1 | /*
|
---|
2 | * Copyright (c) 2016 Jiri Svoboda
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | /** @addtogroup kernel_generic_adt
|
---|
30 | * @{
|
---|
31 | */
|
---|
32 |
|
---|
33 | /** @file Ordered dictionary.
|
---|
34 | *
|
---|
35 | * Implementation based on red-black trees.
|
---|
36 | * Note that non-data ('leaf') nodes are implemented as NULLs, not
|
---|
37 | * as actual nodes.
|
---|
38 | */
|
---|
39 |
|
---|
40 | #include <adt/list.h>
|
---|
41 | #include <adt/odict.h>
|
---|
42 | #include <assert.h>
|
---|
43 | #include <errno.h>
|
---|
44 | #include <stdbool.h>
|
---|
45 | #include <stddef.h>
|
---|
46 | #include <stdio.h>
|
---|
47 |
|
---|
48 | static void odict_pgu(odlink_t *, odlink_t **, odict_child_sel_t *,
|
---|
49 | odlink_t **, odict_child_sel_t *, odlink_t **);
|
---|
50 |
|
---|
51 | static void odict_rotate_left(odlink_t *);
|
---|
52 | static void odict_rotate_right(odlink_t *);
|
---|
53 | static void odict_swap_node(odlink_t *, odlink_t *);
|
---|
54 | static void odict_replace_subtree(odlink_t *, odlink_t *);
|
---|
55 | static void odict_unlink(odlink_t *);
|
---|
56 | static void odict_link_child_a(odlink_t *, odlink_t *);
|
---|
57 | static void odict_link_child_b(odlink_t *, odlink_t *);
|
---|
58 | static void odict_sibling(odlink_t *, odlink_t *, odict_child_sel_t *,
|
---|
59 | odlink_t **);
|
---|
60 | static odlink_t *odict_search_start_node(odict_t *, void *, odlink_t *);
|
---|
61 |
|
---|
62 | /** Print subtree.
|
---|
63 | *
|
---|
64 | * Print subtree rooted at @a cur
|
---|
65 | *
|
---|
66 | * @param cur Root of tree to print
|
---|
67 | */
|
---|
68 | static void odict_print_tree(odlink_t *cur)
|
---|
69 | {
|
---|
70 | if (cur == NULL) {
|
---|
71 | printf("0");
|
---|
72 | return;
|
---|
73 | }
|
---|
74 |
|
---|
75 | printf("[%p/%c", cur, cur->color == odc_red ? 'r' : 'b');
|
---|
76 | if (cur->a != NULL || cur->b != NULL) {
|
---|
77 | printf(" ");
|
---|
78 | odict_print_tree(cur->a);
|
---|
79 | printf(" ");
|
---|
80 | odict_print_tree(cur->b);
|
---|
81 | }
|
---|
82 | printf("]");
|
---|
83 | }
|
---|
84 |
|
---|
85 | /** Validate ordered dictionary subtree.
|
---|
86 | *
|
---|
87 | * Verify that red-black tree properties are satisfied.
|
---|
88 | *
|
---|
89 | * @param cur Root of tree to verify
|
---|
90 | * @param rbd Place to store black depth of the subtree
|
---|
91 | *
|
---|
92 | * @return EOK on success, EINVAL on failure
|
---|
93 | */
|
---|
94 | static errno_t odict_validate_tree(odlink_t *cur, int *rbd)
|
---|
95 | {
|
---|
96 | errno_t rc;
|
---|
97 | int bd_a, bd_b;
|
---|
98 | int cur_d;
|
---|
99 |
|
---|
100 | if (cur->up == NULL) {
|
---|
101 | /* Verify root pointer */
|
---|
102 | if (cur->odict->root != cur) {
|
---|
103 | printf("cur->up == NULL and yet cur != root\n");
|
---|
104 | return EINVAL;
|
---|
105 | }
|
---|
106 |
|
---|
107 | /* Verify root color */
|
---|
108 | if (cur->color != odc_black) {
|
---|
109 | printf("Root is not black\n");
|
---|
110 | return EINVAL;
|
---|
111 | }
|
---|
112 | }
|
---|
113 |
|
---|
114 | if (cur->a != NULL) {
|
---|
115 | /* Verify symmetry of a - up links */
|
---|
116 | if (cur->a->up != cur) {
|
---|
117 | printf("cur->a->up != cur\n");
|
---|
118 | return EINVAL;
|
---|
119 | }
|
---|
120 |
|
---|
121 | /* Verify that if a node is red, its left child is red */
|
---|
122 | if (cur->a->color == odc_red && cur->color == odc_red) {
|
---|
123 | printf("cur->a is red, cur is red\n");
|
---|
124 | return EINVAL;
|
---|
125 | }
|
---|
126 |
|
---|
127 | /* Recurse to left child */
|
---|
128 | rc = odict_validate_tree(cur->a, &bd_a);
|
---|
129 | if (rc != EOK)
|
---|
130 | return rc;
|
---|
131 | } else {
|
---|
132 | bd_a = -1;
|
---|
133 | }
|
---|
134 |
|
---|
135 | if (cur->b != NULL) {
|
---|
136 | /* Verify symmetry of b - up links */
|
---|
137 | if (cur->b->up != cur) {
|
---|
138 | printf("cur->b->up != cur\n");
|
---|
139 | return EINVAL;
|
---|
140 | }
|
---|
141 |
|
---|
142 | /* Verify that if a node is red, its right child is red */
|
---|
143 | if (cur->b->color == odc_red && cur->color == odc_red) {
|
---|
144 | printf("cur->b is red, cur is red\n");
|
---|
145 | return EINVAL;
|
---|
146 | }
|
---|
147 |
|
---|
148 | /* Recurse to right child */
|
---|
149 | rc = odict_validate_tree(cur->b, &bd_b);
|
---|
150 | if (rc != EOK)
|
---|
151 | return rc;
|
---|
152 | } else {
|
---|
153 | bd_b = -1;
|
---|
154 | }
|
---|
155 |
|
---|
156 | /* Verify that black depths of both children are equal */
|
---|
157 | if (bd_a >= 0 && bd_b >= 0) {
|
---|
158 | if (bd_a != bd_b) {
|
---|
159 | printf("Black depth %d != %d\n", bd_a, bd_b);
|
---|
160 | return EINVAL;
|
---|
161 | }
|
---|
162 | }
|
---|
163 |
|
---|
164 | cur_d = cur->color == odc_black ? 1 : 0;
|
---|
165 | if (bd_a >= 0)
|
---|
166 | *rbd = bd_a + cur_d;
|
---|
167 | else if (bd_b >= 0)
|
---|
168 | *rbd = bd_b + cur_d;
|
---|
169 | else
|
---|
170 | *rbd = cur_d;
|
---|
171 |
|
---|
172 | return EOK;
|
---|
173 | }
|
---|
174 |
|
---|
175 | /** Validate ordered dictionary properties.
