/* * Copyright (c) 2005 Martin Decky * Copyright (c) 2006 Jakub Jermar * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "../../components.h" #define DEFAULT_MEMORY_BASE 0x4000000ULL #define DEFAULT_MEMORY_SIZE (256 * 1024 * 1024) #define DEFAULT_LEGACY_IO_BASE 0x00000FFFFC000000ULL #define DEFAULT_LEGACY_IO_SIZE 0x4000000ULL #define DEFAULT_FREQ_SCALE 0x0000000100000001ULL /* 1/1 */ #define DEFAULT_SYS_FREQ 100000000ULL /* 100MHz */ #define MEMMAP_FREE_MEM 0 #define MEMMAP_IO 1 #define MEMMAP_IO_PORTS 2 extern boot_param_t *bootpar; static bootinfo_t bootinfo; static void read_efi_memmap(void) { memmap_item_t *memmap = bootinfo.memmap; size_t items = 0; if (!bootpar) { /* Fake-up a memory map for simulators. */ memmap[items].base = DEFAULT_MEMORY_BASE; memmap[items].size = DEFAULT_MEMORY_SIZE; memmap[items].type = MEMMAP_FREE_MEM; items++; memmap[items].base = DEFAULT_LEGACY_IO_BASE; memmap[items].size = DEFAULT_LEGACY_IO_SIZE; memmap[items].type = MEMMAP_IO_PORTS; items++; } else { char *cur, *mm_base = (char *) bootpar->efi_memmap; size_t mm_size = bootpar->efi_memmap_sz; size_t md_size = bootpar->efi_memdesc_sz; /* * Walk the EFI memory map using the V1 memory descriptor * format. The actual memory descriptor can use newer format, * but it must always be backwards compatible with the V1 * format. */ for (cur = mm_base; (cur < mm_base + (mm_size - md_size)) && (items < MEMMAP_ITEMS); cur += md_size) { efi_v1_memdesc_t *md = (efi_v1_memdesc_t *) cur; switch ((efi_memory_type_t) md->type) { case EFI_CONVENTIONAL_MEMORY: memmap[items].type = MEMMAP_FREE_MEM; break; case EFI_MEMORY_MAPPED_IO: memmap[items].type = MEMMAP_IO; break; case EFI_MEMORY_MAPPED_IO_PORT_SPACE: memmap[items].type = MEMMAP_IO_PORTS; break; default: continue; } memmap[items].base = md->phys_start; memmap[items].size = md->pages * EFI_PAGE_SIZE; items++; } } bootinfo.memmap_items = items; } static void read_pal_configuration(void) { if (bootpar) { bootinfo.freq_scale = pal_proc_freq_ratio(); } else { /* Configure default values for simulators. */ bootinfo.freq_scale = DEFAULT_FREQ_SCALE; } } static void read_sal_configuration(void) { if (bootpar && bootpar->efi_system_table) { efi_guid_t sal_guid = SAL_SYSTEM_TABLE_GUID; sal_system_table_header_t *sal_st; sal_st = efi_vendor_table_find( (efi_system_table_t *) bootpar->efi_system_table, sal_guid); sal_system_table_parse(sal_st); bootinfo.sys_freq = sal_base_clock_frequency(); } else { /* Configure default values for simulators. */ bootinfo.sys_freq = DEFAULT_SYS_FREQ; } } void bootstrap(void) { version_print(); printf(" %p|%p: boot info structure\n", &bootinfo, &bootinfo); printf(" %p|%p: kernel entry point\n", (void *) KERNEL_ADDRESS, (void *) KERNEL_ADDRESS); printf(" %p|%p: loader entry point\n", (void *) LOADER_ADDRESS, (void *) LOADER_ADDRESS); size_t i; for (i = 0; i < COMPONENTS; i++) printf(" %p|%p: %s image (%zu/%zu bytes)\n", components[i].addr, components[i].addr, components[i].name, components[i].inflated, components[i].size); void *dest[COMPONENTS]; size_t top = KERNEL_ADDRESS; size_t cnt = 0; bootinfo.taskmap.cnt = 0; for (i = 0; i < min(COMPONENTS, TASKMAP_MAX_RECORDS); i++) { top = ALIGN_UP(top, PAGE_SIZE); if (i > 0) { bootinfo.taskmap.tasks[bootinfo.taskmap.cnt].addr = (void *) top; bootinfo.taskmap.tasks[bootinfo.taskmap.cnt].size = components[i].inflated; str_cpy(bootinfo.taskmap.tasks[bootinfo.taskmap.cnt].name, BOOTINFO_TASK_NAME_BUFLEN, components[i].name); bootinfo.taskmap.cnt++; } dest[i] = (void *) top; top += components[i].inflated; cnt++; } printf("\nInflating components ... "); /* * We will use the next available address for a copy of each component to * make sure that inflate() works with disjunctive memory regions. */ top = ALIGN_UP(top, PAGE_SIZE); for (i = cnt; i > 0; i--) { printf("%s ", components[i - 1].name); /* * Copy the component to a location which is guaranteed not to * overlap with the destination for inflate(). */ memmove((void *) top, components[i - 1].addr, components[i - 1].size); int err = inflate((void *) top, components[i - 1].size, dest[i - 1], components[i - 1].inflated); if (err != EOK) { printf("\n%s: Inflating error %d, halting.\n", components[i - 1].name, err); halt(); } } printf(".\n"); read_efi_memmap(); read_sal_configuration(); read_pal_configuration(); printf("Booting the kernel ...\n"); jump_to_kernel(&bootinfo); }