1 | /*
|
---|
2 | * Copyright (C) 2005 Josef Cejka
|
---|
3 | * All rights reserved.
|
---|
4 | *
|
---|
5 | * Redistribution and use in source and binary forms, with or without
|
---|
6 | * modification, are permitted provided that the following conditions
|
---|
7 | * are met:
|
---|
8 | *
|
---|
9 | * - Redistributions of source code must retain the above copyright
|
---|
10 | * notice, this list of conditions and the following disclaimer.
|
---|
11 | * - Redistributions in binary form must reproduce the above copyright
|
---|
12 | * notice, this list of conditions and the following disclaimer in the
|
---|
13 | * documentation and/or other materials provided with the distribution.
|
---|
14 | * - The name of the author may not be used to endorse or promote products
|
---|
15 | * derived from this software without specific prior written permission.
|
---|
16 | *
|
---|
17 | * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
|
---|
18 | * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
|
---|
19 | * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
|
---|
20 | * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
|
---|
21 | * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
|
---|
22 | * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
---|
23 | * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
---|
24 | * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
---|
25 | * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
|
---|
26 | * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
---|
27 | */
|
---|
28 |
|
---|
29 | #include <arch/fmath.h>
|
---|
30 | #include <print.h>
|
---|
31 |
|
---|
32 | //TODO:
|
---|
33 | #define FMATH_MANTISA_MASK ( 0x000fffffffffffffLL )
|
---|
34 |
|
---|
35 | signed short fmath_get_binary_exponent(double num)
|
---|
36 | { //TODO:
|
---|
37 | /* fmath_ld_union_t fmath_ld_union;
|
---|
38 | fmath_ld_union.bf = num;
|
---|
39 | return (signed short)((((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4)) -FMATH_EXPONENT_BIAS; // exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th
|
---|
40 | */
|
---|
41 | return 0;
|
---|
42 | }
|
---|
43 |
|
---|
44 | double fmath_get_decimal_exponent(double num)
|
---|
45 | { //TODO:
|
---|
46 | double value;
|
---|
47 | // log10(2)*log2(x) => log10(x)
|
---|
48 | /* __asm__ __volatile__ ( \
|
---|
49 | "fldlg2 #load log10(2) \n\t" \
|
---|
50 | "fxch %%st(1) \n\t" \
|
---|
51 | "fyl2x #count st(0)*log2(st(1))->st(1); pop st(0) \n\t" \
|
---|
52 | : "=t" (value) : "0"(num) );
|
---|
53 | */ return value;
|
---|
54 |
|
---|
55 | }
|
---|
56 |
|
---|
57 | __u64 fmath_get_binary_mantisa(double num)
|
---|
58 | { //TODO:
|
---|
59 | /* union { __u64 _u; double _d;} un = { _d : num };
|
---|
60 | un._u=un._u &(FMATH_MANTISA_MASK); // mask 52 bits of mantisa
|
---|
61 | return un._u;
|
---|
62 | */
|
---|
63 | return 0;
|
---|
64 | }
|
---|
65 |
|
---|
66 | double fmath_fint(double num, double *intp)
|
---|
67 | { //TODO:
|
---|
68 | /* fmath_ld_union_t fmath_ld_union_num;
|
---|
69 | fmath_ld_union_t fmath_ld_union_int;
|
---|
70 | signed short exp;
|