|
---|
176 | *
|
---|
177 | * @param odict Ordered dictionary
|
---|
178 | */
|
---|
179 | errno_t odict_validate(odict_t *odict)
|
---|
180 | {
|
---|
181 | int bd;
|
---|
182 | errno_t rc;
|
---|
183 |
|
---|
184 | if (odict->root == NULL)
|
---|
185 | return EOK;
|
---|
186 |
|
---|
187 | rc = odict_validate_tree(odict->root, &bd);
|
---|
188 | if (rc != EOK)
|
---|
189 | odict_print_tree(odict->root);
|
---|
190 |
|
---|
191 | return rc;
|
---|
192 | }
|
---|
193 |
|
---|
194 | /** Initialize ordered dictionary.
|
---|
195 | *
|
---|
196 | * @param odict Ordered dictionary
|
---|
197 | * @param getkey Function to get key
|
---|
198 | * @param cmp Function to compare entries
|
---|
199 | */
|
---|
200 | void odict_initialize(odict_t *odict, odgetkey_t getkey, odcmp_t cmp)
|
---|
201 | {
|
---|
202 | odict->root = NULL;
|
---|
203 | list_initialize(&odict->entries);
|
---|
204 | odict->getkey = getkey;
|
---|
205 | odict->cmp = cmp;
|
---|
206 | }
|
---|
207 |
|
---|
208 | /** Finalize ordered dictionary.
|
---|
209 | *
|
---|
210 | * @param odict Ordered dictionary (must be empty)
|
---|
211 | */
|
---|
212 | void odict_finalize(odict_t *odict)
|
---|
213 | {
|
---|
214 | assert(odict->root == NULL);
|
---|
215 | }
|
---|
216 |
|
---|
217 | /** Initialize ordered dictionary link.
|
---|
218 | *
|
---|
219 | * @param odlink Ordered dictionary link
|
---|
220 | */
|
---|
221 | void odlink_initialize(odlink_t *odlink)
|
---|
222 | {
|
---|
223 | odlink->odict = NULL;
|
---|
224 | odlink->up = NULL;
|
---|
225 | odlink->a = NULL;
|
---|
226 | odlink->b = NULL;
|
---|
227 | link_initialize(&odlink->lentries);
|
---|
228 | }
|
---|
229 |
|
---|
230 | /** Insert entry in ordered dictionary.
|
---|
231 | *
|
---|
232 | * Insert entry in ordered dictionary, placing it after other entries
|
---|
233 | * with the same key.
|
---|
234 | *
|
---|
235 | * @param odlink New entry
|
---|
236 | * @param odict Ordered dictionary
|
---|
237 | * @param hint An entry that might be near the new entry or @c NULL
|
---|
238 | */
|
---|
239 | void odict_insert(odlink_t *odlink, odict_t *odict, odlink_t *hint)
|
---|
240 | {
|
---|
241 | int d;
|
---|
242 | odlink_t *cur;
|
---|
243 | odlink_t *p;
|
---|
244 | odlink_t *g;
|
---|
245 | odlink_t *u;
|
---|
246 | odict_child_sel_t pcs, gcs;
|
---|
247 |
|
---|
248 | assert(!odlink_used(odlink));
|
---|
249 |
|
---|
250 | if (odict->root == NULL) {
|
---|
251 | /* odlink is the root node */
|
---|
252 | odict->root = odlink;
|
---|
253 | odlink->odict = odict;
|
---|
254 | odlink->color = odc_black;
|
---|
255 | list_append(&odlink->lentries, &odict->entries);
|
---|
256 | return;
|
---|
257 | }
|
---|
258 |
|
---|
259 | cur = odict_search_start_node(odict, odict->getkey(odlink), hint);
|
---|
260 | while (true) {
|
---|
261 | d = odict->cmp(odict->getkey(odlink), odict->getkey(cur));
|
---|
262 | if (d < 0) {
|
---|
263 | if (cur->a == NULL) {
|
---|
264 | odict_link_child_a(odlink, cur);
|
---|
265 | break;
|
---|
266 | }
|
---|
267 | cur = cur->a;
|
---|
268 | } else {
|
---|
269 | if (cur->b == NULL) {
|
---|
270 | odict_link_child_b(odlink, cur);
|
---|
271 | break;
|
---|
272 | }
|
---|
273 | cur = cur->b;
|
---|
274 | }
|
---|
275 | }
|
---|
276 |
|
---|
277 | odlink->color = odc_red;
|
---|
278 |
|
---|
279 | while (true) {
|
---|
280 | /* Fix up odlink and its parent potentially being red */
|
---|
281 | if (odlink->up == NULL) {
|
---|
282 | odlink->color = odc_black;
|
---|
283 | break;
|
---|
284 | }
|
---|
285 |
|
---|
286 | if (odlink->up->color == odc_black)
|
---|
287 | break;
|
---|
288 |
|
---|
289 | /* Get parent, grandparent, uncle */
|
---|
290 | odict_pgu(odlink, &p, &pcs, &g, &gcs, &u);
|
---|
291 |
|
---|
292 | if (g == NULL) {
|
---|
293 | p->color = odc_black;
|
---|
294 | break;
|
---|
295 | }
|
---|
296 |
|
---|
297 | if (p->color == odc_red && u != NULL && u->color == odc_red) {
|
---|
298 | /* Parent and uncle are both red */
|
---|
299 | p->color = odc_black;
|
---|
300 | u->color = odc_black;
|
---|
301 | g->color = odc_red;
|
---|
302 | odlink = g;
|
---|
303 | continue;
|
---|
304 | }
|
---|
305 |
|
---|
306 | /* Parent is red but uncle is black, odlink-P-G is trans */
|
---|
307 | if (pcs != gcs) {
|
---|
308 | if (gcs == odcs_a) {
|
---|
309 | /* odlink is right child of P */
|
---|
310 | /* P is left child of G */
|
---|
311 | odict_rotate_left(p);
|
---|
312 | } else {
|
---|
313 | /* odlink is left child of P */
|
---|
314 | /* P is right child of G */
|
---|
315 | odict_rotate_right(p);
|
---|
316 | }
|
---|
317 |
|
---|
318 | odlink = p;
|
---|
319 | odict_pgu(odlink, &p, &pcs, &g, &gcs, &u);
|
---|
320 | }
|
---|
321 |
|
---|
322 | /* odlink-P-G is now cis */
|
---|
323 | assert(pcs == gcs);
|
---|
324 | if (pcs == odcs_a) {
|
---|
325 | /* odlink is left child of P */
|
---|
326 | /* P is left child of G */
|
---|
327 | odict_rotate_right(g);
|
---|
328 | } else {
|
---|
329 | /* odlink is right child of P */
|
---|
330 | /* P is right child of G */
|
---|
331 | odict_rotate_left(g);
|
---|
332 | }
|
---|
333 |
|
---|
334 | p->color = odc_black;
|
---|
335 | g->color = odc_red;
|
---|
336 | break;
|
---|
337 | }
|
---|
338 | }
|
---|
339 |
|
---|
340 | /** Remove entry from ordered dictionary.
