/* * Copyright (c) 2007 Michal Kebrt * Copyright (c) 2018 Jiří Zárevúcky * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include static const char *ext(const char *s) { const char *last = s; while (*s) { if (*s == '.') last = s; s++; } if (*last == '.') return last; return NULL; } static void basename(char *s) { char *e = (char *) ext(s); if ((e != NULL) && (str_cmp(e, ".gz") == 0)) *e = '\0'; } static bool overlaps(uint8_t *start1, uint8_t *end1, uint8_t *start2, uint8_t *end2) { return !(end1 <= start2 || end2 <= start1); } static bool extract_component(uint8_t **cstart, uint8_t *cend, uint8_t *ustart, uint8_t *uend, uintptr_t actual_ustart, void (*clear_cache)(void *, size_t), task_t *task) { const char *name; size_t packed_size; if (!tar_info(*cstart, cend, &name, &packed_size)) return false; const uint8_t *data = *cstart + TAR_BLOCK_SIZE; *cstart += TAR_BLOCK_SIZE + ALIGN_UP(packed_size, TAR_BLOCK_SIZE); bool gz = gzip_check(data, packed_size); size_t unpacked_size = gz ? gzip_size(data, packed_size) : packed_size; /* Components must be page-aligned. */ uint8_t *new_ustart = (uint8_t *) ALIGN_UP((uintptr_t) ustart, PAGE_SIZE); actual_ustart += new_ustart - ustart; ustart = new_ustart; uint8_t *comp_end = ustart + unpacked_size; /* Check limits and overlap. */ if (overlaps(ustart, comp_end, loader_start, loader_end)) { /* Move the component after bootloader. */ printf("%s would overlap bootloader, moving to %p.\n", name, loader_end); uint8_t *new_ustart = (uint8_t *) ALIGN_UP((uintptr_t) loader_end, PAGE_SIZE); actual_ustart += new_ustart - ustart; ustart = new_ustart; comp_end = ustart + unpacked_size; } if (comp_end > uend) { printf("Not enough available memory for remaining components" " (at least %zd more required).\n", comp_end - uend); halt(); } printf(" %p|%p: %s image (%zu/%zu bytes)\n", (void *) actual_ustart, ustart, name, unpacked_size, packed_size); if (task) { task->addr = (void *) actual_ustart; task->size = unpacked_size; str_cpy(task->name, BOOTINFO_TASK_NAME_BUFLEN, name); /* Remove .gz extension */ if (gz) basename(task->name); } if (gz) { int rc = gzip_expand(data, packed_size, ustart, unpacked_size); if (rc != EOK) { printf("\n%s: Inflating error %d\n", name, rc); halt(); } } else { memcpy(ustart, data, unpacked_size); } if (clear_cache) clear_cache(ustart, unpacked_size); return true; } /* @return Bytes needed for unpacked payload. */ size_t payload_unpacked_size(void) { size_t sz = 0; uint8_t *start = payload_start; const char *name; size_t packed_size; while (tar_info(start, payload_end, &name, &packed_size)) { sz = ALIGN_UP(sz, PAGE_SIZE); if (gzip_check(start + TAR_BLOCK_SIZE, packed_size)) sz += gzip_size(start + TAR_BLOCK_SIZE, packed_size); else sz += packed_size; start += TAR_BLOCK_SIZE + ALIGN_UP(packed_size, TAR_BLOCK_SIZE); } return sz; } /** * Extract the payload (kernel, loader, init binaries and the initrd image). * * @param bootinfo Pointer to the structure where the actual placement * of components is recorded. * * @param kernel_dest Address of the kernel in the bootloader's address space. * Kernel is the only part of the payload that has a fixed * location and cannot be moved. If the kernel doesn't fit * or would overlap bootloader, bootloader halts. * * @param mem_end End of usable contiguous memory. * The caller guarantees that the entire area between * kernel_start and mem_end is free and safe to write to, * save possibly for the interval [loader_start, loader_end). * All components are placed in this area. If there is not * enough space for all components, bootloader halts. * * @param kernel_start Address the kernel will have in the kernel's own * address space. * * @param clear_cache Caller-provided function for assuring cache coherence, * whatever that means for a given platform. May be NULL. */ void extract_payload(taskmap_t *tmap, uint8_t *kernel_dest, uint8_t *mem_end, uintptr_t kernel_start, void (*clear_cache)(void *, size_t)) { task_t task; memset(&task, 0, sizeof(task)); printf("Boot loader: %p -> %p\n", loader_start, loader_end); printf("Payload: %p -> %p\n", payload_start, payload_end); printf("Kernel load address: %p\n", kernel_dest); printf("Kernel start: %p\n", (void *) kernel_start); printf("RAM end: %p (%zd bytes available)\n", mem_end, mem_end - kernel_dest); size_t payload_size = payload_end - payload_start; uint8_t *real_payload_start; uint8_t *real_payload_end; if (overlaps(kernel_dest, mem_end, payload_start, payload_end)) { /* * First, move the payload to the very end of available memory, * to make space for the unpacked data. */ real_payload_start = (uint8_t *) ALIGN_DOWN((uintptr_t)(mem_end - payload_size), PAGE_SIZE); real_payload_end = real_payload_start + payload_size; memmove(real_payload_start, payload_start, payload_size); printf("Moved payload: %p -> %p\n", real_payload_start, real_payload_end); } else { real_payload_start = payload_start; real_payload_end = payload_end; } printf("\nInflating components ... \n"); uint8_t *end = mem_end; if (real_payload_end > kernel_dest && real_payload_start < mem_end) end = real_payload_start; /* Kernel is always first. */ if (!extract_component(&real_payload_start, real_payload_end, kernel_dest, end, kernel_start, clear_cache, &task)) { printf("There is no kernel.\n"); halt(); } if ((uintptr_t) task.addr != kernel_start) { printf("Couldn't load kernel at the requested address.\n"); halt(); } tmap->cnt = 0; for (int i = 0; i <= TASKMAP_MAX_RECORDS; i++) { /* * `task` holds the location and size of the previous component. */ uintptr_t actual_dest = ALIGN_UP((uintptr_t) task.addr + task.size, PAGE_SIZE); uint8_t *dest = kernel_dest + (actual_dest - kernel_start); if (real_payload_end > dest && real_payload_start < mem_end) end = real_payload_start; if (!extract_component(&real_payload_start, real_payload_end, dest, end, actual_dest, clear_cache, &task)) break; if (i >= TASKMAP_MAX_RECORDS) { printf("More components than the maximum of %d.\n", TASKMAP_MAX_RECORDS); halt(); } tmap->tasks[i] = task; tmap->cnt = i + 1; } printf("Done.\n"); }