1 | /*
|
---|
2 | * Copyright (c) 2005 Martin Decky
|
---|
3 | * Copyright (c) 2006 Jakub Jermar
|
---|
4 | * All rights reserved.
|
---|
5 | *
|
---|
6 | * Redistribution and use in source and binary forms, with or without
|
---|
7 | * modification, are permitted provided that the following conditions
|
---|
8 | * are met:
|
---|
9 | *
|
---|
10 | * - Redistributions of source code must retain the above copyright
|
---|
11 | * notice, this list of conditions and the following disclaimer.
|
---|
12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
13 | * notice, this list of conditions and the following disclaimer in the
|
---|
14 | * documentation and/or other materials provided with the distribution.
|
---|
15 | * - The name of the author may not be used to endorse or promote products
|
---|
16 | * derived from this software without specific prior written permission.
|
---|
17 | *
|
---|
18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
28 | */
|
---|
29 |
|
---|
30 | #include "main.h"
|
---|
31 | #include <printf.h>
|
---|
32 | #include "asm.h"
|
---|
33 | #include "_components.h"
|
---|
34 | #include <balloc.h>
|
---|
35 | #include <ofw.h>
|
---|
36 | #include <ofw_tree.h>
|
---|
37 | #include "ofwarch.h"
|
---|
38 | #include <align.h>
|
---|
39 | #include <string.h>
|
---|
40 |
|
---|
41 | bootinfo_t bootinfo;
|
---|
42 |
|
---|
43 | component_t components[COMPONENTS];
|
---|
44 |
|
---|
45 | char *release = RELEASE;
|
---|
46 |
|
---|
47 | #ifdef REVISION
|
---|
48 | char *revision = ", revision " REVISION;
|
---|
49 | #else
|
---|
50 | char *revision = "";
|
---|
51 | #endif
|
---|
52 |
|
---|
53 | #ifdef TIMESTAMP
|
---|
54 | char *timestamp = "\nBuilt on " TIMESTAMP;
|
---|
55 | #else
|
---|
56 | char *timestamp = "";
|
---|
57 | #endif
|
---|
58 |
|
---|
59 | /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */
|
---|
60 | uint8_t subarchitecture;
|
---|
61 |
|
---|
62 | /**
|
---|
63 | * mask of the MID field inside the ICBUS_CONFIG register shifted by
|
---|
64 | * MID_SHIFT bits to the right
|
---|
65 | */
|
---|
66 | uint16_t mid_mask;
|
---|
67 |
|
---|
68 | /** Print version information. */
|
---|
69 | static void version_print(void)
|
---|
70 | {
|
---|
71 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
|
---|
72 | "Copyright (c) 2006 HelenOS project\n",
|
---|
73 | release, revision, timestamp);
|
---|
74 | }
|
---|
75 |
|
---|
76 | /* the lowest ID (read from the VER register) of some US3 CPU model */
|
---|
77 | #define FIRST_US3_CPU 0x14
|
---|
78 |
|
---|
79 | /* the greatest ID (read from the VER register) of some US3 CPU model */
|
---|
80 | #define LAST_US3_CPU 0x19
|
---|
81 |
|
---|
82 | /* UltraSPARC IIIi processor implementation code */
|
---|
83 | #define US_IIIi_CODE 0x15
|
---|
84 |
|
---|
85 | /**
|
---|
86 | * Sets the global variables "subarchitecture" and "mid_mask" to
|
---|
87 | * correct values.