|
---|
341 | *
|
---|
342 | * @param odlink Ordered dictionary link
|
---|
343 | */
|
---|
344 | void odict_remove(odlink_t *odlink)
|
---|
345 | {
|
---|
346 | odlink_t *n;
|
---|
347 | odlink_t *c;
|
---|
348 | odlink_t *p;
|
---|
349 | odlink_t *s;
|
---|
350 | odlink_t *sc, *st;
|
---|
351 | odict_child_sel_t pcs;
|
---|
352 |
|
---|
353 | if (odlink->a != NULL && odlink->b != NULL) {
|
---|
354 | n = odict_next(odlink, odlink->odict);
|
---|
355 | assert(n != NULL);
|
---|
356 |
|
---|
357 | odict_swap_node(odlink, n);
|
---|
358 | }
|
---|
359 |
|
---|
360 | /* odlink has at most one child */
|
---|
361 | if (odlink->a != NULL) {
|
---|
362 | assert(odlink->b == NULL);
|
---|
363 | c = odlink->a;
|
---|
364 | } else {
|
---|
365 | c = odlink->b;
|
---|
366 | }
|
---|
367 |
|
---|
368 | if (odlink->color == odc_red) {
|
---|
369 | /* We can remove it harmlessly */
|
---|
370 | assert(c == NULL);
|
---|
371 | odict_unlink(odlink);
|
---|
372 | return;
|
---|
373 | }
|
---|
374 |
|
---|
375 | /* odlink->color == odc_black */
|
---|
376 | if (c != NULL && c->color == odc_red) {
|
---|
377 | /* Child is red: swap colors of S and C */
|
---|
378 | c->color = odc_black;
|
---|
379 | odict_replace_subtree(c, odlink);
|
---|
380 | odlink->up = odlink->a = odlink->b = NULL;
|
---|
381 | odlink->odict = NULL;
|
---|
382 | list_remove(&odlink->lentries);
|
---|
383 | return;
|
---|
384 | }
|
---|
385 |
|
---|
386 | /* There cannot be one black child */
|
---|
387 | assert(c == NULL);
|
---|
388 |
|
---|
389 | n = NULL;
|
---|
390 | p = odlink->up;
|
---|
391 | odict_unlink(odlink);
|
---|
392 | /* We removed one black node, creating imbalance */
|
---|
393 | again:
|
---|
394 | /* Case 1: N is the new root */
|
---|
395 | if (p == NULL)
|
---|
396 | return;
|
---|
397 |
|
---|
398 | odict_sibling(n, p, &pcs, &s);
|
---|
399 |
|
---|
400 | /* Paths through N have one less black node than paths through S */
|
---|
401 |
|
---|
402 | /* Case 2: S is red */
|
---|
403 | if (s->color == odc_red) {
|
---|
404 | assert(p->color == odc_black);
|
---|
405 | p->color = odc_red;
|
---|
406 | s->color = odc_black;
|
---|
407 | if (n == p->a)
|
---|
408 | odict_rotate_left(p);
|
---|
409 | else
|
---|
410 | odict_rotate_right(p);
|
---|
411 | odict_sibling(n, p, &pcs, &s);
|
---|
412 | /* Now S is black */
|
---|
413 | assert(s->color == odc_black);
|
---|
414 | }
|
---|
415 |
|
---|
416 | /* Case 3: P, S and S's children are black */
|
---|
417 | if (p->color == odc_black &&
|
---|
418 | s->color == odc_black &&
|
---|
419 | (s->a == NULL || s->a->color == odc_black) &&
|
---|
420 | (s->b == NULL || s->b->color == odc_black)) {
|
---|
421 | /*
|
---|
422 | * Changing S to red means all paths through S or N have one
|
---|
423 | * less black node than they should. So redo the same for P.
