Changeset ccc3debf in mainline for uspace/lib/posix/time.c
- Timestamp:
- 2012-09-17T13:18:41Z (13 years ago)
- Branches:
- lfn, master, serial, ticket/834-toolchain-update, topic/msim-upgrade, topic/simplify-dev-export
- Children:
- 619e6d56
- Parents:
- 00b4a68 (diff), 289fa65 (diff)
Note: this is a merge changeset, the changes displayed below correspond to the merge itself.
Use the(diff)
links above to see all the changes relative to each parent. - File:
-
- 1 edited
Legend:
- Unmodified
- Added
- Removed
-
uspace/lib/posix/time.c
r00b4a68 rccc3debf 61 61 */ 62 62 63 64 65 /* Helper functions ***********************************************************/66 67 #define HOURS_PER_DAY (24)68 #define MINS_PER_HOUR (60)69 #define SECS_PER_MIN (60)70 #define MINS_PER_DAY (MINS_PER_HOUR * HOURS_PER_DAY)71 #define SECS_PER_HOUR (SECS_PER_MIN * MINS_PER_HOUR)72 #define SECS_PER_DAY (SECS_PER_HOUR * HOURS_PER_DAY)73 74 /**75 * Checks whether the year is a leap year.76 *77 * @param year Year since 1900 (e.g. for 1970, the value is 70).78 * @return true if year is a leap year, false otherwise79 */80 static bool _is_leap_year(time_t year)81 {82 year += 1900;83 84 if (year % 400 == 0)85 return true;86 if (year % 100 == 0)87 return false;88 if (year % 4 == 0)89 return true;90 return false;91 }92 93 /**94 * Returns how many days there are in the given month of the given year.95 * Note that year is only taken into account if month is February.96 *97 * @param year Year since 1900 (can be negative).98 * @param mon Month of the year. 0 for January, 11 for December.99 * @return Number of days in the specified month.100 */101 static int _days_in_month(time_t year, time_t mon)102 {103 assert(mon >= 0 && mon <= 11);104 105 static int month_days[] =106 { 31, 0, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };107 108 if (mon == 1) {109 year += 1900;110 /* february */111 return _is_leap_year(year) ? 29 : 28;112 } else {113 return month_days[mon];114 }115 }116 117 /**118 * For specified year, month and day of month, returns which day of that year119 * it is.120 *121 * For example, given date 2011-01-03, the corresponding expression is:122 * _day_of_year(111, 0, 3) == 2123 *124 * @param year Year (year 1900 = 0, can be negative).125 * @param mon Month (January = 0).126 * @param mday Day of month (First day is 1).127 * @return Day of year (First day is 0).128 */129 static int _day_of_year(time_t year, time_t mon, time_t mday)130 {131 static int mdays[] =132 { 0, 31, 59, 90, 120, 151, 181, 212, 243, 273, 304, 334 };133 static int leap_mdays[] =134 { 0, 31, 60, 91, 121, 152, 182, 213, 244, 274, 305, 335 };135 136 return (_is_leap_year(year) ? leap_mdays[mon] : mdays[mon]) + mday - 1;137 }138 139 /**140 * Integer division that rounds to negative infinity.141 * Used by some functions in this file.142 *143 * @param op1 Divident.144 * @param op2 Divisor.145 * @return Rounded quotient.146 */147 static time_t _floor_div(time_t op1, time_t op2)148 {149 if (op1 >= 0 || op1 % op2 == 0) {150 return op1 / op2;151 } else {152 return op1 / op2 - 1;153 }154 }155 156 /**157 * Modulo that rounds to negative infinity.158 * Used by some functions in this file.159 *160 * @param op1 Divident.161 * @param op2 Divisor.162 * @return Remainder.163 */164 static time_t _floor_mod(time_t op1, time_t op2)165 {166 int div = _floor_div(op1, op2);167 168 /* (a / b) * b + a % b == a */169 /* thus, a % b == a - (a / b) * b */170 171 int result = op1 - div * op2;172 173 /* Some paranoid checking to ensure I didn't make a mistake here. */174 assert(result >= 0);175 assert(result < op2);176 assert(div * op2 + result == op1);177 178 return result;179 }180 181 /**182 * Number of days since the Epoch.183 * Epoch is 1970-01-01, which is also equal to day 0.184 *185 * @param year Year (year 1900 = 0, may be negative).186 * @param mon Month (January = 0).187 * @param mday Day of month (first day = 1).188 * @return Number of days since the Epoch.189 */190 static time_t _days_since_epoch(time_t year, time_t mon, time_t mday)191 {192 return (year - 70) * 365 + _floor_div(year - 69, 4) -193 _floor_div(year - 1, 100) + _floor_div(year + 299, 400) +194 _day_of_year(year, mon, mday);195 }196 197 /**198 * Seconds since the Epoch. see also _days_since_epoch().199 *200 * @param tm Normalized broken-down time.201 * @return Number of seconds since the epoch, not counting leap seconds.202 */203 static time_t _secs_since_epoch(const struct posix_tm *tm)204 {205 return _days_since_epoch(tm->tm_year, tm->tm_mon, tm->tm_mday) *206 SECS_PER_DAY + tm->tm_hour * SECS_PER_HOUR +207 tm->tm_min * SECS_PER_MIN + tm->tm_sec;208 }209 210 /**211 * Which day of week the specified date is.212 *213 * @param year Year (year 1900 = 0).214 * @param mon Month (January = 0).215 * @param mday Day of month (first = 1).216 * @return Day of week (Sunday = 0).217 */218 static int _day_of_week(time_t year, time_t mon, time_t mday)219 {220 /* 1970-01-01 is Thursday */221 return _floor_mod((_days_since_epoch(year, mon, mday) + 4), 7);222 }223 224 /**225 * Normalizes the broken-down time and optionally adds specified amount of226 * seconds.227 *228 * @param tm Broken-down time to normalize.229 * @param sec_add Seconds to add.230 * @return 0 on success, -1 on overflow231 */232 static int _normalize_time(struct posix_tm *tm, time_t sec_add)233 {234 // TODO: DST correction235 236 /* Set initial values. */237 time_t sec = tm->tm_sec + sec_add;238 time_t min = tm->tm_min;239 time_t hour = tm->tm_hour;240 time_t day = tm->tm_mday - 1;241 time_t mon = tm->tm_mon;242 time_t year = tm->tm_year;243 244 /* Adjust time. */245 min += _floor_div(sec, SECS_PER_MIN);246 sec = _floor_mod(sec, SECS_PER_MIN);247 hour += _floor_div(min, MINS_PER_HOUR);248 min = _floor_mod(min, MINS_PER_HOUR);249 day += _floor_div(hour, HOURS_PER_DAY);250 hour = _floor_mod(hour, HOURS_PER_DAY);251 252 /* Adjust month. */253 year += _floor_div(mon, 12);254 mon = _floor_mod(mon, 12);255 256 /* Now the difficult part - days of month. */257 258 /* First, deal with whole cycles of 400 years = 146097 days. */259 year += _floor_div(day, 146097) * 400;260 day = _floor_mod(day, 146097);261 262 /* Then, go in one year steps. */263 if (mon <= 1) {264 /* January and February. */265 while (day > 365) {266 day -= _is_leap_year(year) ? 366 : 365;267 year++;268 }269 } else {270 /* Rest of the year. */271 while (day > 365) {272 day -= _is_leap_year(year + 1) ? 366 : 365;273 year++;274 }275 }276 277 /* Finally, finish it off month per month. */278 while (day >= _days_in_month(year, mon)) {279 day -= _days_in_month(year, mon);280 mon++;281 if (mon >= 12) {282 mon -= 12;283 year++;284 }285 }286 287 /* Calculate the remaining two fields. */288 tm->tm_yday = _day_of_year(year, mon, day + 1);289 tm->tm_wday = _day_of_week(year, mon, day + 1);290 291 /* And put the values back to the struct. */292 tm->tm_sec = (int) sec;293 tm->tm_min = (int) min;294 tm->tm_hour = (int) hour;295 tm->tm_mday = (int) day + 1;296 tm->tm_mon = (int) mon;297 298 /* Casts to work around libc brain-damage. */299 if (year > ((int)INT_MAX) || year < ((int)INT_MIN)) {300 tm->tm_year = (year < 0) ? ((int)INT_MIN) : ((int)INT_MAX);301 return -1;302 }303 304 tm->tm_year = (int) year;305 return 0;306 }307 308 /**309 * Which day the week-based year starts on, relative to the first calendar day.310 * E.g. if the year starts on December 31st, the return value is -1.311 *312 * @param Year since 1900.313 * @return Offset of week-based year relative to calendar year.314 */315 static int _wbyear_offset(int year)316 {317 int start_wday = _day_of_week(year, 0, 1);318 return _floor_mod(4 - start_wday, 7) - 3;319 }320 321 /**322 * Returns week-based year of the specified time.323 *324 * @param tm Normalized broken-down time.325 * @return Week-based year.326 */327 static int _wbyear(const struct posix_tm *tm)328 {329 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);330 if (day < 0) {331 /* Last week of previous year. */332 return tm->tm_year - 1;333 }334 if (day > 364 + _is_leap_year(tm->tm_year)) {335 /* First week of next year. */336 return tm->tm_year + 1;337 }338 /* All the other days are in the calendar year. */339 return tm->tm_year;340 }341 342 /**343 * Week number of the year, assuming weeks start on sunday.344 * The first Sunday of January is the first day of week 1;345 * days in the new year before this are in week 0.346 *347 * @param tm Normalized broken-down time.348 * @return The week number (0 - 53).349 */350 static int _sun_week_number(const struct posix_tm *tm)351 {352 int first_day = (7 - _day_of_week(tm->tm_year, 0, 1)) % 7;353 return (tm->tm_yday - first_day + 7) / 7;354 }355 356 /**357 * Week number of the year, assuming weeks start on monday.358 * If the week containing January 1st has four or more days in the new year,359 * then it is considered week 1. Otherwise, it is the last week of the previous360 * year, and the next week is week 1. Both January 4th and the first Thursday361 * of January are always in week 1.362 *363 * @param tm Normalized broken-down time.364 * @return The week number (1 - 53).365 */366 static int _iso_week_number(const struct posix_tm *tm)367 {368 int day = tm->tm_yday - _wbyear_offset(tm->tm_year);369 if (day < 0) {370 /* Last week of previous year. */371 return 53;372 }373 if (day > 364 + _is_leap_year(tm->tm_year)) {374 /* First week of next year. */375 return 1;376 }377 /* All the other days give correct answer. */378 return (day / 7 + 1);379 }380 381 /**382 * Week number of the year, assuming weeks start on monday.383 * The first Monday of January is the first day of week 1;384 * days in the new year before this are in week 0.385 *386 * @param tm Normalized broken-down time.387 * @return The week number (0 - 53).388 */389 static int _mon_week_number(const struct posix_tm *tm)390 {391 int first_day = (1 - _day_of_week(tm->tm_year, 0, 1)) % 7;392 return (tm->tm_yday - first_day + 7) / 7;393 }394 395 /******************************************************************************/396 397 63 int posix_daylight; 398 64 long posix_timezone; … … 412 78 413 79 /** 414 * Calculate the difference between two times, in seconds.415 *416 * @param time1 First time.417 * @param time0 Second time.418 * @return Time in seconds.419 */420 double posix_difftime(time_t time1, time_t time0)421 {422 return (double) (time1 - time0);423 }424 425 /**426 * This function first normalizes the provided broken-down time427 * (moves all values to their proper bounds) and then tries to428 * calculate the appropriate time_t representation.429 *430 * @param tm Broken-down time.431 * @return time_t representation of the time, undefined value on overflow.432 */433 time_t posix_mktime(struct posix_tm *tm)434 {435 // TODO: take DST flag into account436 // TODO: detect overflow437 438 _normalize_time(tm, 0);439 return _secs_since_epoch(tm);440 }441 442 /**443 * Converts a time value to a broken-down UTC time.444 *445 * @param timer Time to convert.446 * @return Normalized broken-down time in UTC, NULL on overflow.447 */448 struct posix_tm *posix_gmtime(const time_t *timer)449 {450 assert(timer != NULL);451 452 static struct posix_tm result;453 return posix_gmtime_r(timer, &result);454 }455 456 /**457 80 * Converts a time value to a broken-down UTC time. 458 81 * … … 461 84 * @return Value of result on success, NULL on overflow. 