|
---|
88 | */
|
---|
89 | static void detect_subarchitecture(void)
|
---|
90 | {
|
---|
91 | uint64_t v;
|
---|
92 | asm volatile ("rdpr %%ver, %0\n" : "=r" (v));
|
---|
93 |
|
---|
94 | v = (v << 16) >> 48;
|
---|
95 | if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
|
---|
96 | subarchitecture = SUBARCH_US3;
|
---|
97 | if (v == US_IIIi_CODE)
|
---|
98 | mid_mask = (1 << 5) - 1;
|
---|
99 | else
|
---|
100 | mid_mask = (1 << 10) - 1;
|
---|
101 | } else if (v < FIRST_US3_CPU) {
|
---|
102 | subarchitecture = SUBARCH_US;
|
---|
103 | mid_mask = (1 << 5) - 1;
|
---|
104 | } else {
|
---|
105 | printf("\nThis CPU is not supported by HelenOS.");
|
---|
106 | }
|
---|
107 | }
|
---|
108 |
|
---|
109 | void bootstrap(void)
|
---|
110 | {
|
---|
111 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
|
---|
112 | void *balloc_base;
|
---|
113 | unsigned int top = 0;
|
---|
114 | int i, j;
|
---|
115 |
|
---|
116 | version_print();
|
---|
117 |
|
---|
118 | detect_subarchitecture();
|
---|
119 | init_components(components);
|
---|
120 |
|
---|
121 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
|
---|
122 | printf("Error: unable to get start of physical memory.\n");
|
---|
123 | halt();
|
---|
124 | }
|
---|
125 |
|
---|
126 | if (!ofw_memmap(&bootinfo.memmap)) {
|
---|
127 | printf("Error: unable to get memory map, halting.\n");
|
---|
128 | halt();
|
---|
129 | }
|
---|
130 |
|
---|
131 | if (bootinfo.memmap.total == 0) {
|
---|
132 | printf("Error: no memory detected, halting.\n");
|
---|
133 | halt();
|
---|
134 | }
|
---|
135 |
|
---|
136 | /*
|
---|
137 | * SILO for some reason adds 0x400000 and subtracts
|
---|
138 | * bootinfo.physmem_start to/from silo_ramdisk_image.
|
---|
139 | * We just need plain physical address so we fix it up.
|
---|
140 | */
|
---|
141 | if (silo_ramdisk_image) {
|
---|
142 | silo_ramdisk_image += bootinfo.physmem_start;
|
---|
143 | silo_ramdisk_image -= 0x400000;
|
---|
144 | /* Install 1:1 mapping for the ramdisk. */
|
---|
145 | if (ofw_map((void *)((uintptr_t)silo_ramdisk_image),
|
---|
146 | (void *)((uintptr_t)silo_ramdisk_image),
|
---|
147 | silo_ramdisk_size, -1) != 0) {
|
---|
148 | printf("Failed to map ramdisk.\n");
|
---|
149 | halt();
|
---|
150 | }
|
---|
151 | }
|
---|
152 |
|
---|
153 | printf("\nSystem info\n");
|
---|
154 | printf(" memory: %dM starting at %P\n",
|
---|
155 | bootinfo.memmap.total >> 20, bootinfo.physmem_start);
|
---|
156 |
|
---|
157 | printf("\nMemory statistics\n");
|
---|
158 | printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS);
|
---|
159 | printf(" %P: boot info structure\n", &bootinfo);
|
---|
160 |
|
---|
161 | /*
|
---|
162 | * Figure out destination address for each component.
|
---|
163 | * In this phase, we don't copy the components yet because we want to
|
---|
164 | * to be careful not to overwrite anything, especially the components
|
---|
165 | * which haven't been copied yet.
|
---|
166 | */
|
---|
167 | bootinfo.taskmap.count = 0;
|
---|
168 | for (i = 0; i < COMPONENTS; i++) {
|
---|
169 | printf(" %P: %s image (size %d bytes)\n", components[i].start,
|
---|
170 | components[i].name, components[i].size);
|
---|
171 | top = ALIGN_UP(top, PAGE_SIZE);
|
---|
172 | if (i > 0) {
|
---|
173 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
|
---|
174 | printf("Skipping superfluous components.\n");
|
---|
175 | break;
|
---|
176 | }
|
---|
177 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
|
---|
178 | base + top;
|
---|
179 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
|
---|
180 | components[i].size;
|
---|
181 | bootinfo.taskmap.count++;
|
---|
182 | }
|
---|
183 | top += components[i].size;
|
---|
184 | }
|
---|
185 |
|
---|
186 | j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */
|
---|
187 |
|
---|
188 | if (silo_ramdisk_image) {
|
---|
189 | /* Treat the ramdisk as the last bootinfo task. */
|
---|
190 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
|
---|
191 | printf("Skipping ramdisk.\n");
|
---|
192 | goto skip_ramdisk;
|
---|
193 | }
|
---|
194 | top = ALIGN_UP(top, PAGE_SIZE);
|
---|
195 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
|
---|
196 | base + top;
|
---|
197 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
|
---|
198 | silo_ramdisk_size;
|
---|
199 | bootinfo.taskmap.count++;
|
---|
200 | printf("\nCopying ramdisk...");
|
---|
201 | /*
|
---|
202 | * Claim and map the whole ramdisk as it may exceed the area
|
---|
203 | * given to us by SILO.