|
---|
424 | */
|
---|
425 | s->color = odc_red;
|
---|
426 | n = p;
|
---|
427 | p = n->up;
|
---|
428 | goto again;
|
---|
429 | }
|
---|
430 |
|
---|
431 | /* Case 4: P is red, S and S's children are black */
|
---|
432 | if (p->color == odc_red &&
|
---|
433 | s->color == odc_black &&
|
---|
434 | (s->a == NULL || s->a->color == odc_black) &&
|
---|
435 | (s->b == NULL || s->b->color == odc_black)) {
|
---|
436 | /* Swap colors of S and P */
|
---|
437 | s->color = odc_red;
|
---|
438 | p->color = odc_black;
|
---|
439 | return;
|
---|
440 | }
|
---|
441 |
|
---|
442 | /* N is the left child */
|
---|
443 | if (pcs == odcs_a) {
|
---|
444 | st = s->a;
|
---|
445 | sc = s->b;
|
---|
446 | } else {
|
---|
447 | st = s->b;
|
---|
448 | sc = s->a;
|
---|
449 | }
|
---|
450 |
|
---|
451 | /* Case 5: S is black and S's trans child is red, S's cis child is black */
|
---|
452 | if (s->color == odc_black &&
|
---|
453 | (st != NULL && st->color == odc_red) &&
|
---|
454 | (sc == NULL || sc->color == odc_black)) {
|
---|
455 | /* N is the left child */
|
---|
456 | if (pcs == odcs_a)
|
---|
457 | odict_rotate_right(s);
|
---|
458 | else
|
---|
459 | odict_rotate_left(s);
|
---|
460 | s->color = odc_red;
|
---|
461 | s->up->color = odc_black;
|
---|
462 | /* Now N has a black sibling whose cis child is red */
|
---|
463 | odict_sibling(n, p, &pcs, &s);
|
---|
464 | /* N is the left child */
|
---|
465 | if (pcs == odcs_a) {
|
---|
466 | st = s->a;
|
---|
467 | sc = s->b;
|
---|
468 | } else {
|
---|
469 | st = s->b;
|
---|
470 | sc = s->a;
|
---|
471 | }
|
---|
472 | }
|
---|
473 |
|
---|
474 | /* Case 6: S is black, S's cis child is red */
|
---|
475 | assert(s->color == odc_black);
|
---|
476 | assert(sc != NULL);
|
---|
477 | assert(sc->color == odc_red);
|
---|
478 |
|
---|
479 | if (pcs == odcs_a)
|
---|
480 | odict_rotate_left(p);
|
---|
481 | else
|
---|
482 | odict_rotate_right(p);
|
---|
483 |
|
---|
484 | s->color = p->color;
|
---|
485 | p->color = odc_black;
|
---|
486 | sc->color = odc_black;
|
---|
487 | }
|
---|
488 |
|
---|
489 | /** Update dictionary after entry key has been changed.
|
---|
490 | *
|
---|
491 | * After the caller modifies the key of an entry, they need to call
|
---|
492 | * this function so that the dictionary can update itself accordingly.
|
---|
493 | *
|
---|
494 | * @param odlink Ordered dictionary entry
|
---|
495 | * @param odict Ordered dictionary
|
---|
496 | */
|
---|
497 | void odict_key_update(odlink_t *odlink, odict_t *odict)
|
---|
498 | {
|
---|
499 | odlink_t *n;
|
---|
500 |
|
---|
501 | n = odict_next(odlink, odict);
|
---|
502 | odict_remove(odlink);
|
---|
503 | odict_insert(odlink, odict, n);
|
---|
504 | }
|
---|
505 |
|
---|
506 | /** Return true if entry is in a dictionary.
|
---|
507 | *
|
---|
508 | * @param odlink Ordered dictionary entry
|
---|
509 | * @return @c true if entry is in a dictionary, @c false otherwise
|
---|
510 | */
|
---|
511 | bool odlink_used(odlink_t *odlink)
|
---|
512 | {
|
---|
513 | return odlink->odict != NULL;
|
---|
514 | }
|
---|
515 |
|
---|
516 | /** Return true if ordered dictionary is empty.
|
---|
517 | *
|
---|
518 | * @param odict Ordered dictionary
|
---|
519 | * @return @c true if @a odict is emptry, @c false otherwise
|
---|
520 | */
|
---|
521 | bool odict_empty(odict_t *odict)
|
---|
522 | {
|
---|
523 | return odict->root == NULL;
|
---|
524 | }
|
---|
525 |
|
---|
526 | /** Return the number of entries in @a odict.
|
---|
527 | *
|
---|
528 | * @param odict Ordered dictionary
|
---|
529 | */
|
---|
530 | unsigned long odict_count(odict_t *odict)
|
---|
531 | {
|
---|
532 | unsigned long cnt;
|
---|
533 | odlink_t *cur;
|
---|
534 |
|
---|
535 | cnt = 0;
|
---|
536 | cur = odict_first(odict);
|
---|
537 | while (cur != NULL) {
|
---|
538 | ++cnt;
|
---|
539 | cur = odict_next(cur, odict);
|
---|
540 | }
|
---|
541 |
|
---|
542 | return cnt;
|
---|
543 | }
|
---|
544 |
|
---|
545 | /** Return first entry in a list or @c NULL if list is empty.
|
---|
546 | *
|
---|
547 | * @param odict Ordered dictionary
|
---|
548 | * @return First entry
|
---|
549 | */
|
---|
550 | odlink_t *odict_first(odict_t *odict)
|
---|
551 | {
|
---|
552 | link_t *link;
|
---|
553 |
|
---|
554 | link = list_first(&odict->entries);
|
---|
555 | if (link == NULL)
|
---|
556 | return NULL;
|
---|
557 |
|
---|
558 | return list_get_instance(link, odlink_t, lentries);
|
---|
559 | }
|
---|
560 |
|
---|
561 | /** Return last entry in a list or @c NULL if list is empty
|
---|
562 | *
|
---|
563 | * @param odict Ordered dictionary
|
---|
564 | * @return Last entry
|
---|
565 | */
|
---|
566 | odlink_t *odict_last(odict_t *odict)
|
---|
567 | {
|
---|
568 | link_t *link;
|
---|
569 |
|
---|
570 | link = list_last(&odict->entries);
|
---|
571 | if (link == NULL)
|
---|
572 | return NULL;
|
---|
573 |
|
---|
574 | return list_get_instance(link, odlink_t, lentries);
|
---|
575 | }
|
---|
576 |
|
---|
577 | /** Return previous entry in list or @c NULL if @a link is the first one.