462 85 */ 463 struct posix_tm *posix_gmtime_r(const time_t *restrict timer, 464 struct posix_tm *restrict result) 465 { 466 assert(timer != NULL); 467 assert(result != NULL); 468 469 /* Set result to epoch. */ 470 result->tm_sec = 0; 471 result->tm_min = 0; 472 result->tm_hour = 0; 473 result->tm_mday = 1; 474 result->tm_mon = 0; 475 result->tm_year = 70; /* 1970 */ 476 477 if (_normalize_time(result, *timer) == -1) { 478 errno = EOVERFLOW; 86 struct tm *posix_gmtime_r(const time_t *restrict timer, 87 struct tm *restrict result) 88 { 89 int rc = time_utc2tm(*timer, result); 90 if (rc != EOK) { 91 errno = rc; 479 92 return NULL; 480 93 } … … 484 97 485 98 /** 486 * Converts a time value to a broken-down local time. 487 * 488 * @param timer Time to convert. 489 * @return Normalized broken-down time in local timezone, NULL on overflow. 490 */ 491 struct posix_tm *posix_localtime(const time_t *timer) 492 { 493 static struct posix_tm result; 494 return posix_localtime_r(timer, &result); 99 * Converts a time value to a broken-down UTC time. 100 * (non reentrant version) 101 * 102 * @param timep Time to convert 103 * @return Pointer to a statically allocated structure that stores 104 * the result, NULL in case of error. 105 */ 106 struct tm *posix_gmtime(const time_t *restrict timep) 107 { 108 static struct tm result; 109 110 return posix_gmtime_r(timep, &result); 495 111 } 496 112 … … 502 118 * @return Value of result on success, NULL on overflow. 503 119 */ 504 struct posix_tm *posix_localtime_r(const time_t *restrict timer,505 struct posix_tm *restrict result)120 struct tm *posix_localtime_r(const time_t *restrict timer, 121 struct tm *restrict result) 506 122 { 507 123 // TODO: deal with timezone … … 511 127 512 128 /** 513 * Converts broken-down time to a string in format 514 * "Sun Jan 1 00:00:00 1970\n". (Obsolete) 515 * 516 * @param timeptr Broken-down time structure. 517 * @return Pointer to a statically allocated string. 518 */ 519 char *posix_asctime(const struct posix_tm *timeptr) 520 { 521 static char buf[ASCTIME_BUF_LEN]; 522 return posix_asctime_r(timeptr, buf); 129 * Converts a time value to a broken-down local time. 130 * (non reentrant version) 131 * 132 * @param timep Time to convert. 133 * @return Pointer to a statically allocated structure that stores 134 * the result, NULL in case of error. 135 */ 136 struct tm *posix_localtime(const time_t *restrict timep) 137 { 138 static struct tm result; 139 140 return posix_localtime_r(timep, &result); 523 141 } 524 142 … … 532 150 * @return Value of buf. 533 151 */ 534 char *posix_asctime_r(const struct posix_tm *restrict timeptr,152 char *posix_asctime_r(const struct tm *restrict timeptr, 535 153 char *restrict buf) 536 154 { 537 assert(timeptr != NULL); 538 assert(buf != NULL); 539 540 static const char *wday[] = { 541 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" 542 }; 543 static const char *mon[] = { 544 "Jan", "Feb", "Mar", "Apr", "May", "Jun", 545 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 546 }; 547 548 snprintf(buf, ASCTIME_BUF_LEN, "%s %s %2d %02d:%02d:%02d %d\n", 549 wday[timeptr->tm_wday], 550 mon[timeptr->tm_mon], 551 timeptr->tm_mday, timeptr->tm_hour, 552 timeptr->tm_min, timeptr->tm_sec, 553 1900 + timeptr->tm_year); 554 155 time_tm2str(timeptr, buf); 555 156 return buf; 556 157 } 557 158 558 159 /** 559 * Equivalent to asctime(localtime(clock)). 