/* * Copyright (C) 2005 Josef Cejka * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * * - Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * - Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * - The name of the author may not be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include #include #define FMATH_MANTISA_MASK ( 0x000fffffffffffffLL ) #define FMATH_NAN ( 0x0001000000000001LL ) signed short fmath_get_binary_exponent(double num) { fmath_ld_union_t fmath_ld_union; fmath_ld_union.bf = num; return (signed short)((((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4)) -FMATH_EXPONENT_BIAS; /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */ } double fmath_get_decimal_exponent(double num) { double value; /* log10(2)*log2(x) => log10(x) */ __asm__ __volatile__ ( \ "fldlg2 #load log10(2) \n\t" \ "fxch %%st(1) \n\t" \ "fyl2x #count st(0)*log2(st(1))->st(1); pop st(0) \n\t" \ : "=t" (value) : "0"(num) ); return value; } __u64 fmath_get_binary_mantisa(double num) { union { __u64 _u; double _d;} un = { _d : num }; un._u=un._u &(FMATH_MANTISA_MASK); /* mask 52 bits of mantisa*/ return un._u; } double fmath_fint(double num, double *intp) { fmath_ld_union_t fmath_ld_union_num; fmath_ld_union_t fmath_ld_union_int; signed short exp; __u64 mask,mantisa; int i; exp=fmath_get_binary_exponent(num); if (exp<0) { *intp = 0.0; return num; } if (exp>51) { *intp=num; num=0.0; return num; } fmath_ld_union_num.bf = num; mask = FMATH_MANTISA_MASK>>exp; //mantisa = (fmath_get-binary_mantisa(num))&(~mask); for (i=0;i<7;i++) { /* Ugly construction for obtain sign, exponent and integer part from num */ fmath_ld_union_int.ldd[i]=fmath_ld_union_num.ldd[i]&(((~mask)>>(i*8))&0xff); } fmath_ld_union_int.ldd[6]|=((fmath_ld_union_num.ldd[6])&(0xf0)); fmath_ld_union_int.ldd[7]=fmath_ld_union_num.ldd[7]; *intp=fmath_ld_union_int.bf; return fmath_ld_union_num.bf-fmath_ld_union_int.bf; }; double fmath_dpow(double base, double exponent) { double value=1.0; if (base<=0.0) return base; //2^(x*log2(10)) = 2^y = 10^x __asm__ __volatile__ ( \ "fyl2x # ST(1):=ST(1)*log2(ST(0)), pop st(0) \n\t " \ "fld %%st(0) \n\t" \ "frndint \n\t" \ "fxch %%st(1) \n\t" \ "fsub %%st(1),%%st(0) \n\t" \ "f2xm1 # ST := 2^ST -1\n\t" \ "fld1 \n\t" \ "faddp %%st(0),%%st(1) \n\t" \ "fscale #ST:=ST*2^(ST(1))\n\t" \ "fstp %%st(1) \n\t" \ "" : "=t" (value) : "0" (base), "u" (exponent) ); return value; } int fmath_is_nan(double num) { __u16 exp; fmath_ld_union_t fmath_ld_union; fmath_ld_union.bf = num; exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */ if (exp!=0x07ff) return 0; if (fmath_get_binary_mantisa(num)>=FMATH_NAN) return 1; return 0; } int fmath_is_infinity(double num) { __u16 exp; fmath_ld_union_t fmath_ld_union; fmath_ld_union.bf = num; exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */ if (exp!=0x07ff) return 0; if (fmath_get_binary_mantisa(num)==0x0) return 1; return 0; }