|
---|
578 | *
|
---|
579 | * @param odlink Entry
|
---|
580 | * @param odict Ordered dictionary
|
---|
581 | * @return Previous entry
|
---|
582 | */
|
---|
583 | odlink_t *odict_prev(odlink_t *odlink, odict_t *odict)
|
---|
584 | {
|
---|
585 | link_t *link;
|
---|
586 |
|
---|
587 | link = list_prev(&odlink->lentries, &odlink->odict->entries);
|
---|
588 | if (link == NULL)
|
---|
589 | return NULL;
|
---|
590 |
|
---|
591 | return list_get_instance(link, odlink_t, lentries);
|
---|
592 | }
|
---|
593 |
|
---|
594 | /** Return next entry in dictionary or @c NULL if @a odlink is the last one
|
---|
595 | *
|
---|
596 | * @param odlink Entry
|
---|
597 | * @param odict Ordered dictionary
|
---|
598 | * @return Next entry
|
---|
599 | */
|
---|
600 | odlink_t *odict_next(odlink_t *odlink, odict_t *odict)
|
---|
601 | {
|
---|
602 | link_t *link;
|
---|
603 |
|
---|
604 | link = list_next(&odlink->lentries, &odlink->odict->entries);
|
---|
605 | if (link == NULL)
|
---|
606 | return NULL;
|
---|
607 |
|
---|
608 | return list_get_instance(link, odlink_t, lentries);
|
---|
609 | }
|
---|
610 |
|
---|
611 | /** Find first entry whose key is equal to @a key/
|
---|
612 | *
|
---|
613 | * @param odict Ordered dictionary
|
---|
614 | * @param key Key
|
---|
615 | * @param hint Nearby entry
|
---|
616 | * @return Pointer to entry on success, @c NULL on failure
|
---|
617 | */
|
---|
618 | odlink_t *odict_find_eq(odict_t *odict, void *key, odlink_t *hint)
|
---|
619 | {
|
---|
620 | odlink_t *geq;
|
---|
621 |
|
---|
622 | geq = odict_find_geq(odict, key, hint);
|
---|
623 | if (geq == NULL)
|
---|
624 | return NULL;
|
---|
625 |
|
---|
626 | if (odict->cmp(odict->getkey(geq), key) == 0)
|
---|
627 | return geq;
|
---|
628 | else
|
---|
629 | return NULL;
|
---|
630 | }
|
---|
631 |
|
---|
632 | /** Find last entry whose key is equal to @a key/
|
---|
633 | *
|
---|
634 | * @param odict Ordered dictionary
|
---|
635 | * @param key Key
|
---|
636 | * @param hint Nearby entry
|
---|
637 | * @return Pointer to entry on success, @c NULL on failure
|
---|
638 | */
|
---|
639 | odlink_t *odict_find_eq_last(odict_t *odict, void *key, odlink_t *hint)
|
---|
640 | {
|
---|
641 | odlink_t *leq;
|
---|
642 |
|
---|
643 | leq = odict_find_leq(odict, key, hint);
|
---|
644 | if (leq == NULL)
|
---|
645 | return NULL;
|
---|
646 |
|
---|
647 | if (odict->cmp(odict->getkey(leq), key) == 0)
|
---|
648 | return leq;
|
---|
649 | else
|
---|
650 | return NULL;
|
---|
651 | }
|
---|
652 |
|
---|
653 | /** Find first entry whose key is greater than or equal to @a key
|
---|
654 | *
|
---|
655 | * @param odict Ordered dictionary
|
---|
656 | * @param key Key
|
---|
657 | * @param hint Nearby entry
|
---|
658 | * @return Pointer to entry on success, @c NULL on failure
|
---|
659 | */
|
---|
660 | odlink_t *odict_find_geq(odict_t *odict, void *key, odlink_t *hint)
|
---|
661 | {
|
---|
662 | odlink_t *cur;
|
---|
663 | odlink_t *next;
|
---|
664 | int d;
|
---|
665 |
|
---|
666 | cur = odict_search_start_node(odict, key, hint);
|
---|
667 | if (cur == NULL)
|
---|
668 | return NULL;
|
---|
669 |
|
---|
670 | while (true) {
|
---|
671 | d = odict->cmp(odict->getkey(cur), key);
|
---|
672 | if (d >= 0)
|
---|
673 | next = cur->a;
|
---|
674 | else
|
---|
675 | next = cur->b;
|
---|
676 |
|
---|
677 | if (next == NULL)
|
---|
678 | break;
|
---|
679 |
|
---|
680 | cur = next;
|
---|
681 | }
|
---|
682 |
|
---|
683 | if (d >= 0) {
|
---|
684 | return cur;
|
---|
685 | } else {
|
---|
686 | return odict_next(cur, odict);
|
---|
687 | }
|
---|
688 | }
|
---|
689 |
|
---|
690 | /** Find last entry whose key is greater than @a key.
|
---|
691 | *
|
---|
692 | * @param odict Ordered dictionary
|
---|
693 | * @param key Key
|
---|
694 | * @param hint Nearby entry
|
---|
695 | * @return Pointer to entry on success, @c NULL on failure
|
---|
696 | */
|
---|
697 | odlink_t *odict_find_gt(odict_t *odict, void *key, odlink_t *hint)
|
---|
698 | {
|
---|
699 | odlink_t *leq;
|
---|
700 |
|
---|
701 | leq = odict_find_leq(odict, key, hint);
|
---|
702 | if (leq != NULL)
|
---|
703 | return odict_next(leq, odict);
|
---|
704 | else
|
---|
705 | return odict_first(odict);
|
---|
706 | }
|
---|
707 |
|
---|
708 | /** Find last entry whose key is less than or equal to @a key
|
---|
709 | *
|
---|
710 | * @param odict Ordered dictionary
|
---|
711 | * @param key Key
|
---|
712 | * @param hint Nearby entry
|
---|
713 | * @return Pointer to entry on success, @c NULL on failure
|
---|
714 | */
|
---|
715 | odlink_t *odict_find_leq(odict_t *odict, void *key, odlink_t *hint)
|
---|
716 | {
|
---|
717 | odlink_t *cur;
|
---|
718 | odlink_t *next;
|
---|
719 | int d;
|
---|
720 |
|
---|
721 | cur = odict_search_start_node(odict, key, hint);
|
---|
722 | if (cur == NULL)
|
---|
723 | return NULL;
|
---|
724 |
|
---|
725 | while (true) {
|
---|
726 | d = odict->cmp(key, odict->getkey(cur));
|
---|
727 | if (d >= 0)
|
---|
728 | next = cur->b;
|
---|
729 | else
|
---|
730 | next = cur->a;
|
---|
731 |
|
---|
732 | if (next == NULL)
|
---|
733 | break;
|
---|
734 |
|
---|
735 | cur = next;
|
---|
736 | }
|
---|
737 |
|
---|
738 | if (d >= 0) {
|
---|
739 | return cur;
|
---|
740 | } else {
|
---|
741 | return odict_prev(cur, odict);
|
---|
742 | }
|
---|
743 | }
|
---|
744 |
|
---|
745 | /** Find last entry whose key is less than @a key.