---|
71 | __u64 mask,mantisa;
|
---|
72 | int i;
|
---|
73 |
|
---|
74 | exp=fmath_get_binary_exponent(num);
|
---|
75 |
|
---|
76 | if (exp<0) {
|
---|
77 | *intp = 0.0;
|
---|
78 | *intp = fmath_set_sign(0.0L,fmath_is_negative(num));
|
---|
79 | return num;
|
---|
80 | }
|
---|
81 |
|
---|
82 |
|
---|
83 | if (exp>51) {
|
---|
84 | *intp=num;
|
---|
85 | num=0.0;
|
---|
86 | num= fmath_set_sign(0.0L,fmath_is_negative(*intp));
|
---|
87 | return num;
|
---|
88 | }
|
---|
89 |
|
---|
90 | fmath_ld_union_num.bf = num;
|
---|
91 |
|
---|
92 | mask = FMATH_MANTISA_MASK>>exp;
|
---|
93 | //mantisa = (fmath_get-binary_mantisa(num))&(~mask);
|
---|
94 |
|
---|
95 | for (i=0;i<7;i++) {
|
---|
96 | // Ugly construction for obtain sign, exponent and integer part from num
|
---|
97 | fmath_ld_union_int.ldd[i]=fmath_ld_union_num.ldd[i]&(((~mask)>>(i*8))&0xff);
|
---|
98 | }
|
---|
99 |
|
---|
100 | fmath_ld_union_int.ldd[6]|=((fmath_ld_union_num.ldd[6])&(0xf0));
|
---|
101 | fmath_ld_union_int.ldd[7]=fmath_ld_union_num.ldd[7];
|
---|
102 |
|
---|
103 | *intp=fmath_ld_union_int.bf;
|
---|
104 | return fmath_ld_union_num.bf-fmath_ld_union_int.bf;
|
---|
105 | */
|
---|
106 |
|
---|
107 | return 0.0;
|
---|
108 | };
|
---|
109 |
|
---|
110 |
|
---|
111 | double fmath_dpow(double base, double exponent)
|
---|
112 | { //TODO:
|
---|
113 | /* double value=1.0;
|
---|
114 | if (base<=0.0) return base;
|
---|
115 |
|
---|
116 | //2^(x*log2(10)) = 2^y = 10^x
|
---|
117 |
|
---|
118 | __asm__ __volatile__ ( \
|
---|
119 | "fyl2x # ST(1):=ST(1)*log2(ST(0)), pop st(0) \n\t " \
|
---|
120 | "fld %%st(0) \n\t" \
|
---|
121 | "frndint \n\t" \
|
---|
122 | "fxch %%st(1) \n\t" \
|
---|
123 | "fsub %%st(1),%%st(0) \n\t" \
|
---|
124 | "f2xm1 # ST := 2^ST -1\n\t" \
|
---|
125 | "fld1 \n\t" \
|
---|
126 | "faddp %%st(0),%%st(1) \n\t" \
|
---|
127 | "fscale #ST:=ST*2^(ST(1))\n\t" \
|
---|
128 | "fstp %%st(1) \n\t" \
|
---|
129 | "" : "=t" (value) : "0" (base), "u" (exponent) );
|
---|
130 | return value;
|
---|
131 | */
|
---|
132 | return 1.0;
|
---|
133 | }
|
---|
134 |
|
---|
135 |
|
---|
136 | int fmath_is_nan(double num)
|
---|
137 | {
|
---|
138 | /* __u16 exp;
|
---|
139 | fmath_ld_union_t fmath_ld_union;
|
---|
140 | fmath_ld_union.bf = num;
|
---|
141 | exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); // exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th
|
---|
142 |
|
---|
143 | if (exp!=0x07ff) return 0;
|
---|
144 | if (fmath_get_binary_mantisa(num)>=FMATH_NAN) return 1;
|
---|
145 |
|
---|
146 | */
|
---|
147 | return 0;
|
---|
148 | }
|
---|
149 |
|
---|
150 | int fmath_is_infinity(double num)
|
---|
151 | {
|
---|
152 | /* __u16 exp;
|
---|
153 | fmath_ld_union_t fmath_ld_union;
|
---|
154 | fmath_ld_union.bf = num;
|
---|
155 | exp=(((fmath_ld_union.ldd[7])&0x7f)<<4) + (((fmath_ld_union.ldd[6])&0xf0)>>4); // exponent is 11 bits lenght, so sevent bits is in 8th byte and 4 bits in 7th
|
---|
156 |
|
---|
157 | if (exp!=0x07ff) return 0;
|
---|
158 | if (fmath_get_binary_mantisa(num)==0x0) return 1;
|
---|
159 | */ return 0;
|
---|
160 | }
|
---|
161 |
|
---|