[b7b5f83] | 1 | /*
|
---|
[df4ed85] | 2 | * Copyright (c) 2005 Martin Decky
|
---|
[e731b0d] | 3 | * Copyright (c) 2006 Jakub Jermar
|
---|
[b7b5f83] | 4 | * All rights reserved.
|
---|
| 5 | *
|
---|
| 6 | * Redistribution and use in source and binary forms, with or without
|
---|
| 7 | * modification, are permitted provided that the following conditions
|
---|
| 8 | * are met:
|
---|
| 9 | *
|
---|
| 10 | * - Redistributions of source code must retain the above copyright
|
---|
| 11 | * notice, this list of conditions and the following disclaimer.
|
---|
| 12 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 13 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 14 | * documentation and/or other materials provided with the distribution.
|
---|
| 15 | * - The name of the author may not be used to endorse or promote products
|
---|
| 16 | * derived from this software without specific prior written permission.
|
---|
| 17 | *
|
---|
| 18 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 19 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 20 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 21 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 22 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 23 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 24 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 25 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 26 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 27 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 28 | */
|
---|
| 29 |
|
---|
[e731b0d] | 30 | #include "main.h"
|
---|
[b7b5f83] | 31 | #include <printf.h>
|
---|
| 32 | #include "asm.h"
|
---|
| 33 | #include "_components.h"
|
---|
[61e90dd] | 34 | #include <balloc.h>
|
---|
[822b64e] | 35 | #include <ofw.h>
|
---|
[61e90dd] | 36 | #include <ofw_tree.h>
|
---|
[b4fa652] | 37 | #include "ofwarch.h"
|
---|
[63cda71] | 38 | #include <align.h>
|
---|
[fa024ce] | 39 | #include <macros.h>
|
---|
[dac629e] | 40 | #include <string.h>
|
---|
[e731b0d] | 41 | #include <memstr.h>
|
---|
[b7b5f83] | 42 |
|
---|
[e731b0d] | 43 | static bootinfo_t bootinfo;
|
---|
| 44 | static component_t components[COMPONENTS];
|
---|
| 45 | static char *release = STRING(RELEASE);
|
---|
[aca95f6b] | 46 |
|
---|
| 47 | #ifdef REVISION
|
---|
[e731b0d] | 48 | static char *revision = ", revision " STRING(REVISION);
|
---|
[aca95f6b] | 49 | #else
|
---|
[e731b0d] | 50 | static char *revision = "";
|
---|
[aca95f6b] | 51 | #endif
|
---|
| 52 |
|
---|
| 53 | #ifdef TIMESTAMP
|
---|
[e731b0d] | 54 | static char *timestamp = "\nBuilt on " STRING(TIMESTAMP);
|
---|
[aca95f6b] | 55 | #else
|
---|
[e731b0d] | 56 | static char *timestamp = "";
|
---|
[aca95f6b] | 57 | #endif
|
---|
| 58 |
|
---|
[f238e86] | 59 | /** UltraSPARC subarchitecture - 1 for US, 3 for US3, 0 for other */
|
---|
| 60 | static uint8_t subarchitecture = 0;
|
---|
[965dc18] | 61 |
|
---|
| 62 | /**
|
---|
| 63 | * mask of the MID field inside the ICBUS_CONFIG register shifted by
|
---|