|
---|
746 | *
|
---|
747 | * @param odict Ordered dictionary
|
---|
748 | * @param key Key
|
---|
749 | * @param hint Nearby entry
|
---|
750 | * @return Pointer to entry on success, @c NULL on failure
|
---|
751 | */
|
---|
752 | odlink_t *odict_find_lt(odict_t *odict, void *key, odlink_t *hint)
|
---|
753 | {
|
---|
754 | odlink_t *geq;
|
---|
755 |
|
---|
756 | geq = odict_find_geq(odict, key, hint);
|
---|
757 | if (geq != NULL)
|
---|
758 | return odict_prev(geq, odict);
|
---|
759 | else
|
---|
760 | return odict_last(odict);
|
---|
761 | }
|
---|
762 |
|
---|
763 | /** Return parent, grandparent and uncle.
|
---|
764 | *
|
---|
765 | * @param n Node
|
---|
766 | * @param p Place to store pointer to parent of @a n
|
---|
767 | * @param pcs Place to store position of @a n w.r.t. @a p
|
---|
768 | * @param g Place to store pointer to grandparent of @a n
|
---|
769 | * @param gcs Place to store position of @a p w.r.t. @a g
|
---|
770 | * @param u Place to store pointer to uncle of @a n
|
---|
771 | */
|
---|
772 | static void odict_pgu(odlink_t *n, odlink_t **p, odict_child_sel_t *pcs,
|
---|
773 | odlink_t **g, odict_child_sel_t *gcs, odlink_t **u)
|
---|
774 | {
|
---|
775 | *p = n->up;
|
---|
776 |
|
---|
777 | if (*p == NULL) {
|
---|
778 | /* No parent */
|
---|
779 | *g = NULL;
|
---|
780 | *u = NULL;
|
---|
781 | return;
|
---|
782 | }
|
---|
783 |
|
---|
784 | if ((*p)->a == n) {
|
---|
785 | *pcs = odcs_a;
|
---|
786 | } else {
|
---|
787 | assert((*p)->b == n);
|
---|
788 | *pcs = odcs_b;
|
---|
789 | }
|
---|
790 |
|
---|
791 | *g = (*p)->up;
|
---|
792 | if (*g == NULL) {
|
---|
793 | /* No grandparent */
|
---|
794 | *u = NULL;
|
---|
795 | return;
|
---|
796 | }
|
---|
797 |
|
---|
798 | if ((*g)->a == *p) {
|
---|
799 | *gcs = odcs_a;
|
---|
800 | *u = (*g)->b;
|
---|
801 | } else {
|
---|
802 | assert((*g)->b == *p);
|
---|
803 | *gcs = odcs_b;
|
---|
804 | *u = (*g)->a;
|
---|
805 | }
|
---|
806 | }
|
---|
807 |
|
---|
808 | /** Return sibling and parent w.r.t. parent.
|
---|
809 | *
|
---|
810 | * @param n Node
|
---|
811 | * @param p Parent of @ an
|
---|
812 | * @param pcs Place to store position of @a n w.r.t. @a p.
|
---|
813 | * @param rs Place to strore pointer to sibling
|
---|
814 | */
|
---|
815 | static void odict_sibling(odlink_t *n, odlink_t *p, odict_child_sel_t *pcs,
|
---|
816 | odlink_t **rs)
|
---|
817 | {
|
---|
818 | if (p->a == n) {
|
---|
819 | *pcs = odcs_a;
|
---|
820 | *rs = p->b;
|
---|
821 | } else {
|
---|
822 | *pcs = odcs_b;
|
---|
823 | *rs = p->a;
|
---|
824 | }
|
---|
825 | }
|
---|
826 |
|
---|
827 | /** Ordered dictionary left rotation.
|
---|
828 | *
|
---|
829 | * Q P
|
---|
830 | * P C <- A Q
|
---|
831 | * A B B C
|
---|
832 | *
|
---|
833 | */
|
---|
834 | static void odict_rotate_left(odlink_t *p)
|
---|
835 | {
|
---|
836 | odlink_t *q;
|
---|
837 |
|
---|
838 | q = p->b;
|
---|
839 | assert(q != NULL);
|
---|
840 |
|
---|
841 | /* Replace P with Q as the root of the subtree */
|
---|
842 | odict_replace_subtree(q, p);
|
---|
843 |
|
---|
844 | /* Relink P under Q, B under P */
|
---|
845 | p->up = q;
|
---|
846 | p->b = q->a;
|
---|
847 | if (p->b != NULL)
|
---|
848 | p->b->up = p;
|
---|
849 | q->a = p;
|
---|
850 |
|
---|
851 | /* Fix odict root */
|
---|
852 | if (p->odict->root == p)
|
---|
853 | p->odict->root = q;
|
---|
854 | }
|
---|
855 |
|
---|
856 | /** Ordered dictionary right rotation.