|
---|
204 | */
|
---|
205 | (void) ofw_claim_phys(base + top, silo_ramdisk_size);
|
---|
206 | (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1);
|
---|
207 | memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image),
|
---|
208 | silo_ramdisk_size);
|
---|
209 | printf("done.\n");
|
---|
210 | top += silo_ramdisk_size;
|
---|
211 | }
|
---|
212 | skip_ramdisk:
|
---|
213 |
|
---|
214 | /*
|
---|
215 | * Now we can proceed to copy the components. We do it in reverse order
|
---|
216 | * so that we don't overwrite anything even if the components overlap
|
---|
217 | * with base.
|
---|
218 | */
|
---|
219 | printf("\nCopying bootinfo tasks\n");
|
---|
220 | for (i = COMPONENTS - 1; i > 0; i--, j--) {
|
---|
221 | printf(" %s...", components[i].name);
|
---|
222 |
|
---|
223 | /*
|
---|
224 | * At this point, we claim the physical memory that we are
|
---|
225 | * going to use. We should be safe in case of the virtual
|
---|
226 | * address space because the OpenFirmware, according to its
|
---|
227 | * SPARC binding, should restrict its use of virtual memory
|
---|
228 | * to addresses from [0xffd00000; 0xffefffff] and
|
---|
229 | * [0xfe000000; 0xfeffffff].
|
---|
230 | *
|
---|
231 | * XXX We don't map this piece of memory. We simply rely on
|
---|
232 | * SILO to have it done for us already in this case.
|
---|
233 | */
|
---|
234 | (void) ofw_claim_phys(bootinfo.physmem_start +
|
---|
235 | bootinfo.taskmap.tasks[j].addr,
|
---|
236 | ALIGN_UP(components[i].size, PAGE_SIZE));
|
---|
237 |
|
---|
238 | memcpy((void *)bootinfo.taskmap.tasks[j].addr,
|
---|
239 | components[i].start, components[i].size);
|
---|
240 | printf("done.\n");
|
---|
241 | }
|
---|
242 |
|
---|
243 | printf("\nCopying kernel...");
|
---|
244 | (void) ofw_claim_phys(bootinfo.physmem_start + base,
|
---|
245 | ALIGN_UP(components[0].size, PAGE_SIZE));
|
---|
246 | memcpy(base, components[0].start, components[0].size);
|
---|
247 | printf("done.\n");
|
---|
248 |
|
---|
249 | /*
|
---|
250 | * Claim and map the physical memory for the boot allocator.
|
---|
251 | * Initialize the boot allocator.
|
---|
252 | */
|
---|
253 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
|
---|
254 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
|
---|
255 | BALLOC_MAX_SIZE);
|
---|
256 | (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1);
|
---|
257 | balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base);
|
---|
258 |
|
---|
259 | printf("\nCanonizing OpenFirmware device tree...");
|
---|
260 | bootinfo.ofw_root = ofw_tree_build();
|
---|
261 | printf("done.\n");
|
---|
262 |
|
---|
263 | #ifdef CONFIG_SMP
|
---|
264 | printf("\nChecking for secondary processors...");
|
---|
265 | if (!ofw_cpu())
|
---|
266 | printf("Error: unable to get CPU properties\n");
|
---|
267 | printf("done.\n");
|
---|
268 | #endif
|
---|
269 |
|
---|
270 | setup_palette();
|
---|
271 |
|
---|
272 | printf("\nBooting the kernel...\n");
|
---|
273 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
|
---|
274 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
|
---|
275 | sizeof(bootinfo));
|
---|
276 | }
|
---|
277 |
|
---|