560 * 561 * @param timer Time to convert. 562 * @return Pointer to a statically allocated string holding the date. 563 */ 564 char *posix_ctime(const time_t *timer) 565 { 566 struct posix_tm *loctime = posix_localtime(timer); 567 if (loctime == NULL) { 568 return NULL; 569 } 570 return posix_asctime(loctime); 571 } 572 573 /** 574 * Reentrant variant of ctime(). 160 * Convers broken-down time to a string in format 161 * "Sun Jan 1 00:00:00 1970\n". (Obsolete) 162 * (non reentrant version) 163 * 164 * @param timeptr Broken-down time structure. 165 * @return Pointer to a statically allocated buffer that stores 166 * the result, NULL in case of error. 167 */ 168 char *posix_asctime(const struct tm *restrict timeptr) 169 { 170 static char buf[ASCTIME_BUF_LEN]; 171 172 return posix_asctime_r(timeptr, buf); 173 } 174 175 /** 176 * Converts the calendar time to a string in format 177 * "Sun Jan 1 00:00:00 1970\n" (Obsolete) 575 178 * 576 179 * @param timer Time to convert. 577 180 * @param buf Buffer to store string to. Must be at least ASCTIME_BUF_LEN 578 181 * bytes long. 579 * @return Pointer to buf on success, NULL on fa lure.182 * @return Pointer to buf on success, NULL on failure. 580 183 */ 581 184 char *posix_ctime_r(const time_t *timer, char *buf) 582 185 { 583 struct posix_tm loctime; 584 if (posix_localtime_r(timer, &loctime) == NULL) { 186 int r = time_local2str(*timer, buf); 187 if (r != EOK) { 188 errno = r; 585 189 return NULL; 586 190 } 587 return posix_asctime_r(&loctime, buf); 588 } 589 590 /** 591 * Convert time and date to a string, based on a specified format and 592 * current locale. 593 * 594 * @param s Buffer to write string to. 595 * @param maxsize Size of the buffer. 596 * @param format Format of the output. 597 * @param tm Broken-down time to format. 598 * @return Number of bytes written. 599 */ 600 size_t posix_strftime(char *restrict s, size_t maxsize, 601 const char *restrict format, const struct posix_tm *restrict tm) 602 { 603 assert(s != NULL); 604 assert(format != NULL); 605 assert(tm != NULL); 606 607 // TODO: use locale 608 static const char *wday_abbr[] = { 609 "Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat" 610 }; 611 static const char *wday[] = { 612 "Sunday", "Monday", "Tuesday", "Wednesday", 613 "Thursday", "Friday", "Saturday" 614 }; 615 static const char *mon_abbr[] = { 616 "Jan", "Feb", "Mar", "Apr", "May", "Jun", 617 "Jul", "Aug", "Sep", "Oct", "Nov", "Dec" 618 }; 619 static const char *mon[] = { 620 "January", "February", "March", "April", "May", "June", "July", 621 "August", "September", "October", "November", "December" 622 }; 623 624 if (maxsize < 1) { 625 return 0; 626 } 627 628 char *ptr = s; 629 size_t consumed; 630 size_t remaining = maxsize; 631 632 #define append(...) { \ 633 /* FIXME: this requires POSIX-correct snprintf */ \ 634 /* otherwise it won't work with non-ascii chars */ \ 635 consumed = snprintf(ptr, remaining, __VA_ARGS__); \ 636 if (consumed >= remaining) { \ 637 return 0; \ 638 } \ 639 ptr += consumed; \ 640 remaining -= consumed; \ 641 } 642 643 #define recurse(fmt) { \ 644 consumed = posix_strftime(ptr, remaining, fmt, tm); \ 645 if (consumed == 0) { \ 646 return 0; \ 647 } \ 648 ptr += consumed; \ 649 remaining -= consumed; \ 650 } 651 652 #define TO_12H(hour) (((hour) > 12) ? ((hour) - 12) : \ 653 (((hour) == 0) ? 