|
---|
857 | *
|
---|
858 | * Q P
|
---|
859 | * P C -> A Q
|
---|
860 | * A B B C
|
---|
861 | *
|
---|
862 | */
|
---|
863 | static void odict_rotate_right(odlink_t *q)
|
---|
864 | {
|
---|
865 | odlink_t *p;
|
---|
866 |
|
---|
867 | p = q->a;
|
---|
868 | assert(p != NULL);
|
---|
869 |
|
---|
870 | /* Replace Q with P as the root of the subtree */
|
---|
871 | odict_replace_subtree(p, q);
|
---|
872 |
|
---|
873 | /* Relink Q under P, B under Q */
|
---|
874 | q->up = p;
|
---|
875 | q->a = p->b;
|
---|
876 | if (q->a != NULL)
|
---|
877 | q->a->up = q;
|
---|
878 | p->b = q;
|
---|
879 |
|
---|
880 | /* Fix odict root */
|
---|
881 | if (q->odict->root == q)
|
---|
882 | q->odict->root = p;
|
---|
883 | }
|
---|
884 |
|
---|
885 | /** Swap two nodes.
|
---|
886 | *
|
---|
887 | * Swap position of two nodes in the tree, keeping their identity.
|
---|
888 | * This means we don't copy the contents, instead we shuffle around pointers
|
---|
889 | * from and to the nodes.
|
---|
890 | *
|
---|
891 | * @param a First node
|
---|
892 | * @param b Second node
|
---|
893 | */
|
---|
894 | static void odict_swap_node(odlink_t *a, odlink_t *b)
|
---|
895 | {
|
---|
896 | odlink_t *n;
|
---|
897 | odict_color_t c;
|
---|
898 |
|
---|
899 | /* Backlink from A's parent */
|
---|
900 | if (a->up != NULL && a->up != b) {
|
---|
901 | if (a->up->a == a) {
|
---|
902 | a->up->a = b;
|
---|
903 | } else {
|
---|
904 | assert(a->up->b == a);
|
---|
905 | a->up->b = b;
|
---|
906 | }
|
---|
907 | }
|
---|
908 |
|
---|
909 | /* Backlink from A's left child */
|
---|
910 | if (a->a != NULL && a->a != b)
|
---|
911 | a->a->up = b;
|
---|
912 | /* Backling from A's right child */
|
---|
913 | if (a->b != NULL && a->b != b)
|
---|
914 | a->b->up = b;
|
---|
915 |
|
---|
916 | /* Backlink from B's parent */
|
---|
917 | if (b->up != NULL && b->up != a) {
|
---|
918 | if (b->up->a == b) {
|
---|
919 | b->up->a = a;
|
---|
920 | } else {
|
---|
921 | assert(b->up->b == b);
|
---|
922 | b->up->b = a;
|
---|
923 | }
|
---|
924 | }
|
---|
925 |
|
---|
926 | /* Backlink from B's left child */
|
---|
927 | if (b->a != NULL && b->a != a)
|
---|
928 | b->a->up = a;
|
---|
929 | /* Backling from B's right child */
|
---|
930 | if (b->b != NULL && b->b != a)
|
---|
931 | b->b->up = a;
|
---|
932 |
|
---|
933 | /*
|
---|
934 | * Swap links going out of A and out of B
|
---|
935 | */
|
---|
936 | n = a->up;
|
---|
937 | a->up = b->up;
|
---|
938 | b->up = n;
|
---|
939 |
|
---|
940 | n = a->a;
|
---|
941 | a->a = b->a;
|
---|
942 | b->a = n;
|
---|
943 |
|
---|
944 | n = a->b;
|
---|
945 | a->b = b->b;
|
---|
946 | b->b = n;
|
---|
947 |
|
---|
948 | c = a->color;
|
---|
949 | a->color = b->color;
|
---|
950 | b->color = c;
|
---|
951 |
|
---|
952 | /* When A and B are adjacent, fix self-loops that might have arisen */
|
---|
953 | if (a->up == a)
|
---|
954 | a->up = b;
|
---|
955 | if (a->a == a)
|
---|
956 | a->a = b;
|
---|
957 | if (a->b == a)
|
---|
958 | a->b = b;
|
---|
959 | if (b->up == b)
|
---|
960 | b->up = a;
|
---|
961 | if (b->a == b)
|
---|
962 | b->a = a;
|
---|
963 | if (b->b == b)
|
---|
964 | b->b = a;
|
---|
965 |
|
---|
966 | /* Fix odict root */
|
---|
967 | if (a == a->odict->root)
|
---|
968 | a->odict->root = b;
|
---|
969 | else if (b == a->odict->root)
|
---|
970 | a->odict->root = a;
|
---|
971 | }
|
---|
972 |
|
---|
973 | /** Replace subtree.
|
---|
974 | *
|
---|
975 | * Replace subtree @a old with another subtree @a n. This makes the parent
|
---|
976 | * point to the new subtree root and the up pointer of @a n to point to
|
---|
977 | * the parent.
|
---|
978 | *
|
---|
979 | * @param old Subtree to be replaced
|
---|
980 | * @param n New subtree
|
---|
981 | */
|
---|
982 | static void odict_replace_subtree(odlink_t *n, odlink_t *old)
|
---|
983 | {
|
---|
984 | if (old->up != NULL) {
|
---|
985 | if (old->up->a == old) {
|
---|
986 | old->up->a = n;
|
---|
987 | } else {
|
---|
988 | assert(old->up->b == old);
|
---|
989 | old->up->b = n;
|
---|
990 | }
|
---|
991 | } else {
|
---|
992 | assert(old->odict->root == old);
|
---|
993 | old->odict->root = n;
|
---|
994 | }
|
---|
995 |
|
---|
996 | n->up = old->up;
|
---|
997 | }
|
---|
998 |
|
---|
999 | /** Unlink node.
