((__address) as->page_table);
|
---|
129 |
|
---|
130 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
131 | return;
|
---|
132 |
|
---|
133 | ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
134 |
|
---|
135 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
136 | return;
|
---|
137 |
|
---|
138 | ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
139 |
|
---|
140 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
141 | return;
|
---|
142 |
|
---|
143 | ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
144 |
|
---|
145 | /* Destroy the mapping. Setting to PAGE_NOT_PRESENT is not sufficient. */
|
---|
146 | memsetb((__address) &ptl3[PTL3_INDEX(page)], sizeof(pte_t), 0);
|
---|
147 |
|
---|
148 | /*
|
---|
149 | * Second, free all empty tables along the way from PTL3 down to PTL0.
|
---|
150 | */
|
---|
151 |
|
---|
152 | /* check PTL3 */
|
---|
153 | for (i = 0; i < PTL3_ENTRIES; i++) {
|
---|
154 | if (PTE_VALID(&ptl3[i])) {
|
---|
155 | empty = false;
|
---|
156 | break;
|
---|
157 | }
|
---|
158 | }
|
---|
159 | if (empty) {
|
---|
160 | /*
|
---|
161 | * PTL3 is empty.
|
---|
162 | * Release the frame and remove PTL3 pointer from preceding table.
|
---|
163 | */
|
---|
164 | frame_free(ADDR2PFN(KA2PA((__address) ptl3)));
|
---|
165 | if (PTL2_ENTRIES)
|
---|
166 | memsetb((__address) &ptl2[PTL2_INDEX(page)], sizeof(pte_t), 0);
|
---|
167 | else if (PTL1_ENTRIES)
|
---|
168 | memsetb((__address) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
|
---|
169 | else
|
---|
170 | memsetb((__address) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
171 | } else {
|
---|
172 | /*
|
---|
173 | * PTL3 is not empty.
|
---|
174 | * Therefore, there must be a path from PTL0 to PTL3 and
|
---|
175 | * thus nothing to free in higher levels.
|
---|
176 | */
|
---|
177 | return;
|
---|
178 | }
|
---|
179 |
|
---|
180 | /* check PTL2, empty is still true */
|
---|
181 | if (PTL2_ENTRIES) {
|
---|
182 | for (i = 0; i < PTL2_ENTRIES; i++) {
|
---|
183 | if (PTE_VALID(&ptl2[i])) {
|
---|
184 | empty = false;
|
---|
185 | break;
|
---|
186 | }
|
---|
187 | }
|
---|
188 | if (empty) {
|
---|
189 | /*
|
---|
190 | * PTL2 is empty.
|
---|
191 | * Release the frame and remove PTL2 pointer from preceding table.
|
---|
192 | */
|
---|
193 | frame_free(ADDR2PFN(KA2PA((__address) ptl2)));
|
---|
194 | if (PTL1_ENTRIES)
|
---|
195 | memsetb((__address) &ptl1[PTL1_INDEX(page)], sizeof(pte_t), 0);
|
---|
196 | else
|
---|
197 | memsetb((__address) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
198 | }
|
---|
199 | else {
|
---|
200 | /*
|
---|
201 | * PTL2 is not empty.
|
---|
202 | * Therefore, there must be a path from PTL0 to PTL2 and
|
---|
203 | * thus nothing to free in higher levels.
|
---|
204 | */
|
---|
205 | return;
|
---|
206 | }
|
---|
207 | }
|
---|
208 |
|
---|
209 | /* check PTL1, empty is still true */
|
---|
210 | if (PTL1_ENTRIES) {
|
---|
211 | for (i = 0; i < PTL1_ENTRIES; i++) {
|
---|
212 | if (PTE_VALID(&ptl1[i])) {
|
---|
213 | empty = false;
|
---|
214 | break;
|
---|
215 | }
|
---|
216 | }
|
---|
217 | if (empty) {
|
---|
218 | /*
|
---|
219 | * PTL1 is empty.
|
---|
220 | * Release the frame and remove PTL1 pointer from preceding table.
|
---|
221 | */
|
---|
222 | frame_free(ADDR2PFN(KA2PA((__address) ptl1)));
|
---|
223 | memsetb((__address) &ptl0[PTL0_INDEX(page)], sizeof(pte_t), 0);
|
---|
224 | }
|
---|
225 | }
|
---|
226 |
|
---|
227 | }
|
---|
228 |
|
---|
229 | /** Find mapping for virtual page in hierarchical page tables.
|
---|
230 | *
|
---|
231 | * Find mapping for virtual page.
|
---|
232 | *
|
---|
233 | * The page table must be locked and interrupts must be disabled.
|
---|
234 | *
|
---|
235 | * @param as Address space to which page belongs.
|
---|
236 | * @param page Virtual page.
|
---|
237 | *
|
---|
238 | * @return NULL if there is no such mapping; entry from PTL3 describing the mapping otherwise.
|
---|
239 | */
|
---|
240 | pte_t *pt_mapping_find(as_t *as, __address page)
|
---|
241 | {
|
---|
242 | pte_t *ptl0, *ptl1, *ptl2, *ptl3;
|
---|
243 |
|
---|
244 | ptl0 = (pte_t *) PA2KA((__address) as->page_table);
|
---|
245 |
|
---|
246 | if (GET_PTL1_FLAGS(ptl0, PTL0_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
247 | return NULL;
|
---|
248 |
|
---|
249 | ptl1 = (pte_t *) PA2KA(GET_PTL1_ADDRESS(ptl0, PTL0_INDEX(page)));
|
---|
250 |
|
---|
251 | if (GET_PTL2_FLAGS(ptl1, PTL1_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
252 | return NULL;
|
---|
253 |
|
---|
254 | ptl2 = (pte_t *) PA2KA(GET_PTL2_ADDRESS(ptl1, PTL1_INDEX(page)));
|
---|
255 |
|
---|
256 | if (GET_PTL3_FLAGS(ptl2, PTL2_INDEX(page)) & PAGE_NOT_PRESENT)
|
---|
257 | return NULL;
|
---|
258 |
|
---|
259 | ptl3 = (pte_t *) PA2KA(GET_PTL3_ADDRESS(ptl2, PTL2_INDEX(page)));
|
---|
260 |
|
---|
261 | return &ptl3[PTL3_INDEX(page)];
|
---|
262 | }
|
---|