12 : (hour))) 654 655 while (*format != '\0') { 656 if (*format != '%') { 657 append("%c", *format); 658 format++; 659 continue; 660 } 661 662 format++; 663 if (*format == '0' || *format == '+') { 664 // TODO: padding 665 format++; 666 } 667 while (isdigit(*format)) { 668 // TODO: padding 669 format++; 670 } 671 if (*format == 'O' || *format == 'E') { 672 // TODO: locale's alternative format 673 format++; 674 } 675 676 switch (*format) { 677 case 'a': 678 append("%s", wday_abbr[tm->tm_wday]); break; 679 case 'A': 680 append("%s", wday[tm->tm_wday]); break; 681 case 'b': 682 append("%s", mon_abbr[tm->tm_mon]); break; 683 case 'B': 684 append("%s", mon[tm->tm_mon]); break; 685 case 'c': 686 // TODO: locale-specific datetime format 687 recurse("%Y-%m-%d %H:%M:%S"); break; 688 case 'C': 689 append("%02d", (1900 + tm->tm_year) / 100); break; 690 case 'd': 691 append("%02d", tm->tm_mday); break; 692 case 'D': 693 recurse("%m/%d/%y"); break; 694 case 'e': 695 append("%2d", tm->tm_mday); break; 696 case 'F': 697 recurse("%+4Y-%m-%d"); break; 698 case 'g': 699 append("%02d", _wbyear(tm) % 100); break; 700 case 'G': 701 append("%d", _wbyear(tm)); break; 702 case 'h': 703 recurse("%b"); break; 704 case 'H': 705 append("%02d", tm->tm_hour); break; 706 case 'I': 707 append("%02d", TO_12H(tm->tm_hour)); break; 708 case 'j': 709 append("%03d", tm->tm_yday); break; 710 case 'k': 711 append("%2d", tm->tm_hour); break; 712 case 'l': 713 append("%2d", TO_12H(tm->tm_hour)); break; 714 case 'm': 715 append("%02d", tm->tm_mon); break; 716 case 'M': 717 append("%02d", tm->tm_min); break; 718 case 'n': 719 append("\n"); break; 720 case 'p': 721 append("%s", tm->tm_hour < 12 ? "AM" : "PM"); break; 722 case 'P': 723 append("%s", tm->tm_hour < 12 ? "am" : "PM"); break; 724 case 'r': 725 recurse("%I:%M:%S %p"); break; 726 case 'R': 727 recurse("%H:%M"); break; 728 case 's': 729 append("%ld", _secs_since_epoch(tm)); break; 730 case 'S': 731 append("%02d", tm->tm_sec); break; 732 case 't': 733 append("\t"); break; 734 case 'T': 735 recurse("%H:%M:%S"); break; 736 case 'u': 737 append("%d", (tm->tm_wday == 0) ? 7 : tm->tm_wday); break; 738 case 'U': 739 append("%02d", _sun_week_number(tm)); break; 740 case 'V': 741 append("%02d", _iso_week_number(tm)); break; 742 case 'w': 743 append("%d", tm->tm_wday); break; 744 case 'W': 745 append("%02d", _mon_week_number(tm)); break; 746 case 'x': 747 // TODO: locale-specific date format 748 recurse("%Y-%m-%d"); break; 749 case 'X': 750 // TODO: locale-specific time format 751 recurse("%H:%M:%S"); break; 752 case 'y': 753 append("%02d", tm->tm_year % 100); break; 754 case 'Y': 755 append("%d", 1900 + tm->tm_year); break; 756 case 'z': 757 // TODO: timezone 758 break; 759 case 'Z': 760 // TODO: timezone 761 break; 762 case '%': 763 append("%%"); 764 break; 765 default: 766 /* Invalid specifier, print verbatim. */ 767 while (*format != '%') { 768 format--; 769 } 770 append("%%"); 771 break; 772 } 773 format++; 774 } 775 776 #undef append 777 #undef recurse 778 779 return maxsize - remaining; 191 192 return buf; 193 } 194 195 /** 196 * Converts the calendar time to a string in format 197 * "Sun Jan 1 00:00:00 1970\n" (Obsolete) 198 * (non reentrant version) 199 * 200 * @param timep Time to convert. 201 * @return Pointer to a statically allocated buffer that stores 202 * the result, NULL in case of error. 203 */ 204 char *posix_ctime(const time_t *timep) 205 { 206 static char buf[ASCTIME_BUF_LEN]; 207 208 return posix_ctime_r(timep, buf); 780 209 } 781 210 … … 894 323 stats_task_t *task_stats = stats_get_task(task_get_id()); 895 324 if (task_stats) { 896 total_cycles = (posix_clock_t) (task_stats->kcycles + task_stats->ucycles); 325 total_cycles = (posix_clock_t) (task_stats->kcycles + 326 task_stats->ucycles); 897 327 free(task_stats); 898 328 task_stats = 0;
Note:
See TracChangeset
for help on using the changeset viewer.