[c7bb8b05] | 1 | /*
|
---|
| 2 | * Copyright (C) 2005 Josef Cejka
|
---|
| 3 | * All rights reserved.
|
---|
| 4 | *
|
---|
| 5 | * Redistribution and use in source and binary forms, with or without
|
---|
| 6 | * modification, are permitted provided that the following conditions
|
---|
| 7 | * are met:
|
---|
| 8 | *
|
---|
| 9 | * - Redistributions of source code must retain the above copyright
|
---|
| 10 | * notice, this list of conditions and the following disclaimer.
|
---|
| 11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
| 12 | * notice, this list of conditions and the following disclaimer in the
|
---|
| 13 | * documentation and/or other materials provided with the distribution.
|
---|
| 14 | * - The name of the author may not be used to endorse or promote products
|
---|
| 15 | * derived from this software without specific prior written permission.
|
---|
| 16 | *
|
---|
| 17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
| 18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
| 19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
| 20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
| 21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
| 22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
| 23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
| 24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
| 25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
| 26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #include <arch/fmath.h>
|
---|
| 30 | #include <print.h>
|
---|
| 31 |
|
---|
| 32 | #define FMATH_MANTISA_MASK ( 0x000fffffffffffffLL )
|
---|
[2f08a55d] | 33 | #define FMATH_NAN ( 0x0001000000000001LL )
|
---|
[c7bb8b05] | 34 | signed short fmath_get_binary_exponent(double num)
|
---|
| 35 | {
|
---|
| 36 | fmath_ld_union_t fmath_ld_union;
|
---|
| 37 | fmath_ld_union.bf = num;
|
---|
| 38 | return (signed short)((((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4)) -FMATH_EXPONENT_BIAS; /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */
|
---|
| 39 | }
|
---|
| 40 |
|
---|
| 41 | double fmath_get_decimal_exponent(double num)
|
---|
| 42 | {
|
---|
| 43 | double value;
|
---|
| 44 | /* log10(2)*log2(x) => log10(x) */
|
---|
| 45 | __asm__ __volatile__ ( \
|
---|
| 46 | "fldlg2 #load log10(2) \n\t" \
|
---|
| 47 | "fxch %%st(1) \n\t" \
|
---|
| 48 | "fyl2x #count st(0)*log2(st(1))->st(1); pop st(0) \n\t" \
|
---|
| 49 | : "=t" (value) : "0"(num) );
|
---|
| 50 | return value;
|
---|
| 51 | }
|
---|
| 52 |
|
---|
| 53 | __u64 fmath_get_binary_mantisa(double num)
|
---|
| 54 | {
|
---|
| 55 | union { __u64 _u; double _d;} un = { _d : num };
|
---|
| 56 | un._u=un._u &(FMATH_MANTISA_MASK); /* mask 52 bits of mantisa*/
|
---|
| 57 | return un._u;
|
---|
| 58 | }
|
---|
| 59 |
|
---|
| 60 | double fmath_fint(double num, double *intp)
|
---|
| 61 | {
|
---|
| 62 | fmath_ld_union_t fmath_ld_union_num;
|
---|
| 63 | fmath_ld_union_t fmath_ld_union_int;
|
---|
| 64 | signed short exp;
|
---|
| 65 | __u64 mask,mantisa;
|
---|
| 66 | int i;
|
---|
| 67 |
|
---|
| 68 | exp=fmath_get_binary_exponent(num);
|
---|
| 69 |
|
---|
| 70 | if (exp<0) {
|
---|
| 71 | *intp = 0.0;
|
---|
| 72 | return num;
|
---|
| 73 | }
|
---|
| 74 |
|
---|
| 75 |
|
---|
| 76 | if (exp>51) {
|
---|
| 77 | *intp=num;
|
---|
| 78 | num=0.0;
|
---|
| 79 | return num;
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | fmath_ld_union_num.bf = num;
|
---|
| 83 |
|
---|
| 84 | mask = FMATH_MANTISA_MASK>>exp;
|
---|
| 85 | //mantisa = (fmath_get-binary_mantisa(num))&(~mask);
|
---|
| 86 |
|
---|
| 87 | for (i=0;i<7;i++) {
|
---|
| 88 | /* Ugly construction for obtain sign, exponent and integer part from num */
|
---|
| 89 | fmath_ld_union_int.ldd[i]=fmath_ld_union_num.ldd[i]&(((~mask)>>(i*8))&0xff);
|
---|
| 90 | }
|
---|
| 91 |
|
---|
| 92 | fmath_ld_union_int.ldd[6]|=((fmath_ld_union_num.ldd[6])&(0xf0));
|
---|
| 93 | fmath_ld_union_int.ldd[7]=fmath_ld_union_num.ldd[7];
|
---|
| 94 |
|
---|
| 95 | *intp=fmath_ld_union_int.bf;
|
---|
| 96 | return fmath_ld_union_num.bf-fmath_ld_union_int.bf;
|
---|
| 97 | };
|
---|
| 98 |
|
---|
| 99 |
|
---|
| 100 | double fmath_dpow(double base, double exponent)
|
---|
| 101 | {
|
---|
| 102 | double value=1.0;
|
---|
| 103 | if (base<=0.0) return base;
|
---|
| 104 |
|
---|
| 105 | //2^(x*log2(10)) = 2^y = 10^x
|
---|
| 106 |
|
---|
| 107 | __asm__ __volatile__ ( \
|
---|
| 108 | "fyl2x # ST(1):=ST(1)*log2(ST(0)), pop st(0) \n\t " \
|
---|
| 109 | "fld %%st(0) \n\t" \
|
---|
| 110 | "frndint \n\t" \
|
---|
| 111 | "fxch %%st(1) \n\t" \
|
---|
| 112 | "fsub %%st(1),%%st(0) \n\t" \
|
---|
| 113 | "f2xm1 # ST := 2^ST -1\n\t" \
|
---|
| 114 | "fld1 \n\t" \
|
---|
| 115 | "faddp %%st(0),%%st(1) \n\t" \
|
---|
| 116 | "fscale #ST:=ST*2^(ST(1))\n\t" \
|
---|
| 117 | "fstp %%st(1) \n\t" \
|
---|
| 118 | "" : "=t" (value) : "0" (base), "u" (exponent) );
|
---|
| 119 | return value;
|
---|
| 120 | }
|
---|
| 121 |
|
---|
[2f08a55d] | 122 | int fmath_is_nan(double num)
|
---|
| 123 | {
|
---|
| 124 | __u16 exp;
|
---|
| 125 | fmath_ld_union_t fmath_ld_union;
|
---|
| 126 | fmath_ld_union.bf = num;
|
---|
| 127 | exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */
|
---|
| 128 |
|
---|
| 129 | if (exp!=0x07ff) return 0;
|
---|
| 130 | if (fmath_get_binary_mantisa(num)>=FMATH_NAN) return 1;
|
---|
| 131 |
|
---|
| 132 |
|
---|
| 133 | return 0;
|
---|
| 134 | }
|
---|
| 135 |
|
---|
| 136 | int fmath_is_infinity(double num)
|
---|
| 137 | {
|
---|
| 138 | __u16 exp;
|
---|
| 139 | fmath_ld_union_t fmath_ld_union;
|
---|
| 140 | fmath_ld_union.bf = num;
|
---|
| 141 | exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); /* exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th */
|
---|
| 142 |
|
---|
| 143 | if (exp!=0x07ff) return 0;
|
---|
| 144 | if (fmath_get_binary_mantisa(num)==0x0) return 1;
|
---|
| 145 | return 0;
|
---|
| 146 | }
|
---|