| 64 | * MID_SHIFT bits to the right
|
---|
| 65 | */
|
---|
[e731b0d] | 66 | static uint16_t mid_mask;
|
---|
[965dc18] | 67 |
|
---|
[aca95f6b] | 68 | /** Print version information. */
|
---|
| 69 | static void version_print(void)
|
---|
| 70 | {
|
---|
[f238e86] | 71 |
|
---|
[a9ddab2] | 72 | printf("HelenOS SPARC64 Bootloader\nRelease %s%s%s\n"
|
---|
| 73 | "Copyright (c) 2006 HelenOS project\n",
|
---|
| 74 | release, revision, timestamp);
|
---|
[aca95f6b] | 75 | }
|
---|
| 76 |
|
---|
[965dc18] | 77 | /* the lowest ID (read from the VER register) of some US3 CPU model */
|
---|
[e731b0d] | 78 | #define FIRST_US3_CPU 0x14
|
---|
[965dc18] | 79 |
|
---|
| 80 | /* the greatest ID (read from the VER register) of some US3 CPU model */
|
---|
[e731b0d] | 81 | #define LAST_US3_CPU 0x19
|
---|
[965dc18] | 82 |
|
---|
| 83 | /* UltraSPARC IIIi processor implementation code */
|
---|
[e731b0d] | 84 | #define US_IIIi_CODE 0x15
|
---|
[965dc18] | 85 |
|
---|
[f238e86] | 86 | /* max. length of the "compatible" property of the root node */
|
---|
| 87 | #define COMPATIBLE_PROP_MAXLEN 64
|
---|
| 88 |
|
---|
| 89 | /*
|
---|
| 90 | * HelenOS bootloader will use these constants to distinguish particular
|
---|
| 91 | * UltraSPARC architectures
|
---|
| 92 | */
|
---|
| 93 | #define COMPATIBLE_SUN4U 10
|
---|
| 94 | #define COMPATIBLE_SUN4V 20
|
---|
| 95 |
|
---|
| 96 | /** US architecture. COMPATIBLE_SUN4U for sun4v, COMPATIBLE_SUN4V for sun4u */
|
---|
| 97 | static uint8_t architecture;
|
---|
| 98 |
|
---|
[965dc18] | 99 | /**
|
---|
[f238e86] | 100 | * Detects the UltraSPARC architecture (sun4u and sun4v currently supported)
|
---|
| 101 | * by inspecting the property called "compatible" in the OBP root node.
|
---|
| 102 | */
|
---|
| 103 | static void detect_architecture(void)
|
---|
| 104 | {
|
---|
| 105 | phandle root = ofw_find_device("/");
|
---|
| 106 | char compatible[COMPATIBLE_PROP_MAXLEN];
|
---|
| 107 |
|
---|
| 108 | if (ofw_get_property(root, "compatible", compatible,
|
---|
| 109 | COMPATIBLE_PROP_MAXLEN) <= 0) {
|
---|
| 110 | printf("Unable to determine architecture, default: sun4u.\n");
|
---|
| 111 | architecture = COMPATIBLE_SUN4U;
|
---|
| 112 | return;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | if (strcmp(compatible, "sun4v") == 0) {
|
---|
| 116 | architecture = COMPATIBLE_SUN4V;
|
---|
| 117 | } else {
|
---|
| 118 | /*
|
---|
| 119 | * As not all sun4u machines have "sun4u" in their "compatible"
|
---|
| 120 | * OBP property (e.g. Serengeti's OBP "compatible" property is
|
---|
| 121 | * "SUNW,Serengeti"), we will by default fallback to sun4u if
|
---|
| 122 | * an unknown value of the "compatible" property is encountered.
|
---|
| 123 | */
|
---|
| 124 | architecture = COMPATIBLE_SUN4U;
|
---|
| 125 | }
|
---|
| 126 | }
|
---|
| 127 |
|
---|
| 128 |
|
---|
| 129 | /**
|
---|
| 130 | * Detects the subarchitecture (US, US3) of the sun4u
|
---|
| 131 | * processor. Sets the global variables "subarchitecture" and "mid_mask" to
|
---|
[965dc18] | 132 | * correct values.
