/* * Copyright (c) 2005 Martin Decky * Copyright (c) 2006 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include "main.h" #include #include "asm.h" #include "_components.h" #include #include #include #include "ofwarch.h" #include #include bootinfo_t bootinfo; component_t components[COMPONENTS]; char *release = RELEASE; #ifdef REVISION char *revision = ", revision " REVISION; #else char *revision = ""; #endif #ifdef TIMESTAMP char *timestamp = "\nBuilt on " TIMESTAMP; #else char *timestamp = ""; #endif /** UltraSPARC subarchitecture - 1 for US, 3 for US3 */ uint8_t subarchitecture; /** * mask of the MID field inside the ICBUS_CONFIG register shifted by * MID_SHIFT bits to the right */ uint16_t mid_mask; /** Print version information. */ static void version_print(void) { printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n" "Copyright (c) 2006 HelenOS project\n", release, revision, timestamp); } /* the lowest ID (read from the VER register) of some US3 CPU model */ #define FIRST_US3_CPU 0x14 /* the greatest ID (read from the VER register) of some US3 CPU model */ #define LAST_US3_CPU 0x19 /* UltraSPARC IIIi processor implementation code */ #define US_IIIi_CODE 0x15 /** * Sets the global variables "subarchitecture" and "mid_mask" to * correct values. */ static void detect_subarchitecture(void) { uint64_t v; asm volatile ("rdpr %%ver, %0\n" : "=r" (v)); v = (v << 16) >> 48; if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) { subarchitecture = SUBARCH_US3; if (v == US_IIIi_CODE) mid_mask = (1 << 5) - 1; else mid_mask = (1 << 10) - 1; } else if (v < FIRST_US3_CPU) { subarchitecture = SUBARCH_US; mid_mask = (1 << 5) - 1; } else { printf("\nThis CPU is not supported by HelenOS."); } } void bootstrap(void) { void *base = (void *) KERNEL_VIRTUAL_ADDRESS; void *balloc_base; unsigned int top = 0; int i, j; version_print(); detect_subarchitecture(); init_components(components); if (!ofw_get_physmem_start(&bootinfo.physmem_start)) { printf("Error: unable to get start of physical memory.\n"); halt(); } if (!ofw_memmap(&bootinfo.memmap)) { printf("Error: unable to get memory map, halting.\n"); halt(); } if (bootinfo.memmap.total == 0) { printf("Error: no memory detected, halting.\n"); halt(); } /* * SILO for some reason adds 0x400000 and subtracts * bootinfo.physmem_start to/from silo_ramdisk_image. * We just need plain physical address so we fix it up. */ if (silo_ramdisk_image) { silo_ramdisk_image += bootinfo.physmem_start; silo_ramdisk_image -= 0x400000; /* Install 1:1 mapping for the ramdisk. */ if (ofw_map((void *)((uintptr_t)silo_ramdisk_image), (void *)((uintptr_t)silo_ramdisk_image), silo_ramdisk_size, -1) != 0) { printf("Failed to map ramdisk.\n"); halt(); } } printf("\nSystem info\n"); printf(" memory: %dM starting at %P\n", bootinfo.memmap.total >> 20, bootinfo.physmem_start); printf("\nMemory statistics\n"); printf(" kernel entry point at %P\n", KERNEL_VIRTUAL_ADDRESS); printf(" %P: boot info structure\n", &bootinfo); /* * Figure out destination address for each component. * In this phase, we don't copy the components yet because we want to * to be careful not to overwrite anything, especially the components * which haven't been copied yet. */ bootinfo.taskmap.count = 0; for (i = 0; i < COMPONENTS; i++) { printf(" %P: %s image (size %d bytes)\n", components[i].start, components[i].name, components[i].size); top = ALIGN_UP(top, PAGE_SIZE); if (i > 0) { if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { printf("Skipping superfluous components.\n"); break; } bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = base + top; bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = components[i].size; bootinfo.taskmap.count++; } top += components[i].size; } j = bootinfo.taskmap.count - 1; /* do not consider ramdisk */ if (silo_ramdisk_image) { /* Treat the ramdisk as the last bootinfo task. */ if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) { printf("Skipping ramdisk.\n"); goto skip_ramdisk; } top = ALIGN_UP(top, PAGE_SIZE); bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr = base + top; bootinfo.taskmap.tasks[bootinfo.taskmap.count].size = silo_ramdisk_size; bootinfo.taskmap.count++; printf("\nCopying ramdisk..."); /* * Claim and map the whole ramdisk as it may exceed the area * given to us by SILO. */ (void) ofw_claim_phys(base + top, silo_ramdisk_size); (void) ofw_map(base + top, base + top, silo_ramdisk_size, -1); memmove(base + top, (void *)((uintptr_t)silo_ramdisk_image), silo_ramdisk_size); printf("done.\n"); top += silo_ramdisk_size; } skip_ramdisk: /* * Now we can proceed to copy the components. We do it in reverse order * so that we don't overwrite anything even if the components overlap * with base. */ printf("\nCopying bootinfo tasks\n"); for (i = COMPONENTS - 1; i > 0; i--, j--) { printf(" %s...", components[i].name); /* * At this point, we claim the physical memory that we are * going to use. We should be safe in case of the virtual * address space because the OpenFirmware, according to its * SPARC binding, should restrict its use of virtual memory * to addresses from [0xffd00000; 0xffefffff] and * [0xfe000000; 0xfeffffff]. * * XXX We don't map this piece of memory. We simply rely on * SILO to have it done for us already in this case. */ (void) ofw_claim_phys(bootinfo.physmem_start + bootinfo.taskmap.tasks[j].addr, ALIGN_UP(components[i].size, PAGE_SIZE)); memcpy((void *)bootinfo.taskmap.tasks[j].addr, components[i].start, components[i].size); printf("done.\n"); } printf("\nCopying kernel..."); (void) ofw_claim_phys(bootinfo.physmem_start + base, ALIGN_UP(components[0].size, PAGE_SIZE)); memcpy(base, components[0].start, components[0].size); printf("done.\n"); /* * Claim and map the physical memory for the boot allocator. * Initialize the boot allocator. */ balloc_base = base + ALIGN_UP(top, PAGE_SIZE); (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base, BALLOC_MAX_SIZE); (void) ofw_map(balloc_base, balloc_base, BALLOC_MAX_SIZE, -1); balloc_init(&bootinfo.ballocs, (uintptr_t)balloc_base); printf("\nCanonizing OpenFirmware device tree..."); bootinfo.ofw_root = ofw_tree_build(); printf("done.\n"); #ifdef CONFIG_SMP printf("\nChecking for secondary processors..."); if (!ofw_cpu()) printf("Error: unable to get CPU properties\n"); printf("done.\n"); #endif setup_palette(); printf("\nBooting the kernel...\n"); jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS, bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo, sizeof(bootinfo)); }