1 | /*
|
---|
2 | * Copyright (C) 2001-2004 Jakub Jermar
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include <arch/pm.h>
|
---|
30 | #include <config.h>
|
---|
31 | #include <arch/types.h>
|
---|
32 | #include <typedefs.h>
|
---|
33 | #include <arch/interrupt.h>
|
---|
34 | #include <arch/asm.h>
|
---|
35 | #include <arch/context.h>
|
---|
36 | #include <panic.h>
|
---|
37 |
|
---|
38 | /*
|
---|
39 | * Early ia32 configuration functions and data structures.
|
---|
40 | */
|
---|
41 |
|
---|
42 | /*
|
---|
43 | * We have no use for segmentation so we set up flat mode. In this
|
---|
44 | * mode, we use, for each privilege level, two segments spanning the
|
---|
45 | * whole memory. One is for code and one is for data.
|
---|
46 | */
|
---|
47 | struct descriptor gdt[GDT_ITEMS] = {
|
---|
48 | /* NULL descriptor */
|
---|
49 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 },
|
---|
50 | /* KTEXT descriptor */
|
---|
51 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
|
---|
52 | /* KDATA descriptor */
|
---|
53 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_KERNEL, 0xf, 0, 0, 1, 1, 0 },
|
---|
54 | /* UTEXT descriptor */
|
---|
55 | { 0xffff, 0, 0, AR_PRESENT | AR_CODE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
|
---|
56 | /* UDATA descriptor */
|
---|
57 | { 0xffff, 0, 0, AR_PRESENT | AR_DATA | AR_WRITABLE | DPL_USER, 0xf, 0, 0, 1, 1, 0 },
|
---|
58 | /* TSS descriptor - set up will be completed later */
|
---|
59 | { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0 }
|
---|
60 | };
|
---|
61 |
|
---|
62 | static struct idescriptor idt[IDT_ITEMS];
|
---|
63 |
|
---|
64 | static struct tss tss;
|
---|
65 |
|
---|
66 | struct tss *tss_p = NULL;
|
---|
67 |
|
---|
68 | /* gdtr is changed by kmp before next CPU is initialized */
|
---|
69 | struct ptr_16_32 gdtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(gdt), .base = KA2PA((__address) gdt) };
|
---|
70 | struct ptr_16_32 idtr __attribute__ ((section ("K_DATA_START"))) = { .limit = sizeof(idt), .base = KA2PA((__address) idt) };
|
---|
71 |
|
---|
72 | void gdt_setbase(struct descriptor *d, __address base)
|
---|
73 | {
|
---|
74 | d->base_0_15 = base & 0xffff;
|
---|
75 | d->base_16_23 = ((base) >> 16) & 0xff;
|
---|
76 | d->base_24_31 = ((base) >> 24) & 0xff;
|
---|
77 |
|
---|
78 | }
|
---|
79 |
|
---|
80 | void gdt_setlimit(struct descriptor *d, __u32 limit)
|
---|
81 | {
|
---|
82 | d->limit_0_15 = limit & 0xffff;
|
---|
83 | d->limit_16_19 = (limit >> 16) & 0xf;
|
---|
84 | }
|
---|
85 |
|
---|
86 | void idt_setoffset(struct idescriptor *d, __address offset)
|
---|
87 | {
|
---|
88 | /*
|
---|
89 | * Offset is a linear address.
|
---|
90 | */
|
---|
91 | d->offset_0_15 = offset & 0xffff;
|
---|
92 | d->offset_16_31 = offset >> 16;
|
---|
93 | }
|
---|
94 |
|
---|
95 | void tss_initialize(struct tss *t)
|
---|
96 | {
|
---|
97 | memsetb((__address) t, sizeof(struct tss), 0);
|
---|
98 | }
|
---|
99 |
|
---|
100 | /*
|
---|
101 | * This function takes care of proper setup of IDT and IDTR.
|
---|
102 | */
|
---|
103 | void idt_init(void)
|
---|
104 | {
|
---|
105 | struct idescriptor *d;
|
---|
106 | int i;
|
---|
107 |
|
---|
108 | for (i = 0; i < IDT_ITEMS; i++) {
|
---|
109 | d = &idt[i];
|
---|
110 |
|
---|
111 | d->unused = 0;
|
---|
112 | d->selector = selector(KTEXT_DES);
|
---|
113 |
|
---|
114 | d->access = AR_PRESENT | AR_INTERRUPT; /* masking interrupt */
|
---|
115 |
|
---|
116 | if (i == VECTOR_SYSCALL) {
|
---|
117 | /*
|
---|
118 | * The syscall interrupt gate must be calleable from userland.
|
---|
119 | */
|
---|
120 | d->access |= DPL_USER;
|
---|
121 | }
|
---|
122 |
|
---|
123 | idt_setoffset(d, ((__address) interrupt_handlers) + i*interrupt_handler_size);
|
---|
124 | trap_register(i, null_interrupt);
|
---|
125 | }
|
---|
126 | trap_register(13, gp_fault);
|
---|
127 | trap_register( 7, nm_fault);
|
---|
128 | trap_register(12, ss_fault);
|
---|
129 | }
|
---|
130 |
|
---|
131 |
|
---|
132 | void pm_init(void)
|
---|
133 | {
|
---|
134 | struct descriptor *gdt_p = (struct descriptor *) gdtr.base;
|
---|
135 |
|
---|
136 | /*
|
---|
137 | * Each CPU has its private GDT and TSS.
|
---|
138 | * All CPUs share one IDT.
|
---|
139 | */
|
---|
140 |
|
---|
141 | if (config.cpu_active == 1) {
|
---|
142 | idt_init();
|
---|
143 | /*
|
---|
144 | * NOTE: bootstrap CPU has statically allocated TSS, because
|
---|
145 | * the heap hasn't been initialized so far.
|
---|
146 | */
|
---|
147 | tss_p = &tss;
|
---|
148 | }
|
---|
149 | else {
|
---|
150 | tss_p = (struct tss *) malloc(sizeof(struct tss));
|
---|
151 | if (!tss_p)
|
---|
152 | panic("could not allocate TSS\n");
|
---|
153 | }
|
---|
154 |
|
---|
155 | tss_initialize(tss_p);
|
---|
156 |
|
---|
157 | gdt_p[TSS_DES].access = AR_PRESENT | AR_TSS | DPL_KERNEL;
|
---|
158 | gdt_p[TSS_DES].special = 1;
|
---|
159 | gdt_p[TSS_DES].granularity = 1;
|
---|
160 |
|
---|
161 | gdt_setbase(&gdt_p[TSS_DES], (__address) tss_p);
|
---|
162 | gdt_setlimit(&gdt_p[TSS_DES], sizeof(struct tss) - 1);
|
---|
163 |
|
---|
164 | /*
|
---|
165 | * As of this moment, the current CPU has its own GDT pointing
|
---|
166 | * to its own TSS. We just need to load the TR register.
|
---|
167 | */
|
---|
168 | __asm__("ltr %0" : : "r" ((__u16) selector(TSS_DES)));
|
---|
169 | }
|
---|