|
---|
| 133 | */
|
---|
| 134 | static void detect_subarchitecture(void)
|
---|
| 135 | {
|
---|
| 136 | uint64_t v;
|
---|
[e731b0d] | 137 | asm volatile (
|
---|
| 138 | "rdpr %%ver, %0\n"
|
---|
| 139 | : "=r" (v)
|
---|
| 140 | );
|
---|
[965dc18] | 141 |
|
---|
| 142 | v = (v << 16) >> 48;
|
---|
| 143 | if ((v >= FIRST_US3_CPU) && (v <= LAST_US3_CPU)) {
|
---|
| 144 | subarchitecture = SUBARCH_US3;
|
---|
| 145 | if (v == US_IIIi_CODE)
|
---|
| 146 | mid_mask = (1 << 5) - 1;
|
---|
| 147 | else
|
---|
| 148 | mid_mask = (1 << 10) - 1;
|
---|
| 149 | } else if (v < FIRST_US3_CPU) {
|
---|
| 150 | subarchitecture = SUBARCH_US;
|
---|
| 151 | mid_mask = (1 << 5) - 1;
|
---|
[e731b0d] | 152 | } else
|
---|
[965dc18] | 153 | printf("\nThis CPU is not supported by HelenOS.");
|
---|
| 154 | }
|
---|
| 155 |
|
---|
[f238e86] | 156 | /**
|
---|
| 157 | * Performs sun4u-specific initialization. The components are expected
|
---|
| 158 | * to be already copied and boot allocator initialized.
|
---|
| 159 | *
|
---|
| 160 | * @param base kernel base virtual address
|
---|
| 161 | * @param top virtual address above which the boot allocator
|
---|
| 162 | * can make allocations
|
---|
| 163 | */
|
---|
| 164 | static void bootstrap_sun4u(void *base, unsigned int top)
|
---|
| 165 | {
|
---|
| 166 | void *balloc_base;
|
---|
| 167 | /*
|
---|
| 168 | * Claim and map the physical memory for the boot allocator.
|
---|
| 169 | * Initialize the boot allocator.
|
---|
| 170 | */
|
---|
| 171 | balloc_base = base + ALIGN_UP(top, PAGE_SIZE);
|
---|
| 172 | (void) ofw_claim_phys(bootinfo.physmem_start + balloc_base,
|
---|
| 173 | BALLOC_MAX_SIZE);
|
---|
| 174 | (void) ofw_map(bootinfo.physmem_start + balloc_base, balloc_base,
|
---|
| 175 | BALLOC_MAX_SIZE, -1);
|
---|
| 176 | balloc_init(&bootinfo.ballocs, (uintptr_t) balloc_base,
|
---|
| 177 | (uintptr_t) balloc_base);
|
---|
| 178 |
|
---|
| 179 | printf("Setting up screens...");
|
---|
| 180 | ofw_setup_screens();
|
---|
| 181 | printf("done.\n");
|
---|
| 182 |
|
---|
| 183 | printf("Canonizing OpenFirmware device tree...");
|
---|
| 184 | bootinfo.ofw_root = ofw_tree_build();
|
---|
| 185 | printf("done.\n");
|
---|
| 186 |
|
---|
| 187 | #ifdef CONFIG_AP
|
---|
| 188 | printf("Checking for secondary processors...");
|
---|
| 189 | if (!ofw_cpu(mid_mask, bootinfo.physmem_start))
|
---|
| 190 | printf("Error: unable to get CPU properties\n");
|
---|
| 191 | printf("done.\n");
|
---|
| 192 | #endif
|
---|
| 193 |
|
---|
| 194 | }
|
---|
| 195 |
|
---|
| 196 | /**
|
---|
| 197 | * * Performs sun4v-specific initialization. The components are expected
|
---|
| 198 | * * to be already copied and boot allocator initialized.