|
---|
1000 | *
|
---|
1001 | * @param n Ordered dictionary node
|
---|
1002 | */
|
---|
1003 | static void odict_unlink(odlink_t *n)
|
---|
1004 | {
|
---|
1005 | if (n->up != NULL) {
|
---|
1006 | if (n->up->a == n) {
|
---|
1007 | n->up->a = NULL;
|
---|
1008 | } else {
|
---|
1009 | assert(n->up->b == n);
|
---|
1010 | n->up->b = NULL;
|
---|
1011 | }
|
---|
1012 |
|
---|
1013 | n->up = NULL;
|
---|
1014 | } else {
|
---|
1015 | assert(n->odict->root == n);
|
---|
1016 | n->odict->root = NULL;
|
---|
1017 | }
|
---|
1018 |
|
---|
1019 | if (n->a != NULL) {
|
---|
1020 | n->a->up = NULL;
|
---|
1021 | n->a = NULL;
|
---|
1022 | }
|
---|
1023 |
|
---|
1024 | if (n->b != NULL) {
|
---|
1025 | n->b->up = NULL;
|
---|
1026 | n->b = NULL;
|
---|
1027 | }
|
---|
1028 |
|
---|
1029 | n->odict = NULL;
|
---|
1030 | list_remove(&n->lentries);
|
---|
1031 | }
|
---|
1032 |
|
---|
1033 | /** Link node as left child.
|
---|
1034 | *
|
---|
1035 | * Append new node @a n as left child of existing node @a old.
|
---|
1036 | *
|
---|
1037 | * @param n New node
|
---|
1038 | * @param old Old node
|
---|
1039 | */
|
---|
1040 | static void odict_link_child_a(odlink_t *n, odlink_t *old)
|
---|
1041 | {
|
---|
1042 | old->a = n;
|
---|
1043 | n->up = old;
|
---|
1044 | n->odict = old->odict;
|
---|
1045 | list_insert_before(&n->lentries, &old->lentries);
|
---|
1046 | }
|
---|
1047 |
|
---|
1048 | /** Link node as right child.
|
---|
1049 | *
|
---|
1050 | * Append new node @a n as right child of existing node @a old.
|
---|
1051 | *
|
---|
1052 | * @param n New node
|
---|
1053 | * @param old Old node
|
---|
1054 | */
|
---|
1055 | static void odict_link_child_b(odlink_t *n, odlink_t *old)
|
---|
1056 | {
|
---|
1057 | old->b = n;
|
---|
1058 | n->up = old;
|
---|
1059 | n->odict = old->odict;
|
---|
1060 | list_insert_after(&n->lentries, &old->lentries);
|
---|
1061 | }
|
---|
1062 |
|
---|
1063 | /** Get node where search should be started.
|
---|
1064 | *
|
---|
1065 | * @param odict Ordered dictionary
|
---|
1066 | * @param key Key being searched for
|
---|
1067 | * @param hint Node that might be near the search target or @c NULL
|
---|
1068 | *
|
---|
1069 | * @return Node from where search should be started
|
---|
1070 | */
|
---|
1071 | static odlink_t *odict_search_start_node(odict_t *odict, void *key,
|
---|
1072 | odlink_t *hint)
|
---|
1073 | {
|
---|
1074 | odlink_t *a;
|
---|
1075 | odlink_t *b;
|
---|
1076 | odlink_t *cur;
|
---|
1077 | int d, da, db;
|
---|
1078 |
|
---|
1079 | assert(hint == NULL || hint->odict == odict);
|
---|
1080 |
|
---|
1081 | /* If the key is greater than the maximum, start search in the maximum */
|
---|
1082 | b = odict_last(odict);
|
---|
1083 | if (b != NULL) {
|
---|
1084 | d = odict->cmp(odict->getkey(b), key);
|
---|
1085 | if (d < 0)
|
---|
1086 | return b;
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | /* If the key is less tna the minimum, start search in the minimum */
|
---|
1090 | a = odict_first(odict);
|
---|
1091 | if (a != NULL) {
|
---|
1092 | d = odict->cmp(key, odict->getkey(a));
|
---|
1093 | if (d < 0)
|
---|
1094 | return a;
|
---|
1095 | }
|
---|
1096 |
|
---|
1097 | /*
|
---|
1098 | * Proposition: Let A, B be two BST nodes such that B is a descendant
|
---|
1099 | * of A. Let N be a node such that either key(A) < key(N) < key(B)
|
---|
1100 | * Then N is a descendant of A.
|
---|
1101 | * Corollary: We can start searching for N from A, instead from
|
---|
1102 | * the root.
|
---|
1103 | *
|
---|
1104 | * Proof: When walking the BST in order, visit_tree(A) does a
|
---|
1105 | * visit_tree(A->a), visit(A), visit(A->b). If key(A) < key(B),
|
---|
1106 | * we will first visit A, then while visiting all nodes with values
|
---|
1107 | * between A and B we will not leave subtree A->b.
|
---|
1108 | */
|
---|
1109 |
|
---|
1110 | /* If there is no hint, start search from the root */
|
---|
1111 | if (hint == NULL)
|
---|
1112 | return odict->root;
|
---|
1113 |
|
---|
1114 | /*
|
---|
1115 | * Start from hint and walk up to the root, keeping track of
|
---|
1116 | * minimum and maximum. Once key is strictly between them,
|
---|
1117 | * we can return the current node, which we've proven to be
|
---|
1118 | * an ancestor of a potential node with the given key
|
---|
1119 | */
|
---|
1120 | a = b = cur = hint;
|
---|
1121 | while (cur->up != NULL) {
|
---|
1122 | cur = cur->up;
|
---|
1123 |
|
---|
1124 | d = odict->cmp(odict->getkey(cur), odict->getkey(a));
|
---|
1125 | if (d < 0)
|
---|
1126 | a = cur;
|
---|
1127 |
|
---|
1128 | d = odict->cmp(odict->getkey(b), odict->getkey(cur));
|
---|
1129 | if (d < 0)
|
---|
1130 | b = cur;
|
---|
1131 |
|
---|
1132 | da = odict->cmp(odict->getkey(a), key);
|
---|
1133 | db = odict->cmp(key, odict->getkey(b));
|
---|
1134 | if (da < 0 && db < 0) {
|
---|
1135 | /* Both a and b are descendants of cur */
|
---|
1136 | return cur;
|
---|
1137 | }
|
---|
1138 | }
|
---|
1139 |
|
---|
1140 | return odict->root;
|
---|
1141 | }
|
---|
1142 |
|
---|
1143 | /** @}
|
---|
1144 | */
|
---|