|
---|
| 199 | * */
|
---|
| 200 | static void bootstrap_sun4v(void)
|
---|
| 201 | {
|
---|
| 202 | /*
|
---|
| 203 | * When SILO booted, the OBP had established a virtual to physical
|
---|
| 204 | * memory mapping. This mapping is not an identity (because the
|
---|
| 205 | * physical memory starts on non-zero address) - this is not
|
---|
| 206 | * surprising. But! The mapping even does not map virtual address
|
---|
| 207 | * 0 onto the starting address of the physical memory, but onto an
|
---|
| 208 | * address which is 0x400000 bytes higher. The reason is that the
|
---|
| 209 | * OBP had already used the memory just at the beginning of the
|
---|
| 210 | * physical memory, so that memory cannot be used by SILO (nor
|
---|
| 211 | * bootloader). As for now, we solve it by a nasty workaround:
|
---|
| 212 | * we pretend that the physical memory starts 0x400000 bytes further
|
---|
| 213 | * than it actually does (and hence pretend that the physical memory
|
---|
| 214 | * is 0x400000 bytes smaller). Of course, the value 0x400000 will most
|
---|
| 215 | * probably depend on the machine and OBP version (the workaround now
|
---|
| 216 | * works on Simics). A solution would be to inspect the "available"
|
---|
| 217 | * property of the "/memory" node to find out which parts of memory
|
---|
| 218 | * are used by OBP and redesign the algorithm of copying
|
---|
| 219 | * kernel/init tasks/ramdisk from the bootable image to memory
|
---|
| 220 | * (which we must do anyway because of issues with claiming the memory
|
---|
| 221 | * on Serengeti).
|
---|
| 222 | */
|
---|
| 223 | bootinfo.physmem_start += 0x400000;
|
---|
| 224 | bootinfo.memmap.zones[0].start += 0x400000;
|
---|
| 225 | bootinfo.memmap.zones[0].size -= 0x400000;
|
---|
| 226 | printf("The sun4v init finished.");
|
---|
| 227 | }
|
---|
| 228 |
|
---|
| 229 |
|
---|
[b7b5f83] | 230 | void bootstrap(void)
|
---|
| 231 | {
|
---|
[27518e4] | 232 | void *base = (void *) KERNEL_VIRTUAL_ADDRESS;
|
---|
| 233 | unsigned int top = 0;
|
---|
[e731b0d] | 234 | unsigned int i;
|
---|
| 235 | unsigned int j;
|
---|
| 236 |
|
---|
[f238e86] | 237 | detect_architecture();
|
---|
[b7b5f83] | 238 | init_components(components);
|
---|
[e731b0d] | 239 |
|
---|
[f2ea5d8] | 240 | if (!ofw_get_physmem_start(&bootinfo.physmem_start)) {
|
---|
| 241 | printf("Error: unable to get start of physical memory.\n");
|
---|
| 242 | halt();
|
---|
| 243 | }
|
---|
[e731b0d] | 244 |
|
---|
[63cda71] | 245 | if (!ofw_memmap(&bootinfo.memmap)) {
|
---|
| 246 | printf("Error: unable to get memory map, halting.\n");
|
---|
| 247 | halt();
|
---|
| 248 | }
|
---|
[e731b0d] | 249 |
|
---|
[63cda71] | 250 | if (bootinfo.memmap.total == 0) {
|
---|
| 251 | printf("Error: no memory detected, halting.\n");
|
---|
| 252 | halt();
|
---|
| 253 | }
|
---|
[e731b0d] | 254 |
|
---|
[a9ddab2] | 255 | /*
|
---|
| 256 | * SILO for some reason adds 0x400000 and subtracts
|
---|
| 257 | * bootinfo.physmem_start to/from silo_ramdisk_image.
|
---|
| 258 | * We just need plain physical address so we fix it up.
|
---|
| 259 | */
|
---|
| 260 | if (silo_ramdisk_image) {
|
---|
| 261 | silo_ramdisk_image += bootinfo.physmem_start;
|
---|
| 262 | silo_ramdisk_image -= 0x400000;
|
---|
[e731b0d] | 263 |
|
---|
| 264 | /* Install 1:1 mapping for the RAM disk. */
|
---|
| 265 | if (ofw_map((void *) ((uintptr_t) silo_ramdisk_image),
|
---|
| 266 | (void *) ((uintptr_t) silo_ramdisk_image),
|
---|
[27518e4] | 267 | silo_ramdisk_size, -1) != 0) {
|
---|
[e731b0d] | 268 | printf("Failed to map RAM disk.\n");
|
---|
[27518e4] | 269 | halt();
|
---|
| 270 | }
|
---|
[a9ddab2] | 271 | }
|
---|
[63cda71] | 272 |
|
---|
[e731b0d] | 273 | printf("\nMemory statistics (total %d MB, starting at %P)\n",
|
---|
[a9ddab2] | 274 | bootinfo.memmap.total >> 20, bootinfo.physmem_start);
|
---|
[e731b0d] | 275 | printf(" %P: kernel entry point\n", KERNEL_VIRTUAL_ADDRESS);
|
---|
[63cda71] | 276 | printf(" %P: boot info structure\n", &bootinfo);
|
---|
[b7b5f83] | 277 |
|
---|
[27518e4] | 278 | /*
|
---|
| 279 | * Figure out destination address for each component.
|
---|
| 280 | * In this phase, we don't copy the components yet because we want to
|
---|
| 281 | * to be careful not to overwrite anything, especially the components
|
---|
| 282 | * which haven't been copied yet.
|
---|
| 283 | */
|
---|
| 284 | bootinfo.taskmap.count = 0;
|
---|
| 285 | for (i = 0; i < COMPONENTS; i++) {
|
---|
[f2ea5d8] | 286 | printf(" %P: %s image (size %d bytes)\n", components[i].start,
|
---|
[95b47c82] | 287 | components[i].name, components[i].size);
|
---|
[27518e4] | 288 | top = ALIGN_UP(top, PAGE_SIZE);
|
---|
| 289 | if (i > 0) {
|
---|
| 290 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
|
---|
| 291 | printf("Skipping superfluous components.\n");
|
---|
| 292 | break;
|
---|
| 293 | }
|
---|
[e731b0d] | 294 |
|
---|
[27518e4] | 295 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
|
---|
| 296 | base + top;
|
---|
| 297 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
|
---|
| 298 | components[i].size;
|
---|
[f7734012] | 299 | strncpy(bootinfo.taskmap.tasks[
|
---|
| 300 | bootinfo.taskmap.count].name, components[i].name,
|
---|
| 301 | BOOTINFO_TASK_NAME_BUFLEN);
|
---|
[27518e4] | 302 | bootinfo.taskmap.count++;
|
---|
| 303 | }
|
---|
| 304 | top += components[i].size;
|
---|
| 305 | }
|
---|
[e731b0d] | 306 |
|
---|
[e0565005] | 307 | printf("\n");
|
---|
| 308 |
|
---|
[e731b0d] | 309 | /* Do not consider RAM disk */
|
---|
| 310 | j = bootinfo.taskmap.count - 1;
|
---|
| 311 |
|
---|
[27518e4] | 312 | if (silo_ramdisk_image) {
|
---|
[e731b0d] | 313 | /* Treat the RAM disk as the last bootinfo task. */
|
---|
[27518e4] | 314 | if (bootinfo.taskmap.count == TASKMAP_MAX_RECORDS) {
|
---|
[e731b0d] | 315 | printf("Skipping RAM disk.\n");
|
---|
[27518e4] | 316 | goto skip_ramdisk;
|
---|
| 317 | }
|
---|
[e731b0d] | 318 |
|
---|
[b7b5f83] | 319 | top = ALIGN_UP(top, PAGE_SIZE);
|
---|
[27518e4] | 320 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].addr =
|
---|
| 321 | base + top;
|
---|
| 322 | bootinfo.taskmap.tasks[bootinfo.taskmap.count].size =
|
---|
| 323 | silo_ramdisk_size;
|
---|
| 324 | bootinfo.taskmap.count++;
|
---|
[e0565005] | 325 | printf("Copying RAM disk...");
|
---|
[e731b0d] | 326 |
|
---|
[27518e4] | 327 | /*
|
---|
| 328 | * Claim and map the whole ramdisk as it may exceed the area
|
---|
| 329 | * given to us by SILO.
|
---|
| 330 | */
|
---|
| 331 | (void) ofw_claim_phys(base + top, silo_ramdisk_size);
|
---|
[6196dae] | 332 | (void) ofw_map(bootinfo.physmem_start + base + top, base + top,
|
---|
| 333 | silo_ramdisk_size, -1);
|
---|
[e731b0d] | 334 | memmove(base + top, (void *) ((uintptr_t) silo_ramdisk_image),
|
---|
[27518e4] | 335 | silo_ramdisk_size);
|
---|
[e731b0d] | 336 |
|
---|
[27518e4] | 337 | printf("done.\n");
|
---|
| 338 | top += silo_ramdisk_size;
|
---|
| 339 | }
|
---|
| 340 | skip_ramdisk:
|
---|
[e731b0d] | 341 |
|
---|
[27518e4] | 342 | /*
|
---|
| 343 | * Now we can proceed to copy the components. We do it in reverse order
|
---|
| 344 | * so that we don't overwrite anything even if the components overlap
|
---|
| 345 | * with base.
|
---|
| 346 | */
|
---|
[e0565005] | 347 | printf("Copying tasks...");
|
---|
[27518e4] | 348 | for (i = COMPONENTS - 1; i > 0; i--, j--) {
|
---|
[e731b0d] | 349 | printf("%s ", components[i].name);
|
---|
| 350 |
|
---|
[95b47c82] | 351 | /*
|
---|
| 352 | * At this point, we claim the physical memory that we are
|
---|
| 353 | * going to use. We should be safe in case of the virtual
|
---|
| 354 | * address space because the OpenFirmware, according to its
|
---|
| 355 | * SPARC binding, should restrict its use of virtual memory
|
---|
| 356 | * to addresses from [0xffd00000; 0xffefffff] and
|
---|
| 357 | * [0xfe000000; 0xfeffffff].
|
---|
[27518e4] | 358 | *
|
---|
| 359 | * XXX We don't map this piece of memory. We simply rely on
|
---|
| 360 | * SILO to have it done for us already in this case.
|
---|
[95b47c82] | 361 | */
|
---|
[27518e4] | 362 | (void) ofw_claim_phys(bootinfo.physmem_start +
|
---|
| 363 | bootinfo.taskmap.tasks[j].addr,
|
---|
[95b47c82] | 364 | ALIGN_UP(components[i].size, PAGE_SIZE));
|
---|
[e731b0d] | 365 |
|
---|
| 366 | memcpy((void *) bootinfo.taskmap.tasks[j].addr,
|
---|
[27518e4] | 367 | components[i].start, components[i].size);
|
---|
[e731b0d] | 368 |
|
---|
[b7b5f83] | 369 | }
|
---|
[e731b0d] | 370 | printf(".\n");
|
---|
| 371 |
|
---|
[e0565005] | 372 | printf("Copying kernel...");
|
---|
[27518e4] | 373 | (void) ofw_claim_phys(bootinfo.physmem_start + base,
|
---|
| 374 | ALIGN_UP(components[0].size, PAGE_SIZE));
|
---|
| 375 | memcpy(base, components[0].start, components[0].size);
|
---|
| 376 | printf("done.\n");
|
---|
[e731b0d] | 377 |
|
---|
[f238e86] | 378 | /* perform architecture-specific initialization */
|
---|
| 379 | if (architecture == COMPATIBLE_SUN4U) {
|
---|
| 380 | bootstrap_sun4u(base, top);
|
---|
| 381 | } else if (architecture == COMPATIBLE_SUN4V) {
|
---|
| 382 | bootstrap_sun4v();
|
---|
| 383 | } else {
|
---|
| 384 | printf("Unknown architecture.\n");
|
---|
| 385 | halt();
|
---|
| 386 | }
|
---|
[e731b0d] | 387 |
|
---|
[e0565005] | 388 | printf("Booting the kernel...\n");
|
---|
[f2ea5d8] | 389 | jump_to_kernel((void *) KERNEL_VIRTUAL_ADDRESS,
|
---|
[95b47c82] | 390 | bootinfo.physmem_start | BSP_PROCESSOR, &bootinfo,
|
---|
[e731b0d] | 391 | sizeof(bootinfo), subarchitecture);
|
---|
[b7b5f83] | 392